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This work is copyrighted by Università del Salento, and is licensed under a Creative Commons

Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/

http://siba-ese.unisalento.it/index.php/ejasa/index
http://creativecommons.org/licenses/by-nc-nd/3.0/it/


Electronic Journal of Applied Statistical Analysis
Vol. 18, Issue 2, October 2025, 431-457
DOI: 10.1285/i20705948v18n2p431

Statistical enhanced learning for modeling and
prediction tennis matches at Grand Slam

tournaments

Nourah Buhamra*a and Andreas Groll†a

aDepartment of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund

15 October 2025

In this manuscript, we concentrate on a specific type of covariates, which we call
statistically enhanced, for modeling tennis matches for men at Grand slam tourna-
ments. Our goal is to assess whether these enhanced covariates have the potential to
improve statistical learning approaches, in particular, with regard to the predictive
performance. For this purpose, various proposed regression and machine learning
model classes are compared with and without such features. To achieve this, we
considered three slightly enhanced variables, namely elo rating along with two dif-
ferent player age variables. This concept has already been successfully applied in
football, where additional team ability parameters, which were obtained from sepa-
rate statistical models, were able to improve the predictive performance.

In addition, different interpretable machine learning (IML) tools are employed to
gain insights into the factors influencing the outcomes of tennis matches predicted
by complex machine learning models, such as the random forest. Specifically, par-
tial dependence plots (PDP), individual conditional expectation (ICE) and accumu-
lated local effect (ALE) plots are employed to provide better interpretability for the
most promising ML model from this work. Furthermore, we conduct a compar-
ison of different regression and machine learning approaches in terms of various
predictive performance measures such as classification rate, predictive Bernoulli
likelihood, and Brier score. This comparison is carried out on external test data
using cross-validation, rolling window, and expanding window strategies.
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1. Introduction

In recent years, various methodologies for statistical and machine learning based modeling of
tennis matches and tournaments have emerged, and the existing methods for predicting the prob-
ability of winning matches in tennis have been expanded. Moreover, there is potential to calcu-
late winning probabilities for an entire tournament when all individual matches can be predicted.

Recently, machine learning (ML) models have been employed to predict the outcomes of
tennis matches. Somboonphokkaphan et al. (2009) introduced a method utilizing match statistics
and environmental data to predict winners using a Multi-Layer Perceptron (MLP) with a back-
propagation learning algorithm. MLP, a type of Artificial Neural Network (ANN), is effective for
solving real-world classification problems and predicting outcomes, especially when handling
large databases with incomplete or noisy data. Whiteside et al. (2017) proposed an automated
stroke classification system to quantify hitting load in tennis, using machine learning techniques
like a cubic kernel support vector machine. Wilkens (2021) expanded previous research by
applying various ML techniques, including neural networks and random forests, with extensive
datasets from professional men’s and women’s tennis singles matches. Despite these efforts, he
found that the average prediction accuracy does not exceed 70%.

Sipko and Knottenbelt (2015) predicted match winners based on the probability of winning
serve points, which subsequently indicates the overall probability of winning the match. They
extracted 22 features from historical data, including abstract features like player fatigue and in-
jury, and optimized models that outperformed Knottenbelt’s Common-Opponent model using
ML approaches such as artificial neural networks (ANNs). They suggest that ML-based tech-
niques can innovate tennis betting, noting that ANNs generated a 4.35% return on investment,
a 75% improvement in the betting market. Moreover, Gao and Kowalczyk (2021) developed a
model that predicts tennis match outcomes with over 80% accuracy, surpassing predictions based
on betting odds alone, and identifying serve strength as a crucial predictor. Their model used a
random forest classifier, highlighting the importance of simple models even in the age of deep
learning. Their comprehensive data set, compiled from ATP data from 2000 to 2016, includes a
variety of features capturing physical, psychological, court-related, and match-related variables.
Finally, a comprehensive overview of modeling and predicting tennis matches at Grand Slam
tournaments by different regression approaches has been presented in Buhamra et al. (2024).

The main focus of this manuscript, however, is to analyze, whether so-called enhanced co-
variates have the potential to improve statistical and machine learning approaches, in particular,
with regard to predictive performance. Generally, in recent years, there has been a growing
interest in feature engineering. Effective feature engineering plays a crucial role in enhancing
the performance of machine learning models by identifying and capturing relevant patterns and
relationships within the data. This enables models to improve their predictive accuracy and ex-
tract meaningful insights from the data. For instance, Felice et al. (2023) introduce the concept
of Statistically Enhanced Learning (SEL), a formalization framework for existing feature engi-
neering and extraction tasks in ML. This approach has the potential to address challenges in ML
tasks by optimizing feature selection and representation.

For example, in the context of modeling soccer, Ley et al. (2019) proposed a model to estimate
flexible, time-varying team-specific ability parameters. The resulting estimates were then added
to the set of (conventional) features in a random forest model, which turned out to be quite suc-
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cessful for predicting the FIFA World Cup 2018 in Groll et al. (2019). Cefis and Carpita (2025b)
introduce an enhanced expected goals (xG) model for football that combines tracking data, event
data, and player performance indicators using logistic regression with sample-balancing tech-
niques. Their model achieves both a significantly larger sensitivity and AUC compared to stan-
dard benchmarks, demonstrating improved goal prediction capability. For a recent discussion on
the trade-off between predictive accuracy and model interpretability in xG modeling, see Cefis
and Carpita (2025a).

Also, recent work has shown promising results in forecasting tennis outcomes using a variety
of statistical and machine learning approaches. As an example, Candila and Palazzo (2020) em-
ploy neural networks for betting strategy optimization, while Del Corral and Prieto-Rodrı́guez
(2010) assess the predictive value of ranking differences in Grand Slam matches. Meanwhile,
Klaassen and Magnus (2003) take a more granular approach by modeling tennis at the point
level to forecast match outcomes dynamically.

When using modern and complex ML models, another important aspect is interpretability
of the fitted model. Hence, several studies have been conducted in the field of understanding
and interpreting complex (black box-type) ML models. For example, Auret and Aldrich (2012)
used variable importance measures, directly generated by the random forest models, and partial
dependence plots, indicating that random forest models can reliably identify the influence of
individual variables, even in the presence of high levels of additive noise.

Moreover, Goldstein et al. (2015) present both individual conditional expectation (ICE) plots
and classical partial dependence plots (PDPs) on three different real data sets, namely depression
clinical trial, white wine and diabetes classification in Pima Indians. They demonstrate how ICE
plots can shed light on estimated models in ways PDPs cannot. Accordingly, ICE plots refine the
PDP by graphing the functional relationship between the predicted response and the feature for
individual observations. In particular, ICE plots highlight the variation in the fitted values across
the range of a certain selected covariate, suggesting where and to what extent heterogeneities
might exist.

More generally, Molnar et al. (2023) investigated the relationship between PDPs and permuta-
tion feature importance (PFI) methods in understanding the data generating process in machine
learning models. They explored how these two techniques can provide complementary insights
into the importance and effects of features on model predictions. Consequently, they formalize
PDP and PFI as statistical estimators representing the ground truth estimands rooted from the
data generating process. Their analysis reveals that PDP and PFI estimates can deviate from this
ground truth not only due to statistical biases but also due to variations in learner behavior and
errors in Monte Carlo approximations. To address these uncertainties in PDP and PFI estima-
tion, they introduce the learner-PD and learner-PFI approaches, which involve model refits, and
propose corrected variance and confidence interval estimators.

Unlike traditional black-box models, interpretable machine learning (IML) models aim to pro-
vide insights into the decision-making process, enabling users to make informed decisions and
understand the implications of model outputs. Therefore, in this work, we focused on IML mod-
els, such as partial dependence plots (PDP; Friedman, 2001), individual conditional expectation
(ICE; Goldstein et al., 2015) and accumulated local effect (ALE; Apley and Zhu, 2020) plots,
to make our employed random forest model more interpretable. Additionally, we demonstrate
how feature engineering techniques can be applied in the context of sports analytics to enhance
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predictive modeling and gain insights from sports data. Specifically, we examine the use of co-
variates such as Elo, Age.30 and Age.int, which all are not directly available, but are obtained
from either a separate modeling approach (Elo) or via meaningful mathematical transformations
(Age.30, Age.int), in order to enhance statistical models for tennis. For this application, vari-
ous regression and machine learning approaches were considered, including linear regression,
spline models, and random forest. These approaches were then compared based on various per-
formance measures within an expanding window strategy for analyzing tennis data from Grand
Slam tournaments. To conduct this analysis, a dataset was compiled using the R package deuce
(Kovalchik, 2019). This data set included information on 6,586 matches from men’s Grand Slam
tournaments spanning the years 2011 to 2024. Several potential covariates were considered, in-
cluding the players’ age, ATP ranking and points, odds, elo rating, as well as two additional age
variables. These additional age variables were designed to reflect the “optimal” age range of a
tennis player, which is typically between 28 and 32 years (Weston, 2014).

The remainder of the article is structured as follows. Section 2 briefly introduces the data set
and defines the objectives of this work. Then, in Section 3, different modeling approaches are
introduced, including classical regression approaches and ML methods such as random forest.
Besides, some interpretable machine learning techniques like partial dependence plots (PDP),
individual conditional expectation (ICE) plots and accumulated local effect (ALE) plots are
discussed, and various performance measures are defined. In Section 4, the modeling approaches
are compared in terms of various performance measures, using an expanding window strategy.
Additionally, interpretations for different model classes considering enhanced covariates and
IML techniques are provided. Finally, Section 5 summarizes the main results and gives a final
overview.

2. Data

Next, we shortly introduce our data set, which was compiled using the R package deuce (Ko-
valchik, 2019), and contains information on 6,586 matches from men’s Grand Slam tournaments
from 2011 to 2024. It is based on the data that was already used in Buhamra et al. (2024) and
Buhamra et al. (2025), has been extended here and contains the following variables.

Victory: A dummy variable indicating whether the first-named player won the match (1: yes, 0:
no), used as the response variable in all models. In addition, as we randomly assign which
player is first- and which is second-named, the binary victory variable is almost evenly
distributed, with wins accounting for approximately 50.08% and losses for 49.92% of
the matches, indicating a balanced outcome distribution suitable for binary classification
modeling.

Conventional covariates

The following three covariates are conventional covariates, which could be extracted more or
less directly from public sources. They are all incorporated in our final data set in the form of
differences, i.e. for each feature the value of the 2nd player is subtracted from the one of the 1st
player.
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Age: A metric predictor collecting the age of the players in years. Note that players’ ages were
not given directly and had to be deduced from the player’s date of birth as well as the date
of the respective match.

Rank: For each player, the rank at the start of the respective tournament was collected. The
position in the ranking is based on the ATP ranking points.

Points The ATP world ranking points are awarded for each match won per tournament. Wins
in later rounds of a tournament are valued higher than wins in the first rounds of a tourna-
ment. Points earned in a tournament expire after 52 weeks.

Note that principally, many more conventional covariates on the players could be collected, such
as e.g. their height and handedness. Unfortunately, as those were not directly available to us (and
scraping those would involve an enormous effort), we decided to keep the list of conventional
covariates in this study rather short.

Enhanced covariates

Next, we introduce three covariates which we call enhanced, as they are not directly available,
but are obtained from either a separate modeling approach (Elo) or via meaningful mathematical
transformations (Age.30, Age.int), in order to enhance statistical models for tennis. Again, also
these features are all incorporated as differences (value of 2nd player minus value of 1st player).

Elo: For each player, the overall Elo rating before a certain match is collected. The idea of the
Elo rating system is that one can more accurately track and predict player performances
over time, taking into account the relative strength of opponents and the outcomes of
matches. Each player starts with an initial rating (often set around 1,500 points, though
this can vary depending on the specific implementation). After each match, the players’
ratings are updated based on the match outcome. If a higher-rated player wins, they gain
fewer points than if a lower-rated player wins. The amount of points exchanged in a
match depends on the difference in ratings between the two players. Hence, this covariate
is considered “enhanced” as it involves complex calculations and provides a more delicate
measure of player performance. Further details on the Elo rating in tennis can be found in
Angelini et al. (2022) and Vaughan Williams et al. (2021)

Age.30: This variable is given by the absolute distance between the age of the players and ref-
erence age 30. This is based on the assumption that the standard Age variable introduced
above does not contain enough information. For example, while a 25-year-old player
typically has an age-advantage over a 20-year-old one, a 40-year-old player rather has a
disadvantage over a 35-year-old one; and, in both cases, the age difference between the
two players equals 5 years. Following Weston (2014), who argued that the optimal age of
tennis players is between 28 and 32 years, we chose the mid-point as the reference age.

Age.int: This feature is based on the assumption that the optimal age of a tennis player lies
within the interval [28;32]. Then, the smaller distance to the limits of this interval was
derived, i.e. for players younger than 28 the distance to 28 was calculated and for players
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older than 32 the distance to 32 was calculated. For players between 28 and 32 the distance
was set to 0.

Note that another very informative enhanced feature, which is also typically easy to access,
is based on bookmakers’ odds. These are typically derived by sophisticated models, as the
bookmakers’ profit depends on them being adequate1. Moreover, further descriptive statistics
such as mean, standard deviation (SD), median and quantiles for both conventional and enhanced
covariates are provided in the appendix for clarity (see Table 3 ).

A detailed description of the variables included in the data set can be found in Section 2 of
Buhamra et al. (2024) and Buhamra et al. (2025) .

Note at this point that the data set does not include matches in which one of the two players
gave up or was unable to compete, e.g. due to injury, such that the other player won without
actually playing the match. These matches do not contain any relevant information for the
present analysis and, hence, in order not to distort the results, are excluded. Moreover, the data
set does not contain any missing values.

Based on this data set, the best possible statistical enhance learning model for predicting
tennis matches at Grand Slam tournaments is sought. Also, it will be examined whether a
machine learning approach, namely a random forest, incorporating enhanced statistical covari-
ates, is more powerful in predicting tennis matches compared to classical regression approaches
that also incorporate the corresponding enhanced covariates. Then, for all proposed modeling
approaches, including machine learning and classical regression methods, optimal models are
determined based on certain performance measures in terms of an expanding window prediction
approach. Here, our focus will be only on the expanding window strategy, which reveals a clear
winner model, but also other technique such as leave-one-tournament-out cross-validation and a
rolling window approach have been considered. The results for those approaches can be found
in the appendix. Our main objectives are (i) to quantify how the predictive performance can be
improved by incorporating enhanced variables, and (ii) to provide better interpretations for the
random forest model using IML tools such as PDPs, ICE and ALE plots.

3. Methods

In the following, first the statistical and machine learning methods used in this work are briefly
introduced in Section 3.1. We focus on both standard logistic regression, and generalized addi-
tive models based on P-splines. Moreover, the random forest as a representative from the field
of machine learning is shortly presented. Then, in Section 3.2 several interpretable machine
learning methods are explained, including partial dependence plots (PDP), individual condi-
tional expectation (ICE) plots and accumulated local effect (ALE) plots. Finally, in Section 3.4
various performance measures are defined.

1However, due to the funding arrangements of one of the authors, who is supported by a ministry in a country
where betting is strictly regulated, we have chosen not to further explore this feature in our analysis.
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3.1. Statistical and machine learning methods

In this section, we introduce the classic logistic regression model for binary outcomes, followed
by its extension to non-linear effects via spline-based approaches.

Logistic regression

Given observations (yi,xi1, . . . ,xip) for i = 1, . . . ,n tennis matches,

πi = P(yi = 1|xi1, . . . ,xip) = E[yi|xi1, . . . ,xip]

is the (conditional) probability for yi = 1, i.e. Player 1 winning the match, given covariate values
xi1, . . . ,xip.

We further specify a strictly monotonically increasing response function h : R→ [0,1],

πi = h(ηi) = h(β0 +β1xi1 + · · ·+βpxip) , (3.1)

which relates the linear predictor ηi to πi.
The logistic regression model, which uses the sigmoid function as response function, is the

most famous candidate within the framework of Generalized Linear Models (GLMs).
The corresponding estimates β̂0, . . . , β̂p are obtained by numerical maximization of the un-

derlying log-likelihood, e.g. by using Fisher scoring or the Newton-Raphson algorithms (see,
e.g., Nelder and Wedderburn, 1972). This approach is implemented in the glm function from the
stats package in R. For more details on GLMs, see Fahrmeir and Tutz (2001).

Spline-based approaches

In the classic logistic regression model introduced above, the covariates effects are strictly lin-
ear, see equation (3.1). However, in practice also non-linear influences might be relevant. In
order to model these appropriately and flexibly, the GLM from above be extended to a so-called
Generalized Additive Model (GAM; Wood, 2017). For this purpose, so-called splines can be
used. In this work, we focus on B-splines (see, e.g., Eilers and Marx, 2021).

So instead of linear effects like the β jxi j in equation (3.1), with B-splines a non-linear effect
f (x) of a metric predictor can be represented as

f (x) =
d

∑
j=1

γ jB j(x) ,

where B j(x) are different B-spline basis functions, d denotes the number of basis functions
used, and γ j the corresponding spline coefficients. As an unpenalized estimation of a non-linear
B-spline effect often overfits, typically the non-linear effect is smoothed by using penalized
B-splines, i.e. P-splines.

Beside the problem of potential overfitting, the goodness-of-fit of the B-spline approach de-
pends on the number of selected nodes. To avoid this problem, various penalization methods
exist in the form of P-splines. Here, a penalized estimation criterion, which is extended by a
penalty term, is used instead of the usual estimation criterion. For P-splines based on B-splines
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see, e.g., Eilers and Marx (1996). For this approach, we rely on the gam function from the mgcv
package (Wood, 2017) in R. Note that such P-spline based approaches have also been used in
Buhamra et al. (2024) and Buhamra et al. (2025).

Random forest

In the following, a random forest will be used for comparison with the linear and non-linear re-
gression approaches introduced above. This method is based on a (typically large) ensemble of
trees, which were introduced by Breiman et al. (1984). However, as individual trees suffer from
instability (Breiman, 1996b) an ensemble method called bootstrapping and aggregating (bag-
ging; Breiman, 1996a) was introduced, which in general improves the predictive performance
compared to a single regression tree and is rather easy to implement.

A random forest aggregates multiple decision trees to enhance prediction accuracy (Breiman,
2001). The key idea is that combining uncorrelated models (individual trees) reduces variance
and improves predictions compared to using a single model. In this manuscript, classifications
trees are considered in the random forest (where the most frequent class among the trees deter-
mines the outcome), as our target variable is binary. For this purpose, the ranger package in R
by Wright et al. (2019) is used for fitting the random forest models. Also, the two hyperparame-
ters mtry andntree are quite important. For optimizing mtry, 10-fold cross-validation is used,
and ntree is set to 400. Further details about these parameters can be found in Buhamra et al.
(2025)

3.2. Interpretable machine learning

In the following, we discuss interpretable machine learning (IML) methods such as partial
dependence plots (PDP; see Friedman, 2001), individual conditional expectation (ICE) plots
(Goldstein et al., 2015), and accumulated local effect (ALE) plots (Apley and Zhu, 2020) in
more detail. These methods aim to enhance the interpretability of complex, black box-type ma-
chine learning models. Particularly, they can be applied to such black box models to provide
explanations for individual predictions or overall model behavior. For this purpose, the imple-
mentations from the R packages pdp by Greenwell (2017), iml by Molnar et al. (2018), and
ggplot2 by Wickham et al. (2016) are used (the latter one being generally applied for plotting).
A nice overview of standard approaches for IML can be found in Molnar (2025).

Partial dependence plot (PDP)

Following Molnar (2025), the partial dependence plot (or PDP) illustrates the marginal effect of
one or two features on the predicted outcome of a machine learning model (Friedman, 2001).
It can reveal whether the relationship between a feature and the target is linear, monotonic, or
more complex. The partial dependence function for regression is defined as follows

fS(xS) = ExC [ f (xS,xC)] =
∫

f (xS,xC)dP(xC) ,

where P(·) is the distribution of the features in set C, xS are the features for which the partial
dependence function is plotted, while xC represents the other features used in the machine learn-
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ing model f (·), which are considered as random variables in this context. Typically, the set
S contains only one or two features, namely those whose effect on the prediction one aims to
understand. This implies that xS denotes the features of interest and xC represents the comple-
mentary features. Hence, one obtains a function that depends solely on the variables in S, while
still accounting for interactions with the other variables.

The feature vectors xS and xC together form the complete feature space x. Partial dependence
operates by marginalizing the model’s output over the distribution of the features P(·) in set
C, allowing the function to reveal the relationship between the features in S and the predicted
outcome. By doing so, we obtain a function depending solely on the features in S, while still
accounting for interactions with other features.

In practice, the function f is unknown, so we estimate the partial dependence function by the
fitted model f̂ . The empirical partial dependence function f̂S is given by

f̂S(xS) =
1
n

n

∑
i=1

f̂ (xS,xi,C) ,

i.e. it is estimated by calculating averages on the training data. The partial function shows the
average marginal effect on the prediction for given values of the features in S. Here, xi,C denotes
the actual values from the dataset for the features not of interest, and n represents the number of
instances in the dataset. A key assumption of the PDP is that the features in C are uncorrelated
with those in S. If this assumption does not hold, the calculated averages may include data points
that are highly unlikely or even impossible. Further details can be found in Molnar (2025).

Individual conditional expectation (ICE)

The counterpart to a PDP (Friedman, 2001), which illustrates the average effect of a feature,
is referred to as individual conditional expectation (ICE) plot and is applied for individual data
instances. The approach was first introduced by Goldstein et al. (2015). ICE plots are used in
machine learning to analyze the relationship between a feature and the predicted outcome for in-
dividual instances within a dataset. Unlike PDPs, which focus on the average effect of a feature,
ICE plots offer insight into how changes in a specific feature or feature set impact the model’s
predictions for individual instances. Each line in an ICE plot represents the predicted outcome
for a single instance as the feature value varies, revealing the variability and heterogeneity in
feature effects across different instances. This helps identifying interactions between features,
understanding complex model behaviors, and detecting outliers, thereby improving model inter-
pretability and transparency.

3.3. Accumulated local effect (ALE) plots

To interpret the influence of individual predictor variables on the predicted outcome, we employ
accumulated local effect (ALE) plots, as proposed by Apley and Zhu (2020). ALE plots offer
a model-agnostic method for interpreting complex machine learning models by quantifying the
local effect of input features on model predictions, while accounting for feature interactions and
avoiding extrapolation beyond the observed data.
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Unlike partial dependence plots (PDPs), which can produce biased estimates in the presence of
correlated predictors, ALE plots estimate the local effect of a variable by computing finite differ-
ences in small intervals across the variable’s domain. These local effects are then accumulated
and centered, resulting in a global interpretation of how the variable affects the model prediction
on average.

Let xS denote the feature(s) of interest and xC represent the complement set of features. The
ALE function isolates the effect of xS on the model output f (xS,xC), while still capturing inter-
actions with xC. The ALE function is computed as

f̂ ALE
S (xS) =

∫ xS

zmin

ExC

[
∂ f (xS,xC)

∂xS

∣∣∣∣xS = z
]

dz .

This integral is approximated using finite differences within quantile-based intervals of xS, aver-
aged over the observed values of xC. The accumulated values are then centered so that the ALE
function has a mean of zero, allowing interpretation in terms of relative effects. In our analysis,
ALE plots are applied for the random forest model to assess and compare the relative importance
of key predictors, such as Points, Rank, Age.30, and Elo on the probability of match victory.

3.4. Performance measures

In the following, performance measures are defined which we use to select the best model based
on the predictive performance with regard to those measures (see also Buhamra et al., 2024, and
Buhamra et al., 2025). Let ỹ1, . . . , ỹn denote the true binary outcomes of a set of n matches, i.e.,
ỹi ∈ {0,1}, i = 1, . . . ,n. Moreover, let π̂i1 =: π̂i denote the probability, predicted by a certain
model, that player 1 wins match i. Then, the probability that player 2 wins the match is directly
given by π̂i2 = 1− π̂i1.

Classification rate

The (mean) classification rate is given by the proportion of matches correctly predicted by a
certain model, i.e.

1
n

n

∑
i=1

⊮(ỹi = ŷi), where ŷi =

{
1, π̂i > 0.5
0, π̂i ≤ 0.5

,

see, e.g., Schauberger and Groll (2018). Hence, large values indicate a good predictive perfor-
mance.

Predictive Bernoulli likelihood

Following again Schauberger and Groll (2018), the (mean) predictive Bernoulli likelihood is
based on the predicted probability π̂i for the true outcome ỹi. For n observations it is defined as

1
n

n

∑
i=1

π̂
ỹi
i (1− π̂i)

1−ỹi ,

Once again, large values indicate good predictive performance.
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Brier score

The Brier score (Brier, 1950) is based on the squared distances between the predicted probability
π̂i and the actual (binary) output ỹi from match i, and is defined as

1
n

n

∑
i=1

(π̂i − ỹi)
2 .

It is an error measure and, hence, low values indicate a good predictive performance.

4. Results

In the next section, the predictive power of the enhanced variables is presented for both regres-
sion and machine learning approaches. For this purpose, we use an expanding window (EW),
a rolling window (RW) as well as a leave-one-tournament-out cross-validation (CV) approach.
The best models are identified with respect to the previously defined performance measures. Ad-
ditionally, we provide better interpretability of the machine learning approach, i.e. the random
forest model, by using IML tools such as partial dependence plot (PDP), individual conditional
expectation (ICE) and accumulated local effect (ALE) plots. All calculations and evaluations
were performed using the statistical programming software R (R Core Team, 2024).

4.1. Enhanced variables predictive power

To investigate the predictive potential of so-called ‘statistically enhanced covariates’ in more
detail, certain promising variables are considered, such as Elo, Age.30 and Age.int, along with
two conventional covariates (Rank or Points). All possible combinations of these covariates
result in a total of 31 models for each of our proposed approaches, including linear effects, non-
linear effects (splines), and the random forest. The results are given in Tables 1, with the best
performers highlighted in bold. For the expanding window approach, results are presented here
in detail, as this method clearly identifies the top-performing models among the 31 proposed.
The results for the leave-one-tournament-out cross-validation and rolling window approaches
are included in the appendix.

Expanding window validation

We validated all proposed 31 models with respect to their predictive performance on new, unseen
test data. The validation is performed using an expanding window forecasting approach, i.e.,
each time one of the remaining tournaments is used as the test data set in chronological order,
and the training data set is constantly updated and enlarged. This scheme has already been
previously used in Buhamra et al. (2025) and can be explained as follows:

1. First, all tournaments prior to 2024 are used as the training data set. Then, all models are
fitted. Based on those, predictions are derived for the 2024 Australian Open matches, as
this was the 1st Grand Slam tournament in 2024.
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2. Then, the training data is updated, by adding the matches of the Australian Open 2024.
Then, the models are fitted again on the extended training data, and predictions are made
for the French Open 2024, which is the 2nd Grand Slam tournament in 2024.

3. Next, the matches of the French Open 2024 are added to the training data set and the
models are fitted again. Based on those fits, Wimbledon 2024 is predicted.

4. Then, the Wimbledon 2024 matches will be added to the training data set, and again, the
models are fitted and predictions are made for the final Grand Slam tournament in 2024,
the US Open 2024.

Finally, the prediction results for all four tournaments are compared with the actual match out-
comes, and the corresponding performance measures are calculated .

Table 1 presents the predictive performance of regression models with linear and non-linear
effects, alongside random forest models, based on 31 possible feature combinations. We ensured
that each model included at most one age-based variable.

Linear model: The classification rates varied between 0.438 and 0.731. The winning linear
regression model, which included Points, Rank, Elo, and Age, achieved a classification rate value
of 0.731 and turned out to be the best performing model among all models with respect to the
other two performance measures, yielding a predictive likelihood value of 0.654, and the lowest
Brier score of 0.168.

Splines model: For the non-linear models the winning model is identified based on the en-
hanced variable Elo and other conventional variables such as Points, Rank and Age. Specifically,
the splines model including covariates Points, Rank, Elo and Age demonstrates a good perfor-
mance with respect to the predictive likelihood and the Brier score performance measures. The
corresponding values are 0.653 and 0.169, respectively. The model based on Age.int and Points
only, achieved the overall best classification rate of 0.733.

Random forest: Similar to the case of the spline-based approaches, the winning model among
the random forests can be identified based on the results for the predictive likelihood and Brier
score measures. The results show that the random forest includes covariates Points, Rank, Elo
and Age.30 performs slightly better than the other models. It yielded a classification rate of
0.721, a predictive likelihood of 0.624, and a Brier score of 0.179.

Overall, if we considered both the proposed model types (i.e., linear regression, spline-based
regression and random forests) and different forecasting startegies (such as EW, CV, and RW),
certain models consistently prevail when these enhanced variables are present. The results of
both leave-one-tournament-out CV approach and the rolling window approach for the regression
models (with linear and non-linear effects), as well as for the random forest model, are presented
in Tables 5 and 6, respectively, in the appendix. In general, across all the tables presented in
the appendix, the results suggest a nearly identical trend: prediction accuracy improves when at
least one of these enhanced variables (i.e., Elo, Age.30, Age.int) is included.

Finally, it has to be noted that focusing just on the mean predictive performance with respect
to certain performance measure,s as done in Tables 1, 5 and 6, might be a too simple way of
comparison, as it ignores the uncertainty of these values. Hence, we follow the Model Com-
parison Set approach proposed by Hansen et al. (2011), exemplarily for the expanding window
approach from Table 1. We always compare the overall best performing model (highlighted by
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the dark gray cell background color) to all other models, based on their individual match predic-
tions via suitable statistical paired comparison tests (one-sided; α = 0.05). More specifically,
we use the McNemar test for the classification rate, and a standard t-test for the predictive like-
lihood and Brier score. Whenever a model is signifficantly outperformed by the winner model,
the respective cell background is highlighted in slight gray color.

In more detail, we can see that e.g. all models which are only based on the age variables (see
first three rows from Table 1) are significantly outperformed with respect to all performance
measures by the respective winner model. Moreover, it turns out that the best linear model
with respect to predictive likelihood and Brier score significantly outperform almost all other
models, particularly the random forest models. Overall, we find that those models which the
winner model does not significantly outperform, often include one or several of the statistically
enhanced features (Elo, Age.30, Age.int).

4.2. Model interpretation

In this section, our interpretation is developed based on the refitting of the top-performing linear,
spline, and random forest models introduced in Section 4.1. Consequently, we provide deeper
insights for these models. Additionally, interpretable machine learning tools such as a partial
dependence plot (PDP), an individual conditional expectation (ICE) and an accumulated local
effect (ALE) plot are used to enhance our understanding of the random forest model.

4.2.1. Linear model

The linear model can be directly interpreted based on the p estimated regression coefficients β̂ j

from Equation (3.1). Their values indicate how much the outcome variable is expected to change
when the corresponding predictor variable changes by one unit, assuming all other covariates
in the model are held constant. Hence, they allow direct interpretation of both strength and
direction of the relationship between the predictors and the outcome variable.

Table 2 shows the coefficient estimates for the best candidate linear model based on the results
from the previous Section 4.1. It incorporates Points, Rank, Age as conventional covariates,
and Elo as enhanced covariate. Note that all predictors have been standardized (mean = 0,
standard deviation = 1) prior to model fitting. The outcome variable is binary (win/loss), and the
coefficients represent changes in the log-odds of winning per one standard deviation increase in
the predictor.

For the Rank difference variable, the negative coefficient for the standardized variable indi-
cates that a one standard deviation increase in the rank difference (i.e., the first-named player
is relatively lower ranked or worse compared to the opponent) leads to a decrease in the linear
predictor by approximately 0.087 units. Due to the logistic link function, this also indicates a
decrease in the predicted probability of winning for the first-named player.

Analogously, for a one standard deviation increase in the Elo rating difference (i.e., the first-
named player has a relatively larger Elo rating compared to his opponent), the linear predictor
increases by approximately 1.282 units. Due to the logistic link function, this again translates
to a larger predicted probability of winning for the first-named player. In practical terms, this
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Table 1: Results of the expanding window approach for linear, spline, and random forest ap-
proaches; best results are highlighted in bold font; dark gray cell background: over-
all winning models; light gray cell backgrounds: models that are significantly outper-
formed by winning model.

Model Linear Spline Random Forest

Cr LLH Bs Cr LLH Bs Cr LLH Bs

Age 0.442 0.500 0.251 0.452 0.500 0.250 0.612 0.550 0.234
Age.30 0.438 0.499 0.251 0.500 0.499 0.251 0.577 0.539 0.242
Age.int 0.438 0.499 0.251 0.502 0.499 0.251 0.583 0.537 0.243
Points 0.721 0.635 0.180 0.727 0.644 0.180 0.706 0.593 0.192
Elo 0.719 0.642 0.173 0.721 0.642 0.173 0.723 0.600 0.186
Rank 0.721 0.591 0.200 0.719 0.601 0.200 0.717 0.574 0.201
Elo, Age 0.723 0.647 0.170 0.729 0.647 0.170 0.725 0.600 0.186
Rank, Age 0.723 0.593 0.199 0.710 0.603 0.199 0.717 0.581 0.200
Points, Age 0.723 0.637 0.179 0.723 0.646 0.179 0.723 0.602 0.189
Elo, Age.30 0.717 0.644 0.172 0.713 0.644 0.172 0.727 0.598 0.187
Rank, Age.30 0.729 0.593 0.198 0.719 0.603 0.198 0.719 0.573 0.202
Points, Age.30 0.725 0.635 0.180 0.731 0.644 0.179 0.715 0.591 0.193
Elo, Age.int 0.715 0.644 0.172 0.710 0.644 0.172 0.725 0.600 0.186
Rank, Age.int 0.727 0.593 0.198 0.713 0.603 0.198 0.719 0.574 0.201
Points, Age.int 0.729 0.635 0.180 0.733 0.645 0.179 0.710 0.591 0.193
Points, Rank 0.721 0.642 0.177 0.723 0.647 0.178 0.712 0.606 0.186
Points, Elo 0.715 0.648 0.172 0.721 0.648 0.172 0.702 0.618 0.181
Rank, Elo 0.725 0.644 0.172 0.723 0.643 0.173 0.706 0.609 0.184
Points, Rank, Age 0.717 0.645 0.176 0.721 0.648 0.178 0.710 0.606 0.187
Points, Elo, Age 0.729 0.653 0.169 0.727 0.653 0.169 0.702 0.619 0.183
Elo, Rank, Age 0.725 0.649 0.170 0.727 0.648 0.170 0.710 0.615 0.182
Points, Rank, Age.30 0.727 0.644 0.176 0.727 0.648 0.178 0.717 0.604 0.187
Points, Rank, Age.int 0.729 0.644 0.176 0.725 0.648 0.178 0.710 0.604 0.187
Points, Elo, Age.30 0.717 0.650 0.170 0.715 0.650 0.170 0.715 0619 0.182
Elo, Rank, Age.30 0.721 0.646 0.171 0.723 0.645 0.171 0.717 0.609 0.184
Points, Elo, Age.int 0.715 0.651 0.170 0.715 0.650 0.171 0.710 0.616 0.182
Elo, Rank, Age.int 0.715 0.651 0.170 0.721 0.645 0.172 0.706 0.609 0.184
Points, Rank, Elo 0.719 0.650 0.171 0.723 0.648 0.171 0.712 0.621 0.181
Points, Rank, Elo, Age 0.731 0.654 0.168 0.727 0.653 0.169 0.719 0.622 0.181
Points, Rank, Elo, Age.30 0.725 0.652 0.170 0.721 0.650 0.170 0.721 0.624 0.179
Points, Rank, Elo, Age.int 0.723 0.652 0.169 0.717 0.650 0.170 0.714 0.621 0.180
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Table 2: Estimated coefficients for the candidate linear model based on the results from Table 1
for standardized predictors, along with standard errors and 95% confidence intervals

Predictor Estimate Std. Error z value Pr(> |z|) 2.5% 97.5%
Rank -0.087 0.042 -2.093 0.036 -0.171 -0.007
Elo 1.282 0.064 20.006 0.000 1.157 1.408
Points 0.400 0.069 5.797 0.000 0.267 0.538
Age -0.174 0.030 -5.725 0.000 -0.234 -0.115

means that larger Elo rating differences in favor of the first-named player are strongly associated
with increased chances of winning the match, as reflected by the large positive coefficient.

The same positive relationship also holds for the predictor variable Points. For every one
standard deviation increase in the points difference (i.e., when the first-named player has accu-
mulated relatively more ranking points than his opponent), the model predicts an increase of
approximately 0.400 units in the linear predictor. Consequently, the winning probability for the
first-named player also increases. This positive coefficient reflects the intuitive implication that
players with a larger difference in ranking points are more likely to win their matches.

For the variable Age, we observe a pattern similar to that of the predictor variable Rank,
indicating a negative relationship. Specifically, a one standard deviation increase in the age
difference is associated with a decrease of approximately 0.174 units in the linear predictor.

4.2.2. Splines

Graphical illustrations of spline effects are a useful way to understand and visualize potential
non-linear effects of predictors on the response variable. The spline-based approaches from
Section 3.1 are able to capture non-linear relationships and allow for a flexible, semi-parametric
form of regression using smooth functions (splines) for predictors. Corresponding ploting func-
tions provide interpretable visualizations. In this context, the gam function from the mgcv pack-
age (Wood, 2017) in R is used.

Figure 1 displays the effects for the covariates Elo, Age, Points and Rank, which actually
appear to be linear in most of these covariates.

In particular, differences in Elo show a strong increasing effect. The effect of Age difference
is relatively flat across most of the range, but non-linear, with only minor deviations at the
extremes; however, these are accompanied by wide confidence intervals, indicating that Age
differences do not play a significant role in determining outcomes. For the Points difference,
the effect is also positive, though a bit less pronounced as for Elo. In contrast, the effect for the
Rank differences is negative. Finally, note that all effects are statistically significant.

4.2.3. Random forest with interpretable machine learning

Next, the results for the random forest model with the best predictive performance from Sec-
tion 4.1 are discussed. This model, which included Points, Rank, Elo, and Age.30 as covariates,
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Figure 1: Spline effects for the covariates Elo, Age, Points and Age

is refitted to our entire data set. Then, both partial dependence plots (PDPs) and individual con-
ditional expectation (ICE) plots are presented for better interpretability and visualization of the
respective complex model. Furthermore, correlations and multicollinearity among Elo, Rank,
Points, Age, Age.int and Age.30 are assessed using the variance inflation factor (VIF; Kutner
et al., 2004), see Table 4 in the appendix.

Since ICE plots—the individual equivalent of PDPs—are considered crucial in our case, the
combined ICE plots and PDPs were used to provide a comprehensive visualization of the rela-
tionship between predictor variables and the predicted outcome.

In Figure 2, we generated a combined ICE plot and PDP. Each ICE line represents how the
predicted winning probability changes with the predictor value for a single observation. The
spread of the lines indicates variability in the effect of the predictor across different observations.
The thick black line represents the PDP, showing the average effect of the respective predictor
on the predicted outcome. This PDP line provides context to the ICE lines by highlighting the
overall trend across all observations.

For instance, in the Elo panel, the PDP line increases steadily, showing that larger Elo differ-
ences (favoring the first-named player) are strongly associated with higher winning probabilities.
The ICE lines closely follow this upward trend, confirming Elo as a dominant predictor.

In the Rank panel, the predicted probability of winning is first rather constant, then shows
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Figure 2: Combined PDP (thick black line) and ICE plots (grey lines) for the random forest
model including covariates Age.30, Elo, Points and Rank
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Figure 3: Heat map for the random forest model including Elo and Age.30 as covariates

a steep decline as the Rank difference increases, followed by another nearly constant trend.
The spread of the ICE lines indicates that individual responses vary considerably, but the gen-
eral PDP trend suggests that larger positive Rank differences (i.e., the first-named player being
ranked worse) reduce winning probability sharply for moderate differences, with only minor
fluctuations before and thereafter.
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For the Points panel, we observe the exact opposite trend compared to the Rank differences,
just even a bit more pronounced, again with the individual ICE lines varying considerably.

Also in the Age.30 panel, the ICE lines spread rather widely, reflecting heterogeneous effects.
The PDP indicates a slightly decreasing trend as Age.30 differences increase, with a slightly
increasing trend for large, positive differences. However, many ICE lines deviate from this
average, implying that for some individual players the effect is rather different.

Overall, this combined plot effectively conveys both the average influence of each predictor
(PDP) and its varying impact on individual observations (ICE). It allows for precise interpreta-
tion of how predictors influence the outcome across different levels and individuals.

Finally, in Figure 3, a heat map plot for the partial dependency of Elo and Age.30 is presented.
The plot examines how the linear predictor (and, hence, the wining probability) changes jointly
with Age.30 and Elo. If the color changes are not uniform across the heat map, this suggests
a complex interaction between Elo and Age.30. For example, larger Elo differences have a
stronger impact on the predictor for certain age ranges than for others. (e.g., players with an age
difference to their opponent closer to 0 benefit more from a larger Elo difference than players
that are much younger or older than their opponent). Generally, a region that transitions from
blue to yellow as Elo differences increase indicates that larger Elo scores are associated with
larger winning probabilities, especially when Age.30 differences are within a certain range.

Overall, this heatmap illustrates the joint effect of Elo and Age.30 differences on the predicted
probability of winning a tennis match. Elo differences exert the strongest influence, i.e., players
with larger Elo ratings relative to their opponents have a substantially increased probability of
winning, while those with lower Elo differences face reduced chances of success. In contrast,
Age.30 differences show only a moderate impact. Players who are considerably older or younger
the their opponent exhibit only slight shifts in the predicted winning probability. Importantly,
the interaction pattern indicates that Elo remains the dominant predictor, and even substantial
age differences cannot offset the advantage provided by a larger Elo rating.

To better understand the contribution of individual features to the model’s predictions, we
visualize feature importance using an accumulated local effect (ALE) plot (see Figure 4). This
plot shows how selected features influence the model’s output on average, while avoiding the
extrapolation issues often encountered in partial dependence plots (PDPs). Specifically, we
calculate the range of ALE values for each feature, and use the ALE range in a bar chart to
illustrate their relative importance.

The ALE plot provides insight into the localized influence of features on the model’s predictions
by evaluating the range of ALE values across observed feature differences. In our case, the Elo
difference exhibits the largest ALE range, indicating that it has the most substantial local effect
on the model output and is thus the most influential feature. This suggests that differences in
players’ Elo ratings substantially affect the predicted outcome, with the model being particularly
sensitive to variations in this variable across matches. The Points difference and the Age.30
difference show moderate ALE ranges, meaning they also contribute to localized prediction
variability, though to a minor extent. In contrast, the Rank difference demonstrates the smallest
ALE range, implying that it contributes the least to localized changes in the model’s predictions
and therefore holds the lowest relative importance among the considered variables.
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Figure 4: Variable importance via ALE-based range values, including Elo, Points, Age.30 and
Rank as covariates

5. Summary and overview

In this work, we compared different model approaches for modeling tennis matches in Grand
Slam tournaments focusing on two main aspects: statistically enhanced covariates and inter-
pretable machine learning tools. First, we demonstrated how these enhanced covariates can be
applied in the context of sports analytics to improve predictive modeling performance and gain
insights from sports data. Then, to better understand the interpretation of complex ML models,
exemplarily for a random forest, we presented partial dependence plots (PDPs) to visualize the
average partial relationship between the predicted response and one or more features, along with
individual conditional expectation (ICE) plots, a tool for visualizing the model estimated by any
supervised learning algorithm, and accumulated local effect (ALE) plots which provides insight
into the localized influence of features on the model’s prediction.

Moreover, note that we extended the data set provided and analyzed in Buhamra et al. (2024,
2025) to include the years 2023 and 2024, which were compiled using the R package deuce

(Kovalchik, 2019).
It contains information on 6,586 matches in 55 men’s Grand Slam tournaments from the years

2011-2024. It also includes covariate information on the age difference of both players (Age), the
difference in their ranking positions (Rank) and ranking points (Points), in Elo numbers (Elo), as
well as the two additional age-based variables, Age.30 and Age.int, which were constructed such
that they take into account that the optimal age of a tennis player is between 28 and 32 years.

Different regression models, which were already considered in Buhamra et al. (2024, 2025),
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were compared with machine learning approaches, in particular a random forest model, for
modeling and predicting tennis matches. Since there are only two possible outcomes in tennis
(win or loss), all models were based on a binary outcome and thus focused on modeling the
probability of the first-named player winning.

The different modeling approaches were compared with respect to their prediction perfor-
mance on unseen matches via an expanding window strategy. The following regression and ML
approaches were included in this comparison:

− Logistic regression with linear effects: all possible combinations of the three enhanced
covariates along with the conventional variables Point and Rank were considered. This
resulted in 31 models.

− Logistic regression with non-linear effects (splines): Again, the same 31 combinations of
enhanced and conventional covariates were considered.

− A random forest model as a machine learning approach: Also here, the same combinations
of enhanced and conventional covariates were considered, resulting in 31 models.

Via the expanding window approach, the models were compared in terms of classification rate,
predictive Bernoulli likelihood and Brier score. Since each approach resulted in 31 different
models, the model with the best predictive performance measures was selected in each case.
Overall, the values vary between the different approaches and over proposed performance mea-
sures. The spline-based regression model based on Points and Age.int achieved the best classifi-
cation rate among all other models with a value of 0.733. In contrast, the linear regression model
including covariates Points, Rank, Elo and Age yielded the best predictive performance in terms
of predictive likelihood and Brier score compared to all other model approaches. Generally, one
could say that models consistently perform better when at least one of the enhanced variables is
included.

Additionally, we investigated a CV-type approach and a rolling window approach. The rolling
window approached was based on a (varying) training dataset always containing 12 tournaments
that were used to predict the outcome of the next tournament. The results for these two ap-
proaches are provided in the appendix. Principally, results are varying among the three different
training-test-subdivision approaches, but generally led to similar results as the expanding win-
dow strategy.

To gain a comprehensive understanding and interpretation of each approach, we analyze the
coefficients of the linear regression model. Additionally, we employ spline graphs to visually
represent and interpret the relationship between predictor variables and the response variable
within the context of Generalized Additive Models (GAMs). These graphs can capture non-
linear relationships, which is particularly advantageous for complex datasets where linear mod-
els may be insufficient. Furthermore, we introduce interpretable machine learning (IML) tools
such as partial dependence plots (PDP) and individual conditional expectation (ICE) plots. These
tools help in comprehending and interpreting the predictions made by complex (black box-type)
machine learning models, in the present case a random forest model.

By examining PDP plots, we obtained insights into how each predictor variable affects the
model’s predictions. For instance, the PDP for Points exhibits a general upward trend, indicating
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that earning more Points has a positive effect on the predicted outcome. Similarly, the PDP for
Age.30 suggests that being closer to the optimal age of 30 years is only slightly associated with
larger winning probabilities.

In addition, a heat map visualization illustrating the joint effect of the two covariates Elo and
Age.30 on the predicted outcome is presented. By examining the color gradient and regions in the
heat map, we can infer how changes in these two covariates influence the outcome, highlighting
any non-linear interactions and dependencies between those.

Finally, to evaluate feature importance, we use an ALE-based importance plot. This method
is model-agnostic and provides a clear measure of how much each feature influences the model’s
predictions. ALE calculates the average local effect of a feature across its value range. A larger
ALE range means the feature has a stronger effect on predictions (such as Elo in our analysis).
The bar plot shows this visually: features with larger bars have more influence, while those with
shorter bars affect the model less. Unlike other methods such as permutation importance or the
Gini index, ALE takes into account feature interactions and correlations. This makes it a more
reliable and interpretable alternative to methods like PDPs, especially when features are related.

In future research, additional IML method such as local interpretable model-agnostic expla-
nations (LIME; Ribeiro et al., 2016) can also be used. Furthermore, one could investigate more
complex machine learning models, such as deep learning approaches (Bishop, 1995; LeCun
et al., 2015). Additionally, similar to soccer (Groll et al., 2019), one could also focus on tourna-
ment outcomes. For example, the probability of a certain player winning the tournament could
be determined. This approach takes advantage of the fact that the tournament bracket is fully
drawn before the start, allowing us to predict the earliest round in which two players could
meet. Unlike in soccer, where group stage outcomes influence subsequent matches, this setup
simplifies predictions. However, using only the match-specific betting odds for the first round
presents a challenge. Models that exclude odds as covariates might be preferable, despite po-
tentially lower prediction performance due to the significant influence of odds. Alternatively,
models could be developed that use pre-tournament odds for each player to win the entire tour-
nament, rather than odds for individual matches. Moreover, additional statistically enhanced
covariates could be produced. For example, similar to the historic match abilities for soccer
teams developed by Ley et al. (2019), such abilities could also be developed for tennis players.
We are currently working on such an approach and plan to include those ability parameters into
our models in the future (first results in this direction can be found in Bartmann et al., 2025).
Finally, as one of the anonymous reviewers pointed us to the welo R package (Candila, 2023),
which enables direct access to ATP, WTA, and Grand Slam match data for both male and female
players, we plan to analyze in future research to what extend our results can be carried over to
professional women’s tennis.
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A. Appendix

The descriptive statistics in Table 3 are provided for the covariate differences of both competing
players. As additionally, it was randomly assigned which player is first- and which second-
named, all preprocessed features now have means close to being centered and exhibit roughly
symmetric distributions. The Rank variable has a reasonable interquartile range from −48 to 46,
while the Points variable shows wide variability, with a large standard deviation of approximately
3,283. Also the Elo variable has a rather large spread (SD = 269.792), indicating substantial
variation in player skill levels. While also the Age.30 variable has a mean very close to zero, it
is worth mentioning that the median for Age.int is exactly 0.000, as due to its definition many
observations have a zero value: the variable is a feature engineered to capture age effects around
the optimal age interval of 28–32 years.

A VIF of 1 indicates no multicollinearity, meaning the variable is completely independent of
the others in the model. When VIF ∈ [1;5], this suggests moderate correlation, which is gener-
ally acceptable and not considered problematic. However, if VIF> 5, this indicates a potential
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Table 3: Descriptive statistics of conventional and enhanced covariates

Variable Mean SD Q1 Median Q3

Age -0.065 5.861 -4.020 -0.020 3.869
Rank -0.141 112.189 -48.000 1.000 46.000
Points -27.423 3,283.117 -975.750 -4.000 954.500
Elo -2.162 269.792 -184.500 -4.208 181.781
Age.30 -0.009 3.840 -2.519 -0.012 2.500
Age.int -0.005 3.401 -2.100 0.000 2.087

Table 4: Variance inflation factor (VIF) results and interpretation for checking correlations and
multicollinearity between Elo, Rank, Points and Age base features.

Variable VIF Interpretation

Elo 2.32 No concern, below 5.
Rank 1.41 Very low, no multicollinearity.
Points 1.97 Low, multicollinearity is not an issue.
Age 1.65 Also low, no concern.
Age.int 33.29 Very large, strong multicollinearity with other vari-

ables.
Age.30 32.63 Very large again, strong multicollinearity.

multicollinearity issue, and further investigation is warranted. A VIF > 10 signals serious multi-
collinearity, and in such cases, it is advisable to consider removing, combining, or transforming
the involved variables to improve model stability and interpretability (see, e.g., Kutner et al.,
2004; Craney and Surles, 2002; O’Brien, 2007).

Here, just for the two age-based variables very large VIF values are recorded, which is because
they are rather similar and, hence, exhibit strong pairwise correlation. But as those two variables
were never jointly incorporated in our models, this is not an issue.
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Table 5: Results of the leave-one-tournament-out CV approach for linear, spline, and random
forest models; best results are highlighted in bold font.

Specific Model Linear Spline Random Forest

Cr LLH Bs Cr LLH Bs Cr LLH Bs

Age 0.490 0.499 0.250 0.489 0.499 0.250 0.641 0.563 0.222
Age.30 0.496 0.499 0.250 0.501 0.500 0.250 0.634 0.559 0.223
Age.int 0.497 0.499 0.250 0.503 0.500 0.250 0.629 0.560 0.224
Points 0.724 0.621 0.188 0.723 0.632 0.183 0.722 0.608 0.188
Elo 0.744 0.655 0.172 0.744 0.655 0.172 0.744 0.624 0.178
Rank 0.724 0.588 0.202 0.723 0.599 0.199 0.720 0.607 0.193
Elo, Age 0.724 0.630 0.183 0.748 0.657 0.171 0.745 0.623 0.178
Rank, Age 0.724 0.630 0.183 0.719 0.599 0.199 0.723 0.611 0.192
Points, Age 0.724 0.630 0.183 0.727 0.633 0.183 0.724 0.607 0.188
Elo, Age.30 0.743 0.655 0.172 0.743 0.655 0.172 0.741 0.622 0.179
Rank, Age.30 0.723 0.588 0.201 0.721 0.599 0.199 0.719 0.608 0.193
Points, Age.30 0.727 0.621 0.187 0.723 0.632 0.183 0.723 0.606 0.188
Elo, Age.int 0.743 0.656 0.172 0.743 0.656 0.172 0.744 0.623 0.179
Rank, Age.int 0.722 0.589 0.202 0.720 0.611 0.199 0.717 0.607 0.193
Points, Age.int 0.726 0.621 0.187 0.725 0.632 0.183 0.721 0.606 0.188
Points, Rank 0.724 0.630 0.183 0.724 0.636 0.182 0.724 0.624 0.183
Points, Elo 0.742 0.657 0.171 0.744 0.656 0.172 0.741 0.639 0.175
Rank, Elo 0.745 0.656 0.172 0.745 0.655 0.172 0.744 0.637 0.176
Points, Rank, Age 0.744 0.657 0.171 0.725 0.637 0.182 0.724 0.626 0.183
Points, Elo, Age 0.744 0.657 0.171 0.725 0.637 0.182 0.745 0.639 0.175
Elo, Rank, Age 0.744 0.657 0.171 0.725 0.637 0.182 0.744 0.636 0.176
Points, Rank, Elo 0.744 0.657 0.171 0.745 0.656 0.171 0.742 0.643 0.175
Points, Rank, Age.30 0.727 0.630 0.183 0.725 0.636 0.182 0.722 0.622 0.184
Points, Rank, Age.int 0.727 0.631 0.183 0.725 0.637 0.182 0.723 0.623 0.184
Points, Elo, Age.30 0.743 0.657 0.171 0.742 0.656 0.172 0.742 0.638 0.175
Elo, Rank, Age.30 0.743 0.656 0.172 0.744 0.656 0.172 0.742 0.635 0.176
Points, Elo, Age.int 0.742 0.656 0.172 0.742 0.656 0.172 0.739 0.637 0.176
Elo, Rank, Age.int 0.743 0.656 0.172 0.743 0.656 0.172 0.743 0.635 0.177
Points, Rank, Elo, Age 0.744 0.659 0.170 0.744 0.658 0.171 0.742 0.644 0.175
Points, Rank, Elo, Age.30 0.744 0.658 0.171 0.743 0.656 0.171 0.740 0.642 0.175
Points, Rank, Elo, Age.int 0.744 0.658 0.171 0.743 0.656 0.171 0.739 0.642 0.175
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Table 6: Results of the rolling window approach for linear, splines, and random forest ap-
proaches; best results are highlighted in bold font.

Specific Model Linear Spline Random Forest

Cr LLH Bs Cr LLH Bs Cr LLH Bs

Age 0.524 0.501 0.249 0.521 0.503 0.249 0.601 0.539 0.237
Age.30 0.539 0.505 0.248 0.536 0.505 0.248 0.595 0.536 0.240
Age.int 0.541 0.505 0.248 0.531 0.504 0.248 0.598 0.534 0.241
Points 0.718 0.617 0.189 0.719 0.631 0.185 0.708 0.607 0.196
Elo 0.740 0.650 0.174 0.738 0.651 0.174 0.723 0.626 0.185
Rank 0.718 0.592 0.201 0.717 0.605 0.198 0.697 0.601 0.203
Elo, Age 0.718 0.629 0.185 0.742 0.652 0.173 0.733 0.628 0.184
Rank, Age 0.718 0.629 0.185 0.715 0.606 0.198 0.699 0.601 0.200
Points, Age 0.718 0.629 0.185 0.720 0.632 0.185 0.709 0.612 0.195
Elo, Age.30 0.739 0.650 0.174 0.738 0.651 0.174 0.731 0.627 0.185
Rank, Age.30 0.712 0.593 0.200 0.716 0.606 0.198 0.704 0.602 0.200
Points, Age.30 0.719 0.618 0.188 0.719 0.631 0.185 0.709 0.609 0.195
Elo, Age.int 0.738 0.650 0.174 0.739 0.650 0.174 0.729 0.627 0.185
Rank, Age.int 0.713 0.593 0.200 0.713 0.606 0.198 0.700 0.603 0.200
Points, Age.int 0.718 0.618 0.189 0.719 0.631 0.185 0.704 0.612 0.196
Points, Rank 0.718 0.629 0.185 0.719 0.635 0.184 0.708 0.616 0.190
Points, Elo 0.739 0.652 0.173 0.740 0.651 0.174 0.733 0.628 0.181
Rank, Elo 0.739 0.651 0.174 0.739 0.651 0.174 0.733 0.628 0.181
Points, Rank, Age 0.722 0.629 0.185 0.720 0.635 0.184 0.709 0.617 0.190
Points, Elo, Age 0.738 0.653 0.173 0.719 0.635 0.184 0.732 0.631 0.180
Elo, Rank, Age 0.738 0.653 0.173 0.719 0.635 0.184 0.731 0.629 0.182
Points, Rank, Age.30 0.718 0.629 0.185 0.719 0.635 0.184 0.708 0.615 0.189
Points, Rank, Age.int 0.719 0.629 0.185 0.719 0.635 0.184 0.708 0.614 0.191
Points, Elo, Age.30 0.739 0.652 0.173 0.737 0.651 0.174 0.725 0.629 0.182
Elo, Rank, Age.30 0.739 0.651 0.174 0.740 0.651 0.174 0.729 0.627 0.183
Points, Elo, Age.int 0.739 0.651 0.174 0.739 0.651 0.174 0.725 0.627 0.182
Elo, Rank, Age.int 0.738 0.651 0.174 0.738 0.651 0.174 0.729 0.627 0.183
Points, Rank, Elo 0.738 0.653 0.173 0.738 0.652 0.174 0.728 0.632 0.181
Points, Rank, Elo, Age 0.738 0.654 0.173 0.738 0.653 0.173 0.727 0.632 0.180
Points, Rank, Elo, Age.30 0.739 0.653 0.173 0.737 0.652 0.174 0.729 0.632 0.181
Points, Rank, Elo, Age.int 0.738 0.653 0.173 0.737 0.652 0.174 0.724 0.631 0.181
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