

Electronic Journal of Applied Statistical Analysis EJASA, Electron. J. App. Stat. Anal.

http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948

DOI: 10.1285/i2070598v18n2p344

Improved group sampling plans under odd-Perks-Lomax model with limited risks

By Naghizadeh Qomi et al.

15 October 2025

This work is copyrighted by Università del Salento, and is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.

For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/it/

Improved group sampling plans under odd-Perks-Lomax model with limited risks

M. Naghizadeh Qomi *a, Zainalabideen Al-Husseini^b, and Muhammad Aslam^c

^aDepartment of Statistics, University of Mazandaran, Babolsar

^bDepartment of Finance and Banking Sciences, College of Administrative Sciences,

Al-Mustaqbal University, 51001, Babylon, Iraq

^cDepartment of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi

Arabia

15 October 2025

In this article, a group sampling scheme for lot sentencing is developed under time-censoring when the lifetime of a product follows the odd-Perks-Lomax distribution. The test plans are constructed by limiting a linear combination of the producer and consumer risks from frequentist and Bayesian frameworks. Integer nonlinear programming is used to designate the optimal number of groups and acceptance limit. Several tables and figures are constructed to scrutinize the performance of the proposed testing strategies. The proposed optimal test plans outperform the traditional optimal two-point plan in terms of sample size. Furthermore, using prior information for defectives proportion increases the effectiveness of the proposed plans. A numerical example is provided to demonstrate the application of the introduced scheme.

keywords: Group acceptance sampling plan; integer nonlinear programing; operating characteristics; truncated life test; weighted-average of risks.

©Università del Salento

ISSN: 2070-5948

http://siba-ese.unisalento.it/index.php/ejasa/index

^{*}Corresponding authors: m.naghizadeh@umz.ac.ir.

1 Introduction

Acceptance sampling constitutes a broadly employed framework within the statistical quality control, especially pertinent to the context of industrial manufacturing operations. This approach precisely specifies the essential sample size required to evaluate the acceptability of a submitted lot, employing empirical data sourced from systematic experimental studies. In these schemes, the product lots are subjected to inspection protocols to determine their acceptance or rejection based on randomly selected samples extracted from the lots. Several lot inspection methodologies are documented in the academic literature, each presenting a diverse array of perspectives. Among others, we can cite Fernández et al. (2011), Wu and Huang (2014), Al-Omari et al. (2016), Zhao et al. (2019) and, more recently, Al-Omari and Alomani (2022), Pérez-González et al. (2023), Tripathi et al. (2024), Al-Omari and Alomani (2024), Naghizadeh Qomi and Fernández (2024), Naghizadeh Qomi and Tripathi (2025) and Naghizadeh Qomi et al. (2025).

Single acceptance sampling plans (SASPs) by attributes are the simplest plans in industrial quality, where a batch of products is accepted if no more than c failures occur during the experiment time, see Al-Husseini et al. (2023) and references therein. The advancement of SASPs has culminated in the development of group acceptance sampling plans (GASPs), wherein testers are able to assess multiple items simultaneously, thereby resulting in significant savings in both time and cost. Papers by Aslam and Jun (2009a,b), Aslam et al. (2009), Rao (2009, 2010), Aslam et al. (2011) and more recently, Tripathi et al. (2021), Tripathi and Aslam (2024), Al-Omari and Ismail (2024), Ekemezie et al. (2024) and Nwankwo et al. (2024) introduced GASPs.

Ekemezie et al. (2024) used odd-Perks-Lomax (OPL) distribution to design an optimal GASP by using two-point approach where the number of groups and the acceptance number are determined by considering the consumer's risk and producer's risk at the same time. Our motivation is to design a GASP where the optimal components of the plan are determined by limiting a weighted-average of the conventional and expected producer and consumer risks.

The remainder of the article is structured as follows. The methodology of GASP is proposed in Section 2. The GASPs with conventional limited risks are summarized and developed to find best plans with limited weighted-average risks in Section 3. The optimal GASPs with expected limited weighted-average risks are determined in Section 4. A real data example is provided in Section 5. Finally, concluding remarks are offered in Section 6.

2 Design of the group sampling plans for OPL distribution

According to Aslam and Jun (2009a) and Ekemezie et al. (2024), the procedure of the time truncated GASP is as follows:

1. Determine the number of groups q and allocate k unit to each group so that the

sample size is $n = k \times q$.

- 2. Opt the acceptance limit or number $c \ (< k)$ for a group and the termination time t_0 .
- 3. Conduct the test for the g groups altogether and record the number of failures for every group.
- 4. Accept the batch provided that no more than c failures are observed across each of the groups; otherwise, terminate the experiment and dismiss the batch.

The proposed plan would be described by (g, c), when the experiment time t_0 is fixed. Ekemezie et al. (2024) proposed a new flexible model called OPL distribution with probability density function (pdf) as

$$f(t;\alpha,\beta,\theta,\lambda) = \frac{\theta\alpha\beta(\beta+1)(1+t/\lambda)^{\alpha-1}\exp\{\theta[(1+t/\lambda)^{\alpha}-1]\}}{\lambda\{1+\beta\exp\{\theta[(1+t/\lambda)^{\alpha}-1]\}\}}, \quad t>0,$$
 (1)

and the corresponding cumulative distribution function (cdf) given by

$$F(t;\alpha,\beta,\theta,\lambda) = 1 - \frac{1+\beta}{1+\beta \exp\{\theta[(1+t/\lambda)^{\alpha} - 1]\}}, \quad t > 0,$$
(2)

where $\alpha, \beta, \theta, \lambda > 0$. They pointed out that the additional parameter(s) does not hinder the tractability of the model and its characteristics. Moreover, this model is unique in providing a better goodness of fit than some known conventional models such as the Weibull and the Exponentiated Weibull. Furthermore, the pdf of the proposed model has a reversed bathtub shape, L-shape, and strictly decreasing (positively skewed) shape.

The median lifetime can be considered as the quality characteristic of interest. The median of OPL distribution is given by $\mathcal{M} = m\lambda$, where m is a function of $\phi = (\alpha, \beta, \theta)$ as

$$m \equiv m(\phi) = \left[1 + \frac{1}{\theta} \ln\left(\frac{0.5 + \beta}{0.5\beta}\right)\right]^{1/\alpha} - 1.$$
 (3)

Let \mathcal{M}_0 be the specified median life and the termination time is given by $t_0 = q\mathcal{M}_0$, where q is a positive constant known as termination ratio.

The operating characteristic (OC) curve depicts the relationship between the probability of accepting a lot and the true proportion of defective items p. The OC function is defined by $A(p) \equiv A(p; q, c)$ and is given by

$$A(p) = \left[\sum_{i=0}^{c} {k \choose i} p^{i} (1-p)^{k-i} \right]^{g}, \tag{4}$$

where p denotes the probability that a product in a group fails before the time t_0 and is given by

$$p \equiv p(q, \alpha, \beta, \theta, r)$$

$$= 1 - \frac{1+\beta}{1+\beta \exp\{\theta[(1+qm/r)^{\alpha}-1]\}},$$
 (5)

where the ratio $r = \mathcal{M}/\mathcal{M}_0$ is expressed as the quality level of a product.

assume that the producer and consumer characterize the acceptable and rejectable defective rates, defined as $p_0 \equiv p(q, \alpha, \beta, \theta, r_0)$ and $p_1 \equiv p(q, \alpha, \beta, \theta, r_1)$, respectively, where r_0 is the median ratio at the producer's risk and r_1 is the median ratio at the consumer's risk. The conventional producer and consumer risks (PR and CR) are defined respectively as $\sup_{p \leq p_0} \{1 - A(p)\}$ and $\sup_{p \geq p_1} \{A(p)\}$. Since A(p) is a decreasing function of p, then the PR and CR are given by $PR(g, c, p_0) = 1 - A(p_0)$ and $CR(g, c, p_1) = A(p_1)$, which can be expressed as

$$PR(g, c, p_0) = 1 - \left[\sum_{i=0}^{c} {k \choose i} p_0^i (1 - p_0)^{k-i} \right]^g,$$

and

$$CR(g, c, p_1) = \left[\sum_{i=0}^{c} {k \choose i} p_1^i (1 - p_1)^{k-i}\right]^g.$$

3 Optimal GASP with limited weighted average of risks

The conventional two-point method to derive optimal GASP controls consumer and producer risks concurrently. The consumer requests that the lot acceptance probability should be smaller than the determined consumer's risk β^* at a lower quality level (usually at ratio 1), whereas the producer demands that the lot rejection probability should be smaller than the specified producer's risk α^* at a higher quality level. The producer desires $PR(g, c, p_0) \leq \alpha^*$, whereas the consumer tends to $CR(g, c, p_1) \leq \beta^*$. Optimal (α^*, β^*) -(PR,CR) plans, (g_t, c_t) , can be determined by solving the constrained optimization problem

Minimize
$$g$$

Subject to $PR(g, c, p_0) \leq \alpha^*$,
 $CR(g, c, p_1) \leq \beta^*$, (6)
 $g \in \mathbb{N}, c \in \mathbb{N} \cup \{0\}$,
 $c < k$,

where $\mathbb{N} = \{1, 2, 3, ...\}$ is the set of positive integers. Ekemezie et al. (2024) have determined the optimal GASP by satisfying the minimization problem (6) and provided some tables for the results. We present the optimal number of groups and acceptance numbers of GASP, (g_t, c_t) , and the associated PR and CR for q = 0.5, 1, k = 5, 10 and two sets of parameters $\phi = (1.75, 2, 3)$ and $\phi = (0.15, 1.25, 1.5)$ in Tables 1 and 2, respectively. The cells with a dash (-) indicate the g_t cannot be obtained to satisfy the conditions.

Fernández et al. (2020) designed optimal acceptance test plans by limiting a weighted-average of producer and consumer risks. Our aim is to expand this method to design of

Table 1: Optimal (α^*, β^*) – (PR,CR) plans, (g_t, c_t) , and the associated risks(%) for $\phi = (1.75, 2, 3)$.

		k = 1	5							k = 1	10						
		q = 0	0.5			q =	1.0			q = 0	0.5			q = 1	1.0		
β^{\star}	r_0	g_t	c_t	PR	\overline{CR}	g_t	c_t	PR	CR	g_t	c_t	PR	\overline{CR}	g_t	c_t	PR	CR
0.25	2	930	4	4.96	24.98	-	-	-	-	46	5	4.36	24.87	8	6	4.61	22.12
	6	11	2	1.10	22.13	3	2	2.17	12.50	2	2	2.00	21.21	1	3	1.05	17.19
	10	3	1	2.31	20.16	1	1	2.90	18.75	1	1	3.17	19.79	1	2	1.65	5.47
	14	3	1	1.21	20.16	1	1	1.54	18.75	1	1	1.70	19.79	1	2	0.66	5.47
0.10	2	-	-	-	-	-	-	-	-	391	6	3.36	9.95	41	7	3.14	9.97
	6	17	2	1.70	9.72	4	2	2.88	6.25	3	2	2.99	9.77	2	3	2.09	2.95
	10	5	1	3.82	6.93	4	2	0.68	6.25	3	2	0.73	9.77	1	2	1.65	5.47
	14	5	1	2.00	6.93	2	1	3.05	3.52	2	1	3.36	3.92	1	2	0.66	5.47
0.05	2	-	-	-	-	-	-	-	-	508	6	4.35	4.99	54	7	4.11	4.80
	6	22	2	2.19	4.90	5	2	3.59	3.13	4	2	3.97	4.50	2	3	2.09	2.95
	10	6	1	4.56	4.06	5	2	0.85	3.13	4	2	0.97	4.50	2	2	3.27	0.30
	14	6	1	2.40	4.06	2	1	3.05	3.52	2	1	3.36	3.92	2	2	1.32	0.30
0.01	2	-	-	-	-	-	-	-	-	-	-	-	-	427	8	2.60	0.99
	6	34	2	3.36	0.94	7	2	4.99	0.78	15	3	1.28	0.76	3	3	3.11	0.51
	10	34	2	0.76	0.94	7	2	1.19	0.78	6	2	1.45	0.95	2	2	3.27	0.30
	14	9	1	3.57	0.82	3	1	4.54	0.66	6	2	0.56	0.95	2	2	1.32	0.30

Table 2: Optimal (α^*, β^*) – (PR,CR) plans, (g_t, c_t) , and the associated risks(%) for $\phi = (0.15, 1.25, 1.5)$.

		k =	5							k =	10						
		q =	0.5			q = 1	1.0			q =	0.5			q =	1.0		
β^{\star}	r_0	g_t	c_t	PR	CR												
0.25	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6	134	4	2.08	24.85	44	4	4.43	24.74	8	5	2.38	23.07	8	6	2.95	22.12
	10	16	3	1.75	23.06	7	3	4.02	23.38	4	4	1.78	15.87	3	5	1.57	24.19
	14	4	2	3.26	21.54	7	3	1.88	23.38	2	3	2.43	14.47	2	4	2.44	14.21
0.10	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6	222	4	3.41	9.96	-	-	-	-	13	5	3.84	9.22	13	6	4.75	8.61
	10	26	3	2.83	9.22	73	4	1.92	9.85	6	4	2.66	6.32	5	5	2.6	9.39
	14	6	2	4.85	10	12	3	3.2	8.28	3	3	3.62	5.5	3	4	3.63	5.36
0.05	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6	289	4	4.42	4.96	-	-	-	-	17	5	4.99	4.43	54	7	2.4	4.8
	10	33	3	3.58	4.85	95	4	2.5	4.9	7	4	3.09	3.99	7	5	3.62	3.64
	14	33	3	1.43	4.85	15	3	3.99	4.44	4	3	4.8	2.09	4	4	4.82	2.02
0.01	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6	-	-	-	-	-	-	-	-	81	6	2.76	0.99	82	7	3.62	0.99
	10	444	4	1.35	0.99	146	4	3.81	0.97	11	4	4.82	0.63	25	6	1.69	0.90
	14	51	3	2.21	0.93	146	4	1.42	0.97	11	4	1.68	0.63	10	5	1.8	0.88

time-truncated GASP for OPL distribution. To do this, consider the following weighted-average risks (WR) as

$$WR(g, c, p_0, p_1) = w_0 PR(g, c, p_0, p_1) + w_1 CR(g, c, p_0, p_1), \tag{7}$$

where the positive constants w_0 and w_1 are the producer and consumer weights, respectively and $w_0 + w_1 = 1$.

Suppose that the analyst wants to control the risk incurred by the selected GASP by considering $\gamma \in (0,1)$ as the maximum risk tolerated, where $\gamma \leq \min\{w_0, w_1\}$. Our aim is to determine the minimum number of groups and acceptance number that satisfy the inequality $WR(g, c, p_0, p_1) \leq \gamma$. Optimal γ -WR plans, (g^*, c^*) , can be determined by solving the constrained optimization problem

Minimize
$$g$$

Subject to $WR(g, c, p_0, p_1) \le \gamma$,
 $g \in \mathbb{N}, c \in \mathbb{N} \cup \{0\}$,
 $c < k$. (8)

Optimal γ -WR plan, (g^*, c^*) , and the associated risks(%) are reported in Tables 3 and 4 for selected values of $\gamma = 0.01, 0.05, r_0 = 2(4)14, r_1 = 1, k = 5, q = 0.5, 1.0$ and $w_0 = 0.2, 0.5, 0.8$ when $\phi = (1.75, 2, 3)$ and $\phi = (0.15, 1.25, 1.5)$, respectively. It is observed that optimal number of groups and acceptance number tend to decrease as γ increases. For instance, if $r_0 = 6, q = 0.5$ and $w_0 = 0.2$, from Table 3, the optimal 0.01-WR and 0.05-WR plans are (208, 3) and (7, 1), respectively. Moreover, optimal number of groups decrease when r_0 increases. For example, if $w_0 = 0.2$, and q = 0.5, then the optimal 0.01-WR group numbers are 208 and 34 when $r_0 = 6$ and $r_0 = 10$, respectively.

For a graphical comparison of traditional optimal two-point (γ, γ) -(PR,CR) [hereafter γ -(PR,CR)] plan and γ -WR plan, Figure 1 shows the optimal 0.05-(PR,CR) and 0.05-WR group numbers versus w_0 for $q=0.5,\ k=5$ and $r_0=6$ when $\phi=(1.75,2,3)$ and $\phi=(0.15,1.25,1.5)$. It can be seen that the optimal 0.05-(PR,CR) group numbers are 22 and 289 when $\phi=(1.75,2,3)$ and $\phi=(0.15,1.25,1.5)$, respectively, whereas the values of optimal 0.05-WR group numbers are less than 22 and 289. This shows that the optimal γ -WR plan outperforms the traditional optimal γ -(PR,CR) plan in terms of the number of groups (sample size), when the PR and CR are at most γ .

4 Optimal *GASP* with limited expected weighted average of risks

In general, traditional conventional risks are typically used in cases where the prior distribution of p is either unavailable or has been discarded. Suppose that there are some information about the failure rate, p. This information can be used for evaluation of producer's and consumer's risks.

Table 3: Optimal γ -WR plans, (g^*, c^*) , and the associated risks(%) for k=5 and $\phi=(1.75,2,3)$.

			$(w_0,$	$w_1)$	= (0.2,	0.8)		$(w_0,$	$w_1)$	= (0.5,	0.5)		$(w_0,$	$w_1)$	= (0.8,	0.2)	
q	γ	r_0	g^{\star}	c^{\star}	WR	PR	\overline{CR}	g^{\star}	c^{\star}	WR	PR	CR	g^{\star}	c^{\star}	WR	PR	CR
0.5	0.01	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		6	208	3	0.99	0.51	1.10	194	3	0.99	0.48	1.50	156	3	0.99	0.39	3.41
		10	34	2	0.91	0.76	0.94	32	2	0.98	0.72	1.24	27	2	0.98	0.61	2.47
		14	33	2	0.92	0.28	1.08	30	2	0.94	0.25	1.63	24	2	0.90	0.20	3.72
	0.05	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		6	7	1	4.62	13.56	2.38	19	2	4.64	1.89	7.39	12	2	4.82	1.20	19.29
		10	6	1	4.16	4.56	4.06	6	1	4.31	4.56	4.06	4	1	4.82	3.07	11.82
		14	6	1	3.73	2.40	4.06	5	1	4.47	2.00	6.93	3	1	5.00	1.21	20.16
1.0	0.01	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		6	22	3	0.99	0.81	1.04	22	3	0.92	0.81	1.04	19	3	0.95	0.7	1.93
		10	7	2	0.86	1.19	0.78	7	2	0.98	1.19	0.78	15	3	0.95	0.08	4.44
		14	7	2	0.71	0.45	0.78	6	2	0.97	0.38	1.56	5	2	0.88	0.32	3.13
	0.05	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		6	3	1	4.63	20.49	0.66	4	2	4.57	2.88	6.25	3	2	4.24	2.17	12.5
		10	2	1	3.96	5.72	3.52	2	1	4.62	5.72	3.52	3	2	2.91	0.51	12.5
		14	2	1	3.42	3.05	3.52	2	1	3.28	3.05	3.52	1	1	4.98	1.54	18.75

Table 4: Optimal γ -WR plans, (g^*, c^*) , and the associated risks(%) for k=5 and $\phi=(0.15, 1.25, 1.5)$.

			$(w_0,$	$\frac{(w_0, w_1) = (0.2, 0.8)}{(w_0, w_1) + (0.2, 0.8)}$						= (0.5,	0.5)		$(w_0,$	$w_1)$	= (0.8,	0.2)	
q	γ	r_0	g^{\star}	c^{\star}	WR	PR	\overline{CR}	g^{\star}	c^{\star}	WR	PR	CR	g^{\star}	c^{\star}	WR	PR	CR
0.5	0.01	2	-	-	-,	-	-,	-	-	-,	-	-	-	-	-,	-,	-
		6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		10	453	4	0.99	1.38	0.90	-	-	-	-	-	-	-	-	-	-
		14	55	3	0.99	2.38	0.65	397	4	0.99	0.37	1.62	315	4	0.99	0.29	3.79
	0.05	2	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-
		6	40	3	4.93	14.43	2.55	274	4	4.99	4.20	5.80	198	4	4.99	3.05	12.78
		10	10	2	4.72	14.99	2.15	30	3	4.82	3.26	6.39	20	3	4.94	2.18	15.98
		14	8	2	4.99	6.41	4.64	27	3	4.79	1.17	8.41	17	3	4.8	0.74	21.04
1.0	0.01	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		6	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-
		10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		14	149	4	0.99	1.45	0.88	-	-	-	-	-	-	-	-	-	-
	0.05	2	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-
		6	104	4	4.98	10.16	3.68	-	-	-	-	-	-	-	-	-	-
		10	16	3	4.67	8.94	3.61	80	4	4.99	2.11	7.89	52	4	4.94	1.37	19.19
		14	6	2	4.65	17.00	1.56	14	3	4.60	3.73	5.46	10	3	4.65	2.68	12.54

Figure 1: Optimal 0.05–WR and 0.05–(PR,CR) group numbers versus w_0 for $\phi=(1.75,2,3)$ [left] and $\phi=(0.15,1.25,1.5)$ [right] when $r_0=6,\ q=0.5$ and k=5.

Assume that the failure rate p follows a Beta distribution with parameters a, b > 0 and its pdf is given by

$$h(p) = \frac{p^{a-1}(1-p)^{b-1}}{\mathcal{B}(1,a,b)},$$

where $\mathcal{B}(x,a,b) = \int_0^x p^{a-1} (1-p)^{b-1}$. Following Fernández and Pérez-González (2012a,b), the expected producer risk (EPR) is the conditional expectation of rejecting an acceptable lot, whereas the expected consumer risk (ECR) is the conditional expectation of accepting a rejectable lot. For a given number of groups, g_e , and acceptance number, c_e , the expected producer and consumer risks are defined, respectively by

$$EPR(g_e, c_e, p_0) = E[1 - A(p)|p \le p_0]$$

$$= 1 - \int_0^{p_0} \frac{A(p)h(p)}{Pr(p \le p_0)} dp,,$$

and

$$ECR(g_e, c_e, p_1) = E[A(p)|p \ge p_1]$$
$$= \int_{p_1}^1 \frac{A(p)h(p)}{Pr(p \ge p_1)} dp.$$

Now, consider expected WR (EWR) of the form

$$EWR(g_e, c_e, p_0, p_1) = w_0 EPR(g_e, c_e, p_0) + w_1 ECR(g_e, c_e, p_1).$$
(9)

We would like to obtain the optimal γ -EWR plans, g_e^* and c_e^* , where $EWR \leq \gamma$. The constrained minimization problem can be stated as follows:

Minimize
$$g_e$$

Subject to $EWR(g_e, c_e, p_0, p_1) \leq \gamma$,
 $g_e \in \mathbb{N}, c_e \in \mathbb{N} \cup \{0\}$,
 $c_e < k$. (10)

Optimal γ -EWR plans, $(g_e^{\star}, c_e^{\star})$, and the associated risks (EWR, EPR, ECR) are summarized in Table 5 for different values of $\gamma = 0.01, 0.05, \ r_0 = 2(4)14, \ q = 0.5, 1.0, \ k = 5, \ w_0 = 0.2, 0.5, 0.8$ and $\phi = (0.15, 1.25, 1.5)$ when the prior distribution is Beta(a, b) with mode $5(p_0 + p_1)/6$ and a + b = 5. A similar trend to the Table 3 holds for the results of Table 5. In comparison of Tables 3 and 5, it is clear to observe that $g_e^{\star} \leq g^{\star}$ and $c_e^{\star} \leq c^{\star}$.

Figure 2 shows the optimal γ -WR and γ -EWR number of groups and the corresponding optimal acceptance numbers versus w_0 for $r_0 = 6, k = 5, q = 0.5$ and $\phi = (1.75, 2, 3)$ when the maximum risk level is 0.05. We can conclude that the EWR number of groups and acceptance numbers are less than the corresponding minimum-WR number of groups and acceptance numbers.

The graphs of optimal γ -WR and γ -EWR group numbers and the corresponding optimal acceptance numbers, versus the maximum risk level γ , are displayed in Figure 3, when $r_0 = 6, k = 5, q = 0.5, w_0 = 0.5$ and $\phi = (1.75, 2, 3)$. Clearly, g_e^* tends to decrease when γ increases. Moreover, $g_c^* \leq g^*$ and $c_e^* \leq c^*$.

5 Real data application

The following data set reported in Smith and Naylor (1987) represents the strengths of 1.5 cm glass fibers. The corresponding observations are shown in Table 6. Ekemezie et al. (2024) obtained the maximum likelihood estimates of the parameters for this data set as $\hat{\alpha}=5.5043$, $\hat{\beta}=0.0327$, $\hat{\theta}=0.0944$ and $\hat{\lambda}=1.6677$. The suitability of data for the OPL distribution was assessed using the log-likelihood (LL) function, the Akaike information criterion (AIC), the consistent Akaike Information criterion (CAIC), Bayesian information criterion (BIC), Kolmogorov-Smirnov (K-S) statistic and p-value. Table 7 represents the model fitting summary of the chosen data set. From Table 7, it is clear that the OPL distribution has a good fit to considered data set as compared to Weibull and exponentiated Weibull distributions.

Optimal 0.05–WR plans, (g^*, c^*) , and 0.05–EWR plans, (g_e^*, c_e^*) with associated risks(%) are summarized in Table 8 for $r_0 = 2(4)14$, q = 0.5, k = 5 and $w_0 = 0.5$ when $\hat{\phi} = (5.5043, 0.0327, 0.0944)$.

Suppose a manufacturer asserts that the median life of the products is greater than $\mathcal{M}_0 = 1000$ hours, and the lifetime of the products conforms with an *OPL* distribution

Table 5: Optimal γ -EWR plans, $(g_e^{\star}, c_e^{\star})$, and the associated risks(%) for k=5 and $\phi=(1.75,2,3)$.

			$(w_0$	$, w_1)$	=(0.2,0	0.8)		(w_0)	$, w_1)$	=(0.5,0	0.5)		$(w_0$	$, w_1)$	=(0.8,0	0.2)	
q	γ	r_0	g_e^{\star}	c_e^{\star}	EWR	EPR	ECR	g_e^{\star}	c_e^{\star}	EWR	EPR	ECR	g_e^{\star}	c_e^{\star}	EWR	EPR	ECR
0.5	0.01	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		6	17	2	0.96	0.63	1.04	16	2	0.92	0.60	1.25	12	2	0.91	0.45	2.74
		10	6	1	0.84	2.15	0.51	15	2	0.85	0.12	1.57	10	2	0.93	0.08	4.30
		14	6	1	0.64	1.12	0.52	5	1	0.98	0.93	1.03	5	1	0.95	0.93	1.03
	0.05	2	10	2	4.48	8.33	3.51	31	3	4.96	1.71	8.22	13	3	4.84	0.72	21.33
		6	3	1	4.06	2.90	4.35	3	1	3.63	2.90	4.35	2	1	3.56	1.95	10.03
		10	2	0	3.95	16.52	0.81	3	1	2.78	1.08	4.48	2	1	2.64	0.72	10.29
		14	2	0	3.08	12.10	0.82	3	1	2.55	0.56	4.53	2	1	2.38	0.37	10.40
1.0	0.01	2	_	_	_	_	-	_	_	-	_	_	_	-	_	_	_
		6	5	2	0.71	1.64	0.48	11	3	0.88	0.15	1.61	8	3	0.86	0.11	3.84
		10	5	2	0.48	0.38	0.51	4	2	0.76	0.3	1.21	3	2	0.79	0.23	3.03
		14	2	1	0.97	1.67	0.79	4	2	0.68	0.11	1.24	3	2	0.69	0.08	3.09
	0.05	2	7	3	4.34	6.02	3.92	7	3	4.97	6.02	3.92	11	4	4.94	0.57	22.44
		6	2	1	2.21	8.11	0.74	2	1	4.43	8.11	0.74	1	1	4.65	4.16	6.57
		10	1	0	4.37	18.32	0.88	1	1	4.22	1.60	6.84	1	1	2.65	1.60	6.84
		14	1	0	3.40	13.41	0.90	1	1	3.89	0.84	6.95	1	1	2.06	0.84	6.95

Figure 2: Optimal group and acceptance numbers with minimum γ -WR and γ -EWR versus w_0 when $\gamma = 0.05, r_0 = 6, k = 5, q = 0.5$ and $\phi = (1.75, 2, 3)$.

Figure 3: Optimal group and acceptance numbers with minimum γ -WR and γ -EWR versus γ when $w_0 = 0.5, r_0 = 6, k = 5, q = 0.5$ and $\phi = (1.75, 2, 3)$.

Table 6	6:	Strengths	of	1.5	cm	glass	fibers.
---------	----	-----------	----	-----	----	-------	---------

0.55	0.93	1.25	1.36	1.49	1.52	1.58	1.61	1.64	1.68	1.73	1.81	2.00	0.74	1.04	1.27
1.39	1.49	1.53	1.59	1.61	1.66	1.68	1.76	1.82	2.01	0.77	1.11	1.28	1.42	1.5	1.54
1.6	1.62	1.66	1.69	1.76	1.84	2.24	0.81	1.13	1.29	1.48	1.5	1.55	1.61	1.62	1.66
1.7	1.77	1.84	0.84	1.24	1.3	1.48	1.51	1.55	1.61	1.63	1.67	1.7	1.78	1.89	

Table 7: Distribution fit test results.

Model	LL	AIC	CAIC	BIC	K-S statistic	p-value
OPL	-13.28	32.23	32.96	40.80	0.0961	0.6052
Weibull	-15.21	34.57	34.77	38.86	0.1708	0.0507
Exponentiated Weibull	-14.68	35.35	35.76	41.78	0.1462	0.1351

with parameters $\hat{\phi}=(5.5043,0.0327,0.0944)$. Considering $r_0=14,\ k=10,\ q=0.5$ and the true median life is $\mathcal{M}=14000$ hours, optimal (0.05,0.05)-(PR,CR) plans are obtained (84,1) from Table 7 of Ekemezie et al. (2024), while assuming $w_0=0.5$, the optimal 0.05-WR group plans are (11,0) with corresponding risks WR=4.88%, PR=6.37% and CR=3.40% obtained from Table 8 of our work.

Using (5), we obtain $p_0 = 0.0019$ and $p_1 = 0.9973$ when $r_1 = 1, r_0 = 14, q = 0.5$.

							 `				
				0.05 - 7	WR				0.05-E	EWR	
k	r_0	g^{\star}	c^{\star}	WR	PR	CR	g_e^{\star}	c_e^{\star}	EWR	EPR	ECR
5	2	-	-	-	-	-	28	1	4.93	0.50	9.37
	6	-	-	-	-	-	4	0	4.88	1.61	8.15
	10	-	-	-	-	-	4	0	4.53	0.89	8.17
	14	22	0	4.88	6.37	3.40	4	0	4.40	0.61	8.18
10	2	-	-	-	-	-	8	1	4.67	0.63	8.71
	6	67	1	4.93	0.73	9.14	2	0	4.88	1.61	8.15
	10	66	1	4.85	0.22	9.47	2	0	4.53	0.89	8.17
	14	11	0	4.88	6.37	3.40	2	0	4.40	0.61	8.18

Table 8: Optimal 0.05–CWR and 0.05–EWR plans, and the associated risks(%) for selected values of $w_0 = 0.5$, q = 0.5 and $\hat{\phi} = (5.5043, 0.0327, 0.0944)$.

Assume that the failure probability, p, has a Beta(a,b) distribution with a+b=5 and mode (a-1)/(a+b-2)=0.8327, which implies that a=3.4981 and b=1.5018. From Table 8, the optimal γ -EWR plans are $(g_e^{\star}, c_e^{\star})=(2,0)$. The corresponding risks are EWR=4.40%, EPR=0.61% and ECR=8.18%. Therefore, the sample size is n=20 (10×2). According to these specifications, a total of 20 products are needed and that ten items will be allocated to each of the two testers. We will accept the lot if no failure occurs before $t_0=500$ h in each of the ten groups.

6 Concluding remarks

Ekemezie et al. (2024) have designed GASPs for OPL distribution by using two-point approach where the group number and acceptance number will be determined by considering the producer's and consumer's risks simultaneously. In this work, we presented a method in developing an optimal GASP for OPL distribution using limited conventional and expected weighted-average of risks.

 γ -WR group sampling plans, (g^*, c^*) , are determined by solving constrained optimization problems. It is observed that the optimal γ -WR plans outperform the traditional optimal γ -(PR,CR) plans in terms of sample size. Moreover, γ -EWR plans, (g_e^*, c_e^*) , are determined. It is seen that $g_e^* \leq g^*$ and $c_e^* \leq c^*$. A real data analysis is provided to illustrate the results by comparison of the existence method and the proposed method.

The method introduced in this article for *OPL* distribution can be applied to other lifetime distributions. Moreover, other sampling plans such as double and repetitive plans will be determined by a weighted-average of the classical/expected producer and consumer risks (WR/EWR).

Acknowledgements

The authors thank the Editor and Reviewers for providing valuable comments and suggestions.

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Not applicable.

References

- Al-Husseini, Z., Naghizadeh Qomi, M., and MirMostafaee, S. M. T. K. (2023). Single acceptance sampling plan based on truncated-life tests for the exponentiated moment exponential distribution with application in bladder cancer data. *Iranian Journal of Health Sciences*, 11(3):217–228.
- Al-Omari, A. I., Al-Nasser, A. D., and Gogah, F. S. (2016). Double acceptance sampling plan for time truncated life tests based on transmuted new weibull-pareto distribution. *Electronic Journal of Applied Statistical Analysis*, 9(3):520–529.
- Al-Omari, A. I. and Alomani, G. A. (2022). Double acceptance sampling plans under truncated life tests for two-parameter x-gamma distribution. *Electronic Journal of Applied Statistical Analysis*, 15(2).
- Al-Omari, A. I. and Alomani, G. A. (2024). Acceptance sampling plans based on percentiles for extended generalized exponential distribution with real data application. Journal of Radiation Research and Applied Sciences, 17(4):101081.
- Al-Omari, A. I. and Ismail, M. T. (2024). Group acceptance sampling plans based on truncated life tests for gamma lindley distribution with real data application. *Lobachevskii Journal of Mathematics*, 45(2):578–590.
- Aslam, M. and Jun, C.-H. (2009a). A group acceptance sampling plan for truncated life test having weibull distribution. *Journal of Applied Statistics*, 36(9):1021–1027.
- Aslam, M. and Jun, C.-H. (2009b). A group acceptance sampling plan for truncated life tests based on the inverse rayleigh distribution and log-logistics distribution. *Pakistan Journal of Statistics*, 25(2):107–119.

- Aslam, M., Jun, C.-H., and Ahmad, M. (2009). A group sampling plan based on truncated life tests for gamma distributed items. *Pakistan Journal of Statistics*, 25(3):333–340
- Aslam, M., Kundu, D., Jun, C.-H., and Ahmad, M. (2011). Time truncated group acceptance sampling plans for generalized exponential distribution. *Journal of Testing* and Evaluation, 39(4):671–677.
- Ekemezie, D.-F. N., Alghamdi, F. M., Aljohani, H. M., Riad, F. H., Abd El-Raouf, M., and Obulezi, O. J. (2024). A more flexible lomax distribution: Characterization, estimation, group acceptance sampling plan and applications. *Alexandria Engineering Journal*, 109:520–531.
- Fernández, A. J., Correa-Álvarez, C. D., and Pericchi, L. R. (2020). Balancing producer and consumer risks in optimal attribute testing: A unified bayesian/frequentist design. *European Journal of Operational Research*, 286(2):576–587.
- Fernández, A. J. and Pérez-González, C. J. (2012a). Generalized beta prior models on fraction defective in reliability test planning. *Journal of Computational and Applied Mathematics*, 236(13):3147–3159.
- Fernández, A. J. and Pérez-González, C. J. (2012b). Optimal acceptance sampling plans for log-location—scale lifetime models using average risks. *Computational Statistics & Data Analysis*, 56(3):719–731.
- Fernández, A. J., Pérez-González, C. J., Aslam, M., and Jun, C.-H. (2011). Design of progressively censored group sampling plans for weibull distributions: An optimization problem. *European Journal of Operational Research*, 211(3):525–532.
- Naghizadeh Qomi, M., Al-Husseini, Z., and Dey, S. (2025). Time truncated double acceptance sampling plan for the nadarajah-haghighi distribution. *Statistics, Optimization & Information Computing*, 13(1):128–137.
- Naghizadeh Qomi, M. and Fernández, A. J. (2024). Optimal double acceptance sampling plans based on truncated life tests for tsallis q-exponential distributions. *Journal of Applied Statistics*, 51(16):3456–3467.
- Naghizadeh Qomi, M. and Tripathi, H. (2025). Double acceptance sampling inspection plans based on truncated life tests for type i half-logistic nadarajah-haghighi distribution. *International Journal of Reliability, Quality and Safety Engineering*.
- Nwankwo, M. P., Alsadat, N., Kumar, A., Bahloul, M. M., and Obulezi, O. J. (2024). Group acceptance sampling plan based on truncated life tests for type-i heavy-tailed rayleigh distribution. *Heliyon*, 10(19).
- Pérez-González, C. J., Fernández, A. J., Giner-Bosch, V., and Carrión-García, A. (2023). Optimal repetitive reliability inspection of manufactured lots for lifetime models using prior information. *International Journal of Production Research*, 61(7):2214–2230.
- Rao, G. S. (2009). A group acceptance sampling plans for lifetimes following a generalized exponential distribution. *Stochastics and Quality Control*, 24(1):75–85.
- Rao, G. S. (2010). A group acceptance sampling plans based on truncated life tests for marshall-olkin extended lomax distribution. *Electronic Journal of Applied Statistical*

- Analysis, 3(1):18-27.
- Smith, R. L. and Naylor, J. (1987). A comparison of maximum likelihood and bayesian estimators for the three-parameter weibull distribution. *Journal of the Royal Statistical Society Series C: Applied Statistics*, 36(3):358–369.
- Tripathi, H. and Aslam, M. (2024). Group acceptance sampling plan based on time truncation situation for transmuted weibull distribution. *Electronic Journal of Applied Statistical Analysis*, 17(03):636–652.
- Tripathi, H., Dey, S., and Saha, M. (2021). Double and group acceptance sampling plan for truncated life test based on inverse log-logistic distribution. *Journal of Applied Statistics*, 48(7):1227–1242.
- Tripathi, H., Kiapour, A., and Naghizadeh Qomi, M. (2024). Optimal time truncated double acceptance sampling plan for generalized half normal distribution. *Life Cycle Reliability and Safety Engineering*, 13(2):173–180.
- Wu, S.-J. and Huang, S.-R. (2014). Planning progressive type-i interval censoring life tests with competing risks. *IEEE Transactions on Reliability*, 63(2):511–522.
- Zhao, X., Wang, S., and Sun, L. (2019). Single and sequential sampling plans for multi-attribute products and multi-class lot in reliability test. *IEEE Access*, 7:81145–81155.