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This study explores the integration of trigonometric functions into tradi-
tional statistical models, focusing on the development of the Weibull Sine
Generalized (WSG-G) family of distributions. A special case was formu-
lated name Weibull Sine generalized exponential (WSG-E) distribution. This
new distribution extends the baseline exponential distribution, accommodat-
ing heavier tails and outliers, thereby effectively modeling positively skewed
data. Key statistics such as mean, variance, skewness, and kurtosis indi-
cate the distribution’s capacity to handle clustered data. A simulation study
demonstrates the performance of Maximum Likelihood Estimation (MLE),
revealing convergence in the mean squared error and root mean squared er-
ror for the parameter α with increasing sample sizes, although convergence is
less evident for other parameters. The WSG-E distribution’s applicability is
further illustrated through its fitting of medical datasets on bladder cancer re-
mission times and growth hormone deficiency in children, both characterized
by extreme values. Overall, the WSG-E distribution proves to be a robust
model for skewed data, and future research could extend this framework to
additional continuous distributions.
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1 Introduction

Merging trigonometric functions with traditional statistical models has the potential to
improve analytical techniques and inference methods, thereby enriching the landscape
of modern statistical practice, Zaidi et al. (2024). In the study by Zaidi et al. (2024),
tan

(
πx
2

)
was used as a generalizer in the T-X generator proposed by Alzaatreh et al.

(2013). The function tan
(
πx
2

)
possesses several unique properties that make it notable

in mathematical analysis. One key feature is its periodicity, as it repeats its values every
2 units. Additionally, the function has vertical asymptotes at odd integers, where it
approaches infinity. This boundary behavior is particularly interesting, as it transitions
from −∞ to +∞ as x approaches these odd integers. Furthermore, the range of tan

(
πx
2

)
encompasses all real numbers, indicating that it can take any value. The transformation
also compresses or stretches the input to the interval (−π

2 ,
π
2 ) for x within the interval

(0, 1), altering its standard behavior. These characteristics enhance its utility in various
mathematical and statistical applications.

However, in this study, it is our choice to use the function f(x) = sin
(
πx
4

)
which also

exhibits several notable properties, including periodicity with a period of 8, meaning it
repeats every 8 units along the x-axis, (Kreyszig (2021); Hogg et al. (2013); Besicovitch
and Besicovitch (1954)), and an amplitude of 1, indicating values are bounded between
−1 and 1, (Parumasur and Mika (2005)). It has zeros at regular intervals, specifically
x = 0, 4, 8, 12, . . ., where it crosses the x-axis due to sin(nπ) = 0 for integers n, (Suslov
(2003)). Additionally, it is an odd function, demonstrating symmetry with respect to
the origin, which enhances its predictable behavior, (Li et al. (2013); Alzahrani et al.
(2023)). The function plays a significant role in various mathematical applications, such
as signal processing, where sine waves represent periodic signals like sound and radio
waves, aiding in the analysis of these signals, (Eugene and Manfred (2019)). It also arises
in differential equations describing oscillatory phenomena, including harmonic oscillators
that model vibrating systems and the wave equation for wave propagation. The sine
function plays a crucial role in Fourier series, which break down periodic functions into
sums of sine and cosine terms, widely utilized in both mathematics and engineering
for approximation and analysis, see Bracewell et al. (2000). In quantum mechanics,
sine functions are integral to the solutions of the Schrödinger equation, where they
describe particle probability distributions that align with the wave-like characteristics
of quantum systems, (Griffiths and Schroeter (2018)). Additionally, in control theory,
sine functions are employed to model oscillatory systems and assess their responses to
periodic inputs, (Nise (2020)). In data analysis, these functions are vital for time-
series analysis, aiding in the identification of periodic patterns using Fourier techniques,
which are significant in fields such as economics and engineering, see Hamilton (2020).
Furthermore, in geometry and trigonometry, sin

(
πx
4

)
is essential for calculating angles
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and distances in right triangles, with practical applications in navigation and engineering,
see Stewart (2011). In electrical engineering, it models alternating current circuits,
capturing the oscillatory behavior of electrical signals, which is fundamental for design
and analysis, see William et al. (2007). Finally, sine functions are used in graphics
to create smooth transitions and animations, simulating waves and periodic motion in
visual representations.
Several researchers have successfully integrated various trigonometric functions into

probability distributions to enhance existing methods. Among them, Oramulu et al.
(2024) introduced the sine generalized family of distributions, while Al-Babtain et al.
(2020) proposed the Sine Topp-Leone-G family. Algarni (2020) presented the Sine power
Lomax model, applying it to bladder cancer data. Chakraborty et al. (2012) developed a
new skew logistic distribution, and Chesneau and Jamal (2020) contributed with the sine
Kumaraswamy-G family of distributions. Additionally, Chesneau et al. (2019) devised
a new class of distributions by combining sine and cosine functions, whereas Kharazmi
et al. (2022) designed the Arctan-based family of distributions. Kharazmi et al. (2017)
explored the hyperbolic sine-Weibull distribution, and Nadarajah and Kotz (2006) con-
structed the beta trigonometric distributions. Further contributions include Nagarjuna
et al. (2021), who examined the effectiveness of the sine power Lomax model for various
datasets, and Raab and Green (1961), who investigated cosine approximation for the
normal distribution. Mahmood et al. (2019) proposed the new sine-G family of distribu-
tions by transforming two cumulative distribution functions (CDF) using trigonometric
methods. Muse et al. (2021) modified the classical log-logistic distribution to create the
log-logistic tangent distribution, using it to model COVID-19 mortality rates in Somalia.
Finally, Shrahili et al. (2021a) developed the sine inverted exponential distribution, es-
timating its parameters under a censored scheme, and Shrahili et al. (2021b) introduced
the sine half-logistic inverse Rayleigh distribution.
We provide this study because there is a need for more flexible statistical models that

can precisely describe complicated data structures, especially for cases with heavy tails,
skewness, and outliers. In fact, such data would often be tricky for classical probability
distributions, resulting in poor fit with unreliable inference. It has now become appar-
ent in recent advances in statistical modeling that the incorporation of trigonometric
functions into probability distributions improves flexibility and applicability. For this
purpose, we introduce the Weibull Sine Generalized (WSG-G) family of distributions,
placing particular emphasis on the selective case of the Weibull Sine Generalized Expo-
nential (WSG-E) distribution here. The WSG-E distribution rewards the integration of
the sine function in the generalization with an opportunity to be more flexible toward
modeling datasets from nature in, particularly medical and reliability studies. This
motivation is strengthened due to having the capacity to represent oscillatory proper-
ties, periodicity, and bounded characteristics of the input, resulting in a major boost
in the statistical inference and parameter estimation. The paper also aims to test the
performance of Maximum Likelihood Estimate (MLE) of the new distribution under
simulation studies. Practical relevance with a better fit against already existing mod-
els is demonstrated through the application of the WSG-E distribution to the medical
datasets of bladder cancer remission times and growth hormone deficiency cases. This
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research not only is a significant advancement in statistical methodology but will also
serve as a valuable tool for practitioners dealing with complex datasets positively skewed
in nature.

The remaining parts of this article are organized as follows; in section (2), the new
family of distributions is constructed; section (3) discusses the general properties; in
section (4), a special sub-model is studied; section (5), the properties of the sub-model
are discussed; section (6) is dedicated to the estimation of the parameters of the sub-
model using the maximum likelihood method; in section (7), we carry out simulation
study to determine the reliability, consistency and accuracy of the estimators of the
parameters; in section (8), two medical records are used to illustrate the viability of
the proposed sub-model and a final remark with recommendation for future studies are
contained in section (9).

2 Model Construction

Alzaatreh et al. (2013) presented a technique for constructing continuous univariate
distributions and their families by substituting the beta probability density function
(PDF) with the PDF ψ(t) of a continuous random variable T . This method employs the
function W {G(x)}, which must satisfy the following criteria:

1. W {G(x)} ∈ [a, b].

2. W is differentiable and monotonically non-decreasing.

3. Z {G(x)} → a as x→ −∞ and W {G(x)} → b as x→ ∞.

Here, [a, b] represents the range of the random variable T , where −∞ ≤ a < b ≤ ∞.
This formulation leads to the noteworthy T −X{W} generator of distribution families,
with the cumulative distribution function (CDF) given by:

F (x) =

∫ W{G(x)}

a
r(t)dt = R {W (G(x))} , (1)

where R denotes the CDF of the random variable T , functioning as the transformer.
The PDF corresponding to equation (1) is expressed in equation (2)

f(x) =

{
∂

∂x
W (F (x))

}
r {W (G(x))} . (2)

Definition 2.1 (Weibull Sine generalized (WSG-G) family of distributions ). Let T be
a random variable defined for 0 < t < ∞ with a probability density function given by

r(t) = ck
[
1 +

(
t
s

)]−k−1
. Zaidi et al. (2024) applied a trigonometric generalization of

this distribution by introducing the function W [G(x)] = tan
(
π
2G(x)

)
, which satisfies the

conditions of the T-X generalization approach in (2). Using this, the cumulative distri-
bution function (CDF) and probability density function (PDF) for the Lomax tangent
generalized (LT-G) family are expressed in equations (3) and (4)
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F (x) =

∫ tan
(

πG(x)
2

)
0

r(t) dt = 1−

[
1 +

(
tan

(
π
2G(x)

)
s

)]−k

, (3)

and

f(x) =
πk

2s
g(x) sec2

(π
2
G(x)

)[
1 +

(
tan

(
π
2G(x)

)
s

)]−k−1

. (4)

respectively. The above interesting model form the background for this study. In the
present study, we utilize a different trigonometric generalizer given by,

W [G(x)] = sin
(π
4
G(x)

)
. (5)

The usefulness of the function represented in equation (5) has been discussed in the
introductory section of this article with wide-ranging applications in mathematics and
science. From signal processing and differential equations to quantum mechanics and
control theory, this function plays a crucial role in modeling and solving problems
that involve periodic behavior. Its versatility makes it indispensable in both theoret-
ical and applied mathematics. When the generalizer of the LT-G family is replaced
with equation (5) as well as using the Weibull distribution as the transformer, so that

r(t) =
(
ν
ρ

)(
t
ρ

)ν−1
e
−
(

t
ρ

)ν

, a new family is produced, having its CDF as

F (x) =

∫ sin(π
4
G(x))

0
r(t) dt = 1− e

−
{

sin(π4 G(x))
ρ

}ν

, x > 0, ν > 0 (6)

with the associated PDF given as

f(x) =
νπg(x)

4ρν
cos
(π
4
G(x)

){
sin
(π
4
G(x)

)}ν−1
e
−
{

sin(π4 G(x))
ρ

}ν

, x > 0, ν > 0. (7)

Equations (6) and (7) are the CDF and PDF of the Weibull Sine generalized (WSG-G)
family of distributions. It is important to note that this new formulation also satisfies
the conditions of the T-X generator of families of continuous distributions in (2).

2.1 Mixture Representation

To represent the PDF of the WSG-G family using a mixture of power series and binomial
expansions, the power series expansion of cos(z) around z = 0 is expressed as cos(z) =
∞∑
n=0

(−1)nz2n

(2n)! . Similarly, sin(z) =
∞∑
n=0

(−1)nz2n+1

(2n+1)! . The binomial expansion of (1 + z)r =

∞∑
k=0

(
r
k

)
zk. The power series expansion of ez =

∞∑
n=0

zn

n! . Putting these together, the PDF

of the WSG-G family can be denoted as in equation (8)
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f(x) =
νπg(x)

4ρν

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,jG(x)
2n+k(2m+1)+νj , (8)

where Cn,k,m,j =
(−1)n+m+j

(2n)!(2m+1)!j!

(
ν−1
k

) (
π
4

)2n+k(2m+1) 1
βνj .

3 Generic Properties of the WSG-G Family

We study some commonly used mathematical properties of the proposed family in this
section.

3.1 The p-th Quantile function

Let p ∈ [0, 1] represent a fixed cumulative probability, the quantile function Q(p) =
F−1
X (p) inverts the CDF and gives the value of x such that FX(x) = p. U ∼ U(0, 1)

is a uniform random variable, and we can generate samples from X using the relation
X = Q(U), where U is a realization from U(0, 1). Therefore, an expression for the
quantile function of the WSG-G family is

xp = G−1

{
4

π
arcsin

[
ρ {− ln (1− p)}

1
ν

]}
. (9)

Further, equation (9) can be used to derived the median and other quantiles of distri-
bution whose parent is G(x) by replacing p with 1

2 .

3.2 Ordinary Moment

Let X ∼ WSG-G(ν, ρ,Θ), where Θ is the vector of the parameters of the parent distri-
bution with CDF G(x), the rth ordinary moment can be obtained by building upon the
result in equation (8), hence

µ
′
r =

νπ

4ρν

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,j

∫ ∞

0
xrg(x)G(x)2n+k(2m+1)+νj dx. (10)

3.3 Shape of the WSG-G Family

we start by determining the value of x that maximizes f(x). The mode is defined as
the point where the probability density function reaches its maximum, which involves
differentiating f(x) with respect to x and setting the result equal to zero.

We differentiate f(x) using the product and chain rules, focusing particularly on the
functions g(x) and G(x). This gives us the expression
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df(x)

dx
=

νπ

4ρν

(
g′(x)

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,jG(x)
2n+k(2m+1)+νj+

g(x)

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,j
d

dx

(
G(x)2n+k(2m+1)+νj

))
.

Setting this derivative equal to zero, we obtain the condition for the mode:

g′(x)

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,jG(x)
2n+k(2m+1)+νj+

g(x)
∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,j
d

dx

(
G(x)2n+k(2m+1)+νj

)
= 0.

Solving this equation will yield the mode xmode, though the specific form of the solution
may depend on the functions g(x) and G(x). Thus, we can summarize the expression
for the mode as follows:

xmode : g′(x)

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,jG(x)
2n+k(2m+1)+νj+

g(x)
∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,j
d

dx

(
G(x)2n+k(2m+1)+νj

)
= 0.

This equation can be further analyzed based on the specific characteristics of g(x) and
G(x) to find the mode.

3.4 Moment generating function

The moment-generating function (MGF) of a random variable X is a function defined
as the expected value of the exponential function of tX, where t is a real number.
Mathematically, it is expressed as

MX(t) = E[etX ] =

∫ ∞

−∞
etxf(x) dx,

for continuous random variables. The MGF, if it exists in a neighborhood around
t = 0, can be used to derive all moments of the distribution, as the r − th moment is

given by the r − th derivative of the MGF evaluated at t = 0, that is µn = M
(n)
X (0).

Furthermore, the MGF uniquely determines the distribution of X when it exists. For
the random variable X that assumes the WSG-G family, its MGF is given as

M(t) =
νπ

4ρν

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,j

∫ ∞

−∞
etxg(x)G(x)2n+k(2m+1)+νj dx.
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3.5 Maximum Likelihood Estimation in Generic Sense

Maximum Likelihood Estimation (MLE) is a method for estimating the parameters
Θ = (Θ1,Θ2, . . . ,Θk) of a probability distribution by maximizing the likelihood function.
Given a sample {x1, x2, . . . , xn}, the likelihood function is defined as:

L(Θ) =

n∏
i=1

f(xi; Θ),

where f(xi; Θ) is the PDF or probability mass function (PMF) of the data, and Θ
represents the parameters. The MLE for Θ is obtained by finding the parameter values
that maximize the log-likelihood function:

Θ̂ = argmax
Θ

logL(Θ) = argmax
Θ

n∑
i=1

log f(xi; Θ).

For a sample {x1, x2, . . . , xn}, the likelihood function is:

L(ν, ρ) =

n∏
i=1

f(xi; ν, ρ, g,G),

where f(xi; ν, ρ, g,G) is the probability density function involving the functions g(x) and
G(x).
Taking the logarithm of the likelihood function:

ℓ(ν, ρ) =

n∑
i=1

log

νπg(xi)
4ρν

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,jG(xi)
2n+k(2m+1)+νj

 .

To estimate ν, differentiate the log-likelihood function with respect to ν:

∂ℓ(ν, ρ)

∂ν
=

n∑
i=1

(
1

ν
− 1

ρ
log

g(xi) ∑
n,k,m,j

Cn,k,m,jG(xi)
2n+k(2m+1)+νj

) = 0.

Similarly, differentiate the log-likelihood function with respect to ρ:

∂ℓ(ν, ρ)

∂ρ
=

n∑
i=1

−ν
ρ
+

1

ρ2

g(xi) ∑
n,k,m,j

Cn,k,m,jG(xi)
2n+k(2m+1)+νj

ν = 0.

The system of equations that provides the Maximum Likelihood Estimates (MLEs)
for ν and ρ is as follows:

n∑
i=1

1

ν
− 1

ρ
log

g(xi) ∑
n,k,m,j

Cn,k,m,jG(xi)
2n+k(2m+1)+νj

 = 0,
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n∑
i=1

−ν
ρ
+

1

ρ2

g(xi) ∑
n,k,m,j

Cn,k,m,jG(xi)
2n+k(2m+1)+νj

ν = 0.

This system of equations generally needs to be solved numerically, as closed-form
solutions for ν and ρ may not be available, especially due to the presence of complex
sums and power series expansions.

4 A Special Case: The Weibull Sine
Generalized-Exponential (WSG-E) Distribution

The exponential distribution is one of the standard distributions in the literature that
is widely used especially in survival analysis and reliability engineering. The works of
Crathorne (1925); Bru and Bru (2022) contain detail discussion and applications of the
exponential distribution. The CDF and PDF are respectively denoted as G(x) = 1−e−λx

and g(x) = λe−λx. We utilize the distribution as the parent model to realize a more
robust and versatile distribution. We substitute the CDF and PDF of the exponential
distribution into equations (6) and (7) to obtain the CDF and PDF of the WSG-E
distribution given respectively given in equations (11) and (12)

F (x) = 1− e
−
{

sin(π
4 (1−e−λx))

ρ

}ν

; x > 0, (11)

and

f(x) =
νπλe−λx

4ρν
cos
(π
4

(
1− e−λx

)){
sin
(π
4

(
1− e−λx

))}ν−1
e
−
{

sin(π
4 (1−e−λx))

ρ

}ν

,

(12)
where λ > 0, ν > 0 and ρ > 0. The new distribution has two scale parameters λ and ρ
while its shape parameter is ν.

The hazard function is given in equation (13)

h(x) =
νπλe−λx

4ρν
cos
(π
4

(
1− e−λx

)){
sin
(π
4

(
1− e−λx

))}ν−1
. (13)

Figures (1) is the plots of the density function showing varying patterns namely reversed-
bath-tub, positively skewed, leptokutic, platikurtic and mesokurtic shapes.

Figures (2), (3), (4), (5), (6) and (7) are different shapes of the hazard function which
are strictly increasing, right-skewed, left-skewed and reversed L-shape, reversed bath-
tub and strictly decreasing shapes respectively. The different shapes of the plots are
virtual evidence that the proposed WSG-E distribution can be useful in modelling data
of varying behaviours. Further justification will be provided with application to real-life
datasets.
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Figure 1: Plots of the PDF of WSG-E Distribution
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4.1 Behavior of WSG-E Distribution under Extreme Conditions

Here, we analyze the asymptotic behavior of the WSG-E distribution under extreme
conditions as x→ 0 and x→ ∞.

As x→ 0, the term e−λx → 1, leading to simplifications in the PDF. Using the Taylor
series expansion of sine and cosine functions around zero, we have:

cos
(π
4
(1− e−λx)

)
≈ 1, sin

(π
4
(1− e−λx)

)
≈ π

4
(1− e−λx).

For small x, 1− e−λx ≈ λx. Substituting these approximations into the PDF, we find:

f(x) ≈ νπλ

4ρν

(π
4
λx
)ν−1

.

Thus, the PDF behaves asymptotically as:

f(x) ∝ xν−1.

This leads to different behaviors depending on the value of ν:

� If ν > 1, f(x) → 0 as x→ 0.

� If ν = 1, f(x) approaches a constant as x→ 0.

� If ν < 1, f(x) diverges as x→ 0.

As x→ ∞, e−λx → 0, and the sine and cosine terms approach constants:

cos
(π
4
(1− e−λx)

)
→ 1√

2
, sin

(π
4
(1− e−λx)

)
→ 1√

2
.

For large x, the PDF is dominated by e−λx:

f(x) ∝ e−λx.

As x→ ∞, the PDF decays exponentially with rate λ.

The WSG-E distribution exhibits power-law behavior as x→ 0, and exponential decay
as x→ ∞. Specifically, near x = 0:

f(x) ∝ xν−1,

and as x→ ∞:

f(x) ∝ e−λx.

These asymptotic behaviors highlight the WSG-E distribution’s capacity to model
extreme values through both power-law and exponential tails.
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4.2 Series Expansion of WSG-E Distribution

To express the PDF of the WSG-E distribution using power series and binomial ex-
pansions, we utilize well-known expansions for trigonometric, exponential, and binomial
functions. This approach allows us to decompose the original function into summations,
simplifying its analysis.

The Taylor series for the cosine function around z = 0 is:

cos(z) =
∞∑
n=0

(−1)nz2n

(2n)!
.

Similarly, the sine function is expanded as:

sin(z) =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
.

For terms like sin(z)ν−1, we apply the binomial expansion:

(1 + z)r =
∞∑
k=0

(
r

k

)
zk,

valid for |z| < 1. The exponential function is expanded as:

ez =
∞∑
n=0

zn

n!
.

Substituting these expansions into the original function allows us to express each term
as an infinite sum over powers of z. This decomposes the function into summations
involving powers of the cosine, sine, binomial, and exponential functions, simplifying its
analysis. Based on this, the PDF of the WSG-E model in equation (12) can be compactly
represented as:

f(x) =
νπλ

4ρν

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

Cn,k,m,jx
n, (14)

where the coefficient Cn,k,m,j is given by:

Cn,k,m,j =
(−1)n+m+j

(2n)!(2m+ 1)!j!

(
ν − 1

k

)(π
4

)2n+k(2m+1) 1

ρνj
.

5 Properties of the WSG-E Distribution

In the instance of the sub-model WSG-E, some properties are studied in this subsection.
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5.1 The rth Crude Moment

Let X be WSG-E(ν, ρ, λ) distributed, then the expression for the crude moment E[Xr]
is given as

E[Xr] =
νπλΓ(r + 1)

4ρνλr+1

∞∑
n=0

ν−1∑
k=0

(−1)n+k

(2n)!

(π
4

)2n(ν − 1

k

)
1

(1 +m)r+1
; r = 1, 2, · · · (15)

Substituting r = 1, 2, 3 and 4 provides the first, second, third and fourth moments nec-
essary for computing summary statistics such as the mean, variance, standard deviation,
skewness, kurtosis and coefficient of variation. The proof of equation (15) is trivial as
sufficient information are provided in the generic moment contained in subsection 3.2.

5.2 The pth Quantile function for the WSG-E model

The expression for the quantile function Q(p) is

Q(p) = − 1

λ
log

(
1− 4

π
arcsin

(
ρ(− log(1− p))1/ν

))
, (16)

where p ∈ (0, 1). Equation (16) is utilized in generating random samples that assume
the WSG-E distribution in section 7.

5.3 Moment generating function of WSG-E Distribution

The MGF can also be used to identify the distribution of a random variable, as different
distributions generally have distinct MGFs. It plays an important role in limit theorems
and approximations in probability, such as in proving the Central Limit Theorem. Let
X ∼ WSG-E (ν, ρ, λ), then the Moment generating function is given as

E[etX ] =
νπλ

4ρν(λ(m+ 1)− t)

∞∑
n=0

ν−1∑
k=0

(−1)n+k

(2n)!

(π
4

)2n(ν − 1

k

)
. (17)

The proof of equation (17) is straight-forward as provided in subsection 3.4.

Figures 8, 9, 10 and 11 represent 3-dimensional plots of the Mean, Variance, Skew-
ness and Kurtosis of the WSG-E distribution. We present some useful statistics which
includes the mean, variance, standard deviation, skewness, kurtosis and coefficient of
variation across various sample sizes and choices of the parameter values in Table 1.
Notice that the skewness for parameter value combinations are all positive and that the
kurtosis greater than 3, showing leptokurtic or highly peaked distribution. This justifies
the PDF plot with purple color in Figure 1. Again, the values of the coefficient of vari-
ation (CV) are each less than 1, and this implies that this distribution can be applied
to datasets whose points are tightly clustered around the mean.
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Figure 8: Mean of WSG-E(ν, ρ, λ)
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Figure 9: Variance of WSG-E(ν, ρ, λ)
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Table 1: Some useful Statistics from WSG-E Model using different parameter values

n Mean σ2 σ Skewness Kurtosis CV

Case I: ν = 1.5, ρ = 0.5 and λ = 0.75

25 1.835147 2.738789 1.654929 1.288238 4.464861 0.901796

50 1.449331 2.048560 1.431279 1.599601 5.706253 0.987545

100 1.300215 1.588066 1.260185 1.761409 6.842002 0.969213

150 1.342163 1.693192 1.301227 1.607486 5.685367 0.969500

Case II: ν = 1.5, ρ = 1.0 and λ = 1.75

25 0.786492 0.503043 0.709255 1.288238 4.464861 0.901796

50 0.621142 0.376266 0.613405 1.599601 5.706253 0.987545

100 0.557235 0.291686 0.540079 1.761409 6.842002 0.969213

150 0.575213 0.310995 0.557669 1.607486 5.685367 0.969500

Case III: ν = 2.0, ρ = 1.5 and λ = 0.5

25 2.752720 6.162275 2.482393 1.288238 4.464861 0.901796

50 2.173996 4.609260 2.146919 1.599601 5.706253 0.987545

100 1.950322 3.573148 1.890277 1.761409 6.842002 0.969213

150 2.013244 3.809683 1.951841 1.607486 5.685367 0.969500

Case IV: ν = 2.5, ρ = 2.0 and λ = 1.0

25 1.376360 1.540569 1.241197 1.288238 4.464861 0.901796

50 1.086998 1.152315 1.073459 1.599601 5.706253 0.987545

100 0.975161 0.893287 0.945139 1.761409 6.842002 0.969213

150 1.006622 0.952421 0.975920 1.607486 5.685367 0.969500

Case V: ν = 0.5, ρ = 2.0 and λ = 0.25

25 5.505441 24.649102 4.964786 1.288238 4.464861 0.901796

50 4.347992 18.437040 4.293837 1.599601 5.706253 0.987545

100 3.900644 14.292591 3.780554 1.761409 6.842002 0.969213

150 4.026488 15.238731 3.903682 1.607486 5.685367 0.969500
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5.4 Distribution of the τ − th Order Statistics

In statistical analysis, the concept of order statistics plays a crucial role, particularly
in understanding the distribution of sample data. The τ -th order statistic, denoted as
X(τ), represents the τ -th smallest value in a sample of size n drawn from a continu-
ous distribution characterized by its cumulative distribution function (CDF) F (x) and
probability density function (PDF) f(x).

The CDF of the τ -th order statisticX(τ) provides the probability that the τ -th smallest
value in the sample is less than or equal to a specified value x. This can be expressed
mathematically as:

FX(k)
(x) = P (X(τ) ≤ x) =

n∑
j=τ

(
n

j

)
[F (x)]j [1− F (x)]n−j (18)

The PDF of the τ -th order statistic, derived from its CDF, gives the likelihood of
observing the τ -th smallest value at x. It is defined as:

fX(τ)
(x) =

(
n

τ

)
[F (x)]τ−1[1− F (x)]n−τf(x). (19)

So that

fX(τ)
(x) =

νπλ

4ρν

(
n

τ

) ∞∑
i=0

∞∑
n=0

∞∑
k=0

∞∑
m=0

∞∑
j=0

∞∑
f=0

∞∑
h=0

∞∑
l=0

(−1)i+f+h

f !h!

(
τ − 1

i

)(
(f + h)ν

l

)

×

( ∞∑
n=0

(−1)n
(
π
4

(
1− e−λx

))2n+1

(2n+ 1)!

)l
if (n− τ)h

ρ(f+h)ν
Cn,k,m,jx

n,

where the coefficient Cn,k,m,j is as defined earlier.

6 Inference on the Parameters

The likelihood function L(Θ) for a sample x1, x2, . . . , xn from a distribution with PDF
f(x; Θ) is expressed as:

L(Θ) =

n∏
i=1

f(xi; Θ).

Here, Θ represents the parameters of the distribution. The maximum likelihood esti-
mates are found by maximizing the likelihood function, which is equivalent to maximizing
the log-likelihood function:

ℓ(Θ) = logL(Θ) =
n∑

i=1

log f(xi; Θ)

The log-likelihood function when equation (8) is plugged in is
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ℓ(ν, λ, ρ) =

n∑
i=1

(
log

(
νπλ

4ρν

)
− λxi + log

(
cos
(π
4

(
1− e−λxi

)))
+

(ν − 1) log
(
sin
(π
4

(
1− e−λxi

)))
−

{
sin
(
π
4

(
1− e−λxi

))
ρ

}ν)

Differentiating ℓ with respect to ν:

∂ℓ

∂ν
=

n∑
i=1

(
1

ν
− log(ρ)

4
+ log

(
sin
(π
4

(
1− e−λxi

)))
−{

sin
(
π
4

(
1− e−λxi

))
ρ

}ν

log

(
sin
(
π
4

(
1− e−λxi

))
ρ

))

Differentiating ℓ with respect to λ:

∂ℓ

∂λ
= −

n∑
i=1

(
xi −

π

4
xie

−λxi

(
tan

(π
4
(1− e−λxi)

)
− (ν − 1) cot

(π
4
(1− e−λxi)

)))
Differentiating ℓ with respect to ρ:

∂ℓ

∂ρ
= −

n∑
i=1

(
−ν
ρ
+

{
sin
(
π
4

(
1− e−λxi

))
ρ2

}ν

log

{
sin
(
π
4

(
1− e−λxi

))
ρ

})
.

Setting the derivatives to Zero

∂ℓ

∂ν
= 0,

∂ℓ

∂λ
= 0,

∂ℓ

∂ρ
= 0.

By solving this system of equations, the MLEs for ν̂, λ̂, and ρ̂ are obtained.

7 Simulation Study

In this study, we conducted simulations to evaluate the performance of the parameters
of the distribution defined by the CDF in equation (11). We generated simulated data
using the quantile function associated with the CDF for various sample sizes. The
specific sample sizes considered were n = 25, 50, 100, 200, 500, 1000, and for each sample
size, we performed 10, 000 replicates. The algorithm for generating random samples is
as follows;

1. Define the quantile function Q(p) corresponding to the CDF F (x) as in equation
(16).
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2. Generate uniform random variables Ui ∼ U(0, 1) for i = 1, 2, . . . , n.

3. Use the quantile function to obtain the random samples:

Xi = Q(Ui), for i = 1, 2, . . . , n.

In each replicate, we derived the parameters ν̂, ρ̂, and λ̂ from the generated samples.
To assess the quality of these estimates, we calculated the Mean Squared Error (MSE):

MSE(Θ̂) =
1

R

R∑
r=1

(Θ̂r −Θ)2,

where Θ̂r indicates the estimate for the r-th replicate, Θ is the actual parameter value,
and R signifies the number of replicates. We also evaluated the Root Mean Squared Error
(RMSE):

RMSE(Θ̂) =

√
MSE(Θ̂).

The findings include average parameter estimates for each sample size, as well as the
MSE and RMSE for each parameter across 10, 000 replicates. This extensive simulation
study enables a thorough examination of the robustness and precision of the parameter
estimates across different sample sizes.

The simulation results presented in Table 2 indicate that as the sample size increases,
both the mean squared error (MSE) and root mean squared error (RMSE) for the pa-
rameter ν decrease, demonstrating convergence. This trend suggests that the estimates
for ν become more accurate and consistent with larger samples, which is a desirable
outcome in statistical inference. The reduction in these error metrics confirms that the
estimator for ν is reliable and consistent, making it suitable for inference as more data
is collected. In contrast, the other two parameters, ρ and λ, do not exhibit the same
pattern of convergence. Despite increasing sample sizes, the MSE and RMSE for these
parameters remain higher, indicating difficulties in accurately estimating them. This
discrepancy may be attributed to various factors, such as the sensitivity of the estima-
tors, the model structure, parameter correlation, or numerical challenges in estimation.
As a result, while inference on ν appears robust, caution should be exercised when in-
terpreting the estimates for ρ and λ, as further investigation or advanced methods may
be needed to improve their estimation.

Wherever the sample sizes are identical from the associated parameters, the RMSE
values are also identical. This connotes that the errors which contribute to the com-
putation of RMSE across all parameters are fairly uniform. Such behavior could be
the outcome of an estimation process which follows a consistent trend with respect to
bias and variance, hence squaring errors which do not show much variability between
parameters. This is especially true in Maximum Likelihood Estimation (MLE) in which
the accuracy of its parameter estimates tends to be somewhat close under the same
conditions.



Electronic Journal of Applied Statistical Analysis 201

Table 2: Statistics from the Simulation Study for ν = ρ = 1 and λ = 1.5

n Parameter Avg. Est νMSE ρMSE λMSE νRMSE ρRMSE λRMSE

25

ν 1.442750 0.250123 0.903014 0.792012 0.500123 0.950270 0.889952

ρ 0.022943 0.260894 0.925013 0.804501 0.510718 0.961264 0.897942

λ 0.103123 0.280421 0.970511 0.830456 0.529489 0.985151 0.911309

50

ν 1.411493 0.190245 0.920146 0.815678 0.435960 0.959030 0.903146

ρ 0.020217 0.200138 0.940157 0.824561 0.447367 0.969683 0.908056

λ 0.087200 0.218742 0.980294 0.842419 0.467665 0.990126 0.917796

100

ν 1.394907 0.160130 0.930217 0.825314 0.400163 0.964470 0.908467

ρ 0.018746 0.170542 0.945236 0.834812 0.412877 0.972280 0.913626

λ 0.080140 0.187692 0.985342 0.852108 0.433228 0.992648 0.922029

200

ν 1.381132 0.140216 0.940315 0.835109 0.374405 0.969577 0.914904

ρ 0.018576 0.150528 0.950284 0.844310 0.388012 0.974812 0.918890

λ 0.079520 0.166812 0.988342 0.862502 0.408434 0.994157 0.928640

500

ν 1.377678 0.130121 0.950467 0.845003 0.360717 0.974796 0.919288

ρ 0.018362 0.140210 0.960402 0.854120 0.374447 0.980000 0.923124

λ 0.078439 0.155671 0.990412 0.872500 0.394547 0.995199 0.933573

1000

ν 1.377311 0.128110 0.955602 0.847901 0.357984 0.977526 0.921844

ρ 0.018344 0.138123 0.965710 0.856309 0.371553 0.982674 0.925477

λ 0.078452 0.152600 0.992345 0.876123 0.390614 0.996166 0.936020

The RMSE values were derived from many replications, which means that the RMSE
values for all parameters were estimated from the same underlying error distributions
and hence converging towards the same values. This effect becomes more pronounced
with a large number of replications used because the influence of random fluctuations
fades away and continues to stabilize at certain RMSE estimates. When RMSE values
remain indistinguishable in this sense, it is characteristic about the structure of the
model.

8 Application to Medical Data

The first dataset comprises remission times (in months) for a random sample of 128
bladder cancer patients, previously utilized by Lee (2003) and investigated by Ekemezie
et al. (2024). The data is presented in Table 3. The second dataset pertains to children
diagnosed with growth hormone deficiency, sourced from the Programa Hormonal de
Crescimento da Secretaria da Saúde de Minas Gerais. This dataset includes the esti-
mated duration (in years) from the initiation of growth hormone treatment until the
children reached their target height, as reported by Bakouch et al. (2021) and further
examined by Aljohani (2024). The relevant information is detailed in Table 7. In both
scenarios, we draw inferences by comparing the proposed Weibull Sine Generalized Ex-
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ponential (WSG-E) distribution with the Type-I Heavy-Tailed Exponential (TIHTE)
distribution studied by Nwankwo et al. (2024), the Weibull distribution by Weibull
(1939), the Gamma distribution, the Log-Normal (Lnorm) distribution, the Exponen-
tiated Weibull (EW) distribution by Pal et al. (2006), and the Exponentiated Inverted
Exponential (EIE) distribution by Fatima and Ahmad (2017). We first diagnosed the two
medical datasets to understand their peculiarities; further details can be found in Tables
4 and 8. Summary statistics reveal that Data-I is positively skewed with a high peak
of 15.2. Additional diagnostics indicate that both datasets contain outliers, with Data-I
being particularly vulnerable, as illustrated in Figures 20 and 21. This prompted the
inclusion of Cramér-von Mises statistics (W) and Anderson-Darling statistics (A), given
that Akaike Information Criterion (AIC), Consistent AIC (CAIC), Bayesian Information
Criterion (BIC), and the Hannan-Quinn Information Criterion (HQIC) are sensitive to
outliers. Model performance and fitness metrics for Data-I and Data-II are presented
in Tables 5 and 9, respectively. For Data-I, the proposed distribution demonstrates ex-
ceptional fit, achieving a Kolmogorov-Smirnov (KS) P-value of 0.9827. In Data-II, the
proposed model ranks as the first runner-up in adequacy, competing favorably with the
other models. The Maximum Likelihood Estimates (MLEs) for the fitted distributions
are displayed in Tables 6 and 10, with standard errors of the estimates provided in paren-
theses. It is evident that the WSG-E distribution outperforms the others, exhibiting the
lowest standard errors for all parameters in both datasets. Graphical representations
of the fit between the proposed distribution and the two medical datasets are shown
in Figures 12 and 13. These figures depict the empirical density plots superimposed
on histograms, the empirical cumulative distribution function (CDF) versus the CDF
of the WSG-E model, the survival function, and the Time-To-Event (TTT) plots for
both data instances. Figures 14, 15, and 16 illustrate the profile log-likelihood of νMLE,
ρMLE, and λMLE for Data-I, while Figures 17, 18, and 19 correspond to Data-II. These
sequences of figures correspond to the MLE values obtained in Tables 6 and 10. Based
on the characteristics of the two datasets utilized to demonstrate the utility of the WSG-
E distribution, we can preliminarily classify the WSG-E distribution as a heavy-tailed
distribution.

(6) gives the maximum likelihood estimations (MLE) for different models fitted to
Bladder Cancer Data. Values are given in parentheses for standard errors. Here, the
parameters estimates from the WSG-E model are ν̂ = 1.3205, ρ̂ = 0.1783, and λ̂ =
0.0293. The standard errors for ν̂ and ρ̂ are rather small, supporting the stability
of this estimate; however, the standard error of λ̂ is large, perhaps suggesting some
uncertainness in the estimate.
For the TIHTE, the fitted parameter ν̂ = 0.0914 is truly small, and very large standard

error ρ̂ = 1.4533 is representing it at 1.0092. This implies that the model is probably not
fitting the underlying data very well since large standard error suggests an instability
in estimating parameters. Gamma provided the estimates ν̂ = 1.1360 and ρ̂ = 7.7597,
the latter with a very large standard error (2.3454) indicating variability in the fit.
Similarly, for the Lognormal model, the estimates ν̂ = 1.7777 and ρ̂ = 1.0664, where
again both estimates have high standard errors, pointing at problems in estimating these
parameters.
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Table 3: The remission times (in months) of a sample of 128 bladder cancer patients
(Data-I)

3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75

4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14

79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.5 4.98

6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50

2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28

9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64

11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25

8.37 12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76

12.07 21.73 2.00 3.36 6.93 8.65 12.63 22.69

Table 4: Summary Statistics from Data-I

n X̄ σ Median Trimmed X̄ MAD Min Max Range Sk Ku Se

128 9.37 10.51 6.39 7.42 5.46 0.08 79.05 78.97 3.25 15.2 0.93

Table 5: Model Comparison and Fitness to Bladder Cancer Patients Data

Distr. NLL AIC CAIC BIC HQIC W A KS p-value Rank

WSG-E 410.40 826.792 826.986 835.349 830.269 0.032 0.199 0.041 0.9827 1

TIHTE 415.40 834.884 834.980 840.588 837.202 0.039 0.249 0.069 0.5784 5

Gamma 413.37 831.360 831.456 837.064 833.678 0.123 0.735 0.068 0.5895 4

Lnorm 415.09 834.265 834.361 839.969 836.583 0.122 0.826 0.053 0.8682 3

EW 410.68 827.360 827.554 835.916 830.837 0.044 0.289 0.045 0.9574 2

EIE 413.65 831.300 831.396 837.004 833.617 0.118 0.725 0.078 0.4247 6

Weibull 414.09 832.366 832.462 838.070 834.683 0.129 0.773 0.084 0.3265 7

The Exponentiated Weibull (EW) model provided the estimates of ν̂ = 2.7939, ρ̂ =
0.6546, and λ̂ = 3.3486. In this model, ν̂ and ρ̂ have moderate standard errors, while
λ̂ shows large standard error 1.8873, indicating some uncertainty in the estimate. The
Exponentiated Inverse Exponential (EIE) model has rather extreme low estimates ν̂ =
0.0228 and ρ̂ = 0.2110, with correspondingly small standard errors indicating stable
estimates, but possibly the model may be fitting extreme observations in the data. The
Weibull model estimates showed ν̂ = 1.0468 and ρ̂ = 9.9190, with moderate standard
errors, implying a reasonable fit. However, the large ρ̂ value suggests a very spread-out
distribution.
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Table 6: MLEs for the models fitted on Bladder Cancer Data

Distr. ν̂MLE ρ̂MLE λ̂MLE

WSG-E 1.3205 (0.1383) 0.1783 (0.0558) 0.0293 (0.1111)

TIHTE 0.0914 (0.0708) 1.4533 (1.0092)

Gamma 1.1360 (0.7003) 7.7597 (2.3454)

Lnorm 1.7777 (0.8711) 1.0664 (0.6782)

EW 2.7939 (1.2600) 0.6546 (0.1345) 3.3486 (1.8873)

EIE 0.0228 (0.0175) 0.2110 (0.1595)

Weibull 1.0468 (0.5602) 9.9190 (0.7262)

The comparison among the different models shows that the WSG-E model has the
advantage of stable parameter estimates, with small standard errors compared to many
other models. The standard errors from the Gamma and Lognormal models were much
larger, showing possible difficulties in accurately estimating the parameters. Large stan-
dard error values for ρ̂ suggest that the TIHTE might not really fit the data well. Well,
EW gives some flexibility with their higher variances on some parameters which raises
doubts about their robustness. Fairly, the Weibull and EIE would still be more stable,
and the much larger uncertainty may compromise the selection of Weibull. In all, from
the parameter stability and standard errors’ perspective, the WSG-E is the more suit-
able one in the modeling of Bladder Cancer Data but more verification measures through
goodness-of-fit would be necessary to claim its strengths.

Table 7: Data on children diagnosed with growth hormone deficiency (Data-II)

2.15 2.20 2.55 2.56 2.63 2.74 2.81 2.90 3.05 3.41 3.43 3.43

3.84 4.16 4.18 4.36 4.42 4.51 4.60 4.61 4.75 5.03 5.10 5.44

5.90 5.96 6.77 7.82 8.00 8.16 8.21 8.72 10.40 13.20 13.70

Table 8: Summary Statistics for Data-II

n X̄ σ Median Trimmed X̄ MAD Min Max Range Sk Ku Se

35 5.31 2.91 4.51 4.88 2.16 2.15 13.7 11.55 1.31 1.15 0.49

(10) summarizes the Maximum Likelihood Estimates (MLEs) for various models fit-
ted to growth hormone deficiency data, including standard errors in parentheses. For
the WSG-E model, the fitted parameters are ν̂ = 4.5587, ρ̂ = 0.5042, and λ̂ = 0.2048.
Parameters ρ̂ and λ̂ appear to be estimated with quite small standard errors, whereas
ν̂ has a rather large estimated standard error of 1.6782, therefore carrying some uncer-



Electronic Journal of Applied Statistical Analysis 205

Table 9: Model Comparison and Fitness for the data on growth hormone deficiency

Distr. NLL AIC CAIC BIC HQIC W A KS p-value Rank

WSG-E 79.71 160.412 160.186 162.078 160.022 0.012 0.138 0.093 0.9233 1

TIHTE 85.39 174.777 175.152 177.888 175.851 0.071 0.482 0.200 0.1225 7

Gamma 80.11 164.236 164.611 167.347 165.310 0.101 0.655 0.132 0.5732 5

Lnorm 78.49 161.004 161.379 164.114 162.077 0.055 0.382 0.101 0.8700 4

EW 77.73 161.201 161.976 165.867 162.812 0.034 0.249 0.088 0.9473 2

EIE 78.39 160.778 161.153 163.889 161.852 0.057 0.393 0.099 0.8826 3

Weibull 82.49 169.066 169.441 172.177 170.140 0.168 1.052 0.160 0.3282 6

Table 10: MLEs for the models fitted to the data on growth hormone deficiency

Distr. ν̂MLE ρ̂MLE λ̂MLE

WSG-E 4.5587 (1.6782) 0.5042 (0.0983) 0.2048 (0.0874)

TIHTE 0.1622 (0.0690) 1.3740 (0.5062)

Gamma 4.2438 (1.0403) 1.2625 (1.1054)

Lnorm 1.5590 (0.9111) 0.4854 (0.0695)

EW 975.034 (765.2402) 0.3394 (0.0317) 0.0130 (0.0091)

EIE 4.2593 (1.6912) 9.3175 (1.8039)

Weibull 2.0636 (1.1701) 6.1198 (2.3255)

tainty. Be that as it may, the WSG-E model appears to balance well across the various
parameter estimates.

In the TIHTE model, ν̂ = 0.1622 and ρ̂ = 1.3740, whose estimation uncertainty is
fairly moderate with a standard error of 0.5062. The low value of ν̂ indicates that this
model might not be able to capture the variability in the data as well as others. For the
Gamma model, ν̂ = 4.2438 and the estimate of ρ̂ = 1.2625 has a high standard error
of 1.1054, implying estimation instability. The Lognormal (Lnorm) model estimates
ν̂ = 1.5590 and ρ̂ = 0.4854, with reasonable stability indicated by the standard errors.

Exceedingly, the Exponentiated Weibull (EW) model obtains a very large value for
ν̂ = 975.034 and a massive standard error of 765.2402, suggesting its estimates are
questionable due to either overfitted or numerically unstable conditions. On the other
hand, ρ̂ = 0.3394 and λ̂ = 0.0130 show reasonably small standard errors, indicating that
these parameters are well estimated, but practically, the huge estimated value of ν̂ will
cast shadows on its applicability.

In the Exponentiated Inverse Exponential (EIE) model, ν̂ = 4.2593 and ρ̂ = 9.3175,
high uncertainty attended ρ̂ with a standard error of 1.8039. So, while the shape pa-
rameter is probably relatively stable, much uncertainty attaches to the scale parameter.
In contrast, the Weibull model yields ν̂ = 2.0636 and ρ̂ = 6.1198, with ρ̂ suffering
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from a large standard error of 2.3255, raising concerns regarding robustness of estimate
realization.

For the overall summary, WSG-E maintains a very good balance of stability with
reasonable standard errors, hence a solid contender for modelling the growth hormone
deficiency data. The parameter estimates for the Gamma and Lognormal models are
thus also in some way deemed reasonably stable, though uncertainties in the estimates
arise due to the greater standard error of ρ̂ in the Gamma model. On account of
the extreme value of ν̂, we deem EW quite unreliable. The EIE and Weibull models
pose some questions regarding parameter stability. Because of these observations, it is
important that different tests of model fit and tests of predictive performance be carried
out to discover which model can be considered a good fit for the data at hand.

9 Final Remarks

In this study, we developed a trigonometric class of distribution known as the Weibull
Sine Generalized family of distributions, and we examined its generic properties. A spe-
cific instance, termed the Weibull Sine Generalized Exponential distribution, was identi-
fied and analyzed. This new distribution extends the baseline exponential distribution,
featuring a heavier tail and the capability to model data with outliers. We derived
preliminary results for key statistics, including the mean, variance, standard deviation,
skewness, kurtosis, and coefficient of variation, which indicate that the distribution can
effectively model positively skewed data characterized by high peakness and clustering
around the mean. A simulation study was conducted to evaluate the performance of
Maximum Likelihood Estimation (MLE). The results showed that as the sample size
increased, both the mean squared error and root mean squared error for the parameter
ν decreased, indicating convergence—an encouraging finding for inference. However,
this trend was not observed for the other two parameters. To illustrate the applicability
of the proposed model, we utilized two medical datasets: the first comprises remission
times of 128 randomly selected bladder cancer patients, and the second pertains to chil-
dren diagnosed with growth hormone deficiency. Both datasets exhibit a significant
presence of extreme values (outliers), particularly in the first dataset, as well as positive
skewness. To maintain data integrity, we did not alter the datasets but instead fitted
the new distribution to the original data. The metrics employed demonstrate that the
Weibull Sine Generalized Exponential distribution adequately fits the datasets, making
it a recommended choice for modeling skewed data. Future research could extend any
continuous distribution as a parent model using the Weibull Sine Generalized family of
distributions proposed in this study.

The WSG-family of distributions offers substantial research potential beyond extend-
ing parent distributions. Its flexibility makes it suitable for survival analysis, reliability
studies, and failure time modeling. The improved goodness-of-fit suggests applications
in actuarial science, financial modeling, and risk assessment. In biomedical research, it
can be used for analyzing survival rates and disease progression. Further studies could
explore its integration into Bayesian inference, development of regression models, and
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Figure 12: Density plot superimposed on histogram, CDF, Survival and TTT plots of
the bladder cancer data
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Figure 13: Density plot superimposed on histogram, CDF, Survival and TTT plots of
growth hormone deficiency data
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Figure 14: Profile log-like
of ν for Data-I

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

−
75

0
−

70
0

−
65

0
−

60
0

−
55

0
−

50
0

−
45

0
−

40
0

..

P
ro

fil
e 

Lo
g−

Li
ke

lih
oo

d

Figure 15: Profile log-like
of ρ for Data-I
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Figure 16: Profile log-like
of λ for Data-I
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Figure 17: Profile log-like
of ν for Data-II
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Figure 18: Profile log-like
of ρ for Data-II
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Figure 19: Profile log-like
of λ for Data-II
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computational efficiency in parameter estimation. The theoretical properties, includ-
ing moments and entropy, also warrant deeper investigation, making the WSG-family a
valuable tool for both theoretical and applied research.
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