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Situations are often encountered, especially in the medical sciences, where
observing each stage of an event is necessary and overlooking it might be
risky for the well-being of an individual. Keeping the same very viewpoint,
this article presents the analysis of real Modified Rankin score data with
multiple responses from a Bayesian perspective using a polytomous logistic
regression model. The study involves utilizing the Markov chain Monte Carlo
technique for acquiring samples from the resulting posterior distribution.
Finally, to check the scope of the model simplification, several covariates are
tested against zero and then a comparison between the full model and the
simplified model is proposed based on the deviance information criterion.

keywords: Odds ratio, Logistic regression, Markov Chain Monte Carlo,
Modified Rankin score, Posterior distribution.

1 Introduction

The logistic regression model has a vast number of applications where the occurrence
of an incident can be coded by means of a dichotomous variable. Based on a given
dataset of independent variables, logistic regression determines the outcome of an event
taking place, such as having a disease or not, on the basis of the odds ratio (Gupta and
Upadhyay| (2019))). Relying only on the dichotomous responses may, however, reduce the
quality of inferences desired. This is because, in real life scenarios, we sometimes have
different levels or stages of an event happening, which has to be monitored cautiously.
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Usually, such situations can often be seen in the field of medical sciences and healthcare,
where assessing every change in the stages of disease or recovery is very essential. The
risk of ignoring the differences can be severe as it plays a major role in the subject’s
mortal behaviour. Therefore, multiple response datasets for such types of events can
be seen where various responses can be considered to depict the different levels of a
particular incident.

Generally, there are three types of multiple responses classified on the basis of three dif-
ferent scales, namely, the nominal scale, the ordinal scale and the interval scale. Nominal
scale is the lowest scale of polytomous responses in which no specific ordering between
the categories is found and can be interchanged with one another. Say, for example,
grouping on the basis of the person’s eye colour. The ordinal scale, on the other hand,
considers specific ordering of the categories and is not exchangeable. Examples include
degrees of burn, stages of heart failure, size of malignant lump, etc. Similarly, the inter-
val scale is one where both the ordering of the categories and numerical labels attached
to them are observed. A few well known responses on the interval scale include pulse
rates, blood pressure levels, age distribution, etc. where the midpoint of an interval is
selected as the corresponding score.

The polytomous logistic regression model, sometimes referred to as the multinomial
multiple logistic regression, is a multivariate extension of the logistic model for handling
data having more than two categorizations. Not only does it have the opportunity
to extend the odds ratio to encompass responses beyond binary choices, but it also
utilizes the sample size across all outcome categories. This approach strengthens the
estimation of parameters, thereby providing more power than the traditional binary
logistic regression, which solely considers the sample size of two outcome categories.
The natural extension of the generalized linear model (GLM) for polytomous data is
analogous to the logistic regression model with the usual ‘logit’ link function. The only
difference that lies here is the distribution of a random component, which is now a
multivariate analogue of the Bernoulli distribution, similar to multinomial density with
a total count up to unity. This model has already been considered by several authors,
such as [Andrich| (1978), |Castilla) (2024), Engel (1988), Rasch| (1961), etc. in a classical
paradigm, whereas one may refer to Draper and Smith| (1998), |Gelman and Hill (2006)
and |Fisher and McEvoy| (2022) for the Bayesian developments of the model on real life
problems.

The modified Rankin Scale (mRS), a widely used scale that measures the extent of
disability or reliance on everyday tasks of individuals who have experienced a stroke or
other neurological impairments. Dr. John Rankin originally introduced this scale in
1957, having 5 levels taking values from 1 to 5. It was later altered by [Van Swieten et al.
(1988)) in which the lower range was adjusted from 1 to 0. Between the years 2005 and
2008, a significant modification occurred to include the numerical value of 6, indicating
patients who had passed away. In contrast to the Rankin’s original scale, the modernized
and final variant of the scale incorporates grade 0 to signify no disability and grade 6 for
indicating death. The explanations of other grades are as follows: 1 to specify no signif-
icant disability but having symptoms of it, 2 bespeak of slight, 3 to connote moderate,
4 to imply moderately severe and 5 corresponds to severe disability. Those individuals
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having an mRS score of grade 0,1,2, and 3 do not require assistance to perform daily
life routine, but from grade 4 to 6 the requirement for assistance necessitates as per in-
crease in severity. Despite persistent critiques concerning its subjective character which
can potentially bias the results, mRS remains an integral part of hospital systems for
estimating rehabilitation necessities and monitoring outpatient developments. In the
recent past, extensive work has been done to design multiple tools that can offer a more
systematic approach towards evaluating the mRS accurately. One may see, for instance,
the techniques suggested by Bruno et al.| (2010)), [Patel et al. (2012)) and Nobels-Janssen
et al.| (2024) in this context.

The remaining segments of the paper are outlined as below. Section [2] explains the
nature of data with deliberation of the Bayesian version of the polytomous logistic re-
gression model implemented in the study. Section [3discusses briefly an important model
comparison tool. This section is given for completeness only. Section [4 deals with nu-
merical illustration based on a real life dataset, while the conclusion of this study has
been provided in Section

2 Data Structure and Bayesian Model Formulation

Let us consider that an ordinary case-control dataset is given on n subjects. Further,
suppose that the Subject i is likely to have a specific value of the categorical variable M,
say, ¢;, @ = 1,2,...,n, where each ¢;,i = 1,2, ..., n, can take one and only one value of m
categories denoted by j =0,1,2,...,(m —1). Obviously, the categorical variable M can
be considered to have a total of m possible values given as M = j;5 =0,1,2,...,(m—1).
M = 0 portrays that subject belongs to the category 0 which can be latter considered
as the baseline category, M = 1 conveys that the subject belongs to the category 1
and so on with M = (m — 1) conveying that the subject falls in the category (m — 1).
We next assume that each of these j categories is likely to be affected by several other
explanatory variables or covariates denoted by F : Fy, Fs,..., Fr. The explanatory
variables can assume any value, such as binary, discrete or continuous. Table [I| shows
a simple illustration of such a dataset with multiple categories. It may be noted that
one can, of course, consider a more generalized version where each subject can have
more than one category, but the assumption considered here considerably simplifies our
modelling formulation.
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Table 1: A simple illustration of data with polytomous responses

Subject identity | Categorical variable | Explanatory variables
M P F ... F

Subject 1 cl Fiy Fio ... Fi
Subject 2 C2 Fo1  Foy ... Fy
Subject 3 c3 F31 F3o ... Fjy
Subject n Cn Fo,1 F, ... Fu

To proceed further, the entire setup discussed above can be rewritten, assuming that
each category M = j is linked with a random vector Y comprising (m — 1) components
considering values of either zero or one based on the category of the subject. We follow
Tuerlinckx and Wang| (2004) and define y;, j = 1,2,...,(m — 1), as the jt" element of
Y with the expression

)1 it M=3j; 7=12,...,(m—1),
Yi= 0 otherwise.

Thus, this conversion allows the generation of a random vector that presents an indicator-
based representation of multiple categories within the variable M as shown in Table

Table 2: Representation of an indicator
version of polytomous responses

M Random vector Y
Yyr Y2 o Ym—1
0 0 0 0
1 0 0
2 0 1 0
m—1[0 0 - 1

Utilising Table [2| the probability mass function (pmf) for the vector Y can be written

as
P(Y|p1,p2, - pm—1) = p{'p5 i (L= pr—p2 — -+ = Pr—y) ¥ THRTTYL (1)

which is the pmf of a multivariate Bernoulli distribution with probability p; indicating
that the subject belongs to category j. Also, M = 0 indicates a baseline category with
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the probability P(M =0) =1—p; — p2 — -+ — pp—1. Following this, let us define the
link function in order to establish a connection between the response variable and the
predictors associated with it. Thus, using the baseline category, the logit link function
can be defined for any category j =1,2,...,(m — 1) as

k
b
log = = Bjo+ Y _ Bl
bo =1

where 3o is the intercept and (3;; is the regression coefficient associated with the cor-
responding explanatory variable Fj; [ = 1,2,...,k. The probability p; can then be
obtained as

_ exp(—Bj0 = 3oy Bitkh) _
1+ 37 exp(—Bjo — Yory B F)

Also, the probability that the subject belongs to the baseline category pq is

(2)

pj

1
1+ Z;ﬁ:_ll exp(—Bjo — Y1y Bj1Fy) .

Po

(3)

Thus, using p;’s and pg from and , respectively, the likelihood function for the sam-
ple values y;; obtained from ¢ = 1,2,...,n subjects corresponding to j = 1,2,...,m —1
categories can be written as

1 1—2?1:711 Yij
L(B;Y,F) =
( ) }:[1 (1 + 37 exp(—Bjo — S 5;‘1171))

= ( exp(—Bjo — 11y BiF) )yij
14+ 3 exp(—Bjo — S BiFY) ’

X

(4)

j=1
where (3 is used to denote all the regression coefficients corresponding to different cate-
gories and the explanatory variables F'. Obviously, the number of parameters involved
with the model (that is, (m — 1)(k + 1)) is too large to provide a routine solution, espe-
cially using the classical paradigm and, therefore, the Bayes paradigm appears to be a
viable option.

2.1 Prior Specification and Posterior Distribution

To begin with the Bayesian model formulation, let us first assign the priors to each
parameter of the model. Due to non-availability of appropriate information regarding
the intercepts and the regression coefficients, it is appropriate to consider N (0, o?) prior
for each of these parameters (see also|Madigan et al.| (2005)), [Bayarri and Berger| (2023)).
Moreover, by considering the hyperparameter o2 large enough, one can proclaim that
the considered priors are almost weak and the inferences are, in general, data driven.



304 Pandey et al.

Madigan et al.| (2005) also suggested the use of independent normal priors with more or
less similar formulation. Hence, the considered priors are of the forms

2
1 —P5 .
i) =—¢€ —|; =1,2,....m—=1,1=0,1,... k. 5
g(ﬁjl) \/%O' Xp<20_2 >7 .7 ) <y ) ) Ly 9 ( )
Now, using the Bayes theorem, one can combine and to get the joint posterior
distribution up to proportionality that can be specified as

n

1 1-3275 i
h(BIY. E,0%) ( = )
};[1 1+ 375 exp(=Bjo — iy BiFi)

m*( exp(—Bjo — S, B F) )
)

X
i \L+ 75 exp(=Bjo — Xy By
m—1 k 1 _ 2[
J
_ 6
Xj:lgmae}q)(mﬂ) o

Solving the aforementioned posterior distribution () proves quite arduous analytically
and, therefore, Markov chain Monte Carlo (MCMC) simulation appears to be an impor-
tant alternative to drawing sample based posterior inferences. From a range of available
possibilities, we can employ the Metropolis algorithm to generate samples from the pos-
terior distribution @ Before commenting on the implementation of the Metropolis
algorithm, let us briefly review the algorithm in a general setup. In scenarios where
direct sampling becomes challenging due to the presence of intractable integrals, the
Metropolis algorithm offers a straightforward approach through efficient sampling from
known proposal distribution, say, ¢(6'|0) where 6 is the current posterior output and 6’
is the next proposal obtained from ¢(6'|#). However, the acceptance of 6 is based on

the probability given by
NGE
- h(e) 9 9

where h(6) is used to define the intended posterior. If the generated value 6’ is accepted,
the chain is allowed to move to 6’ to proceed for the next iteration, otherwise the previous
value 6 itself is retained, and the chain proceeds for the next iteration treating 6 as its
previous value (see Upadhyay et al. (2001))). This process may be continued to get a
single long run of the chain and the convergence monitoring may be done on the basis
of ergodic averages. Once the convergence is obtained, one can pick up equally distant
observations to form independent samples from the intended posterior. The gaps are
chosen to make serial correlation negligibly small in order to get independent samples.
It may be noted that although the paper advocates for a single long run of the chain,
one can use several other alternatives to get independent samples from the intended
posterior (see also Upadhyay et al.| (2001)), Keil et al.| (2023)).

The present paper considers a multivariate normal kernel as the candidate generating
density. The mean vector of the normal density was taken to be the maximum likelihood
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(ML) estimates of the parameters, whereas the variance-covariance matrix was obtained
through a Hessian-based approximation evaluated on the ML estimates. A scaling con-
stant ¢ was also considered as a multiplier of the normal standard deviation in order to
maintain a rationally high probability of acceptance (see, for example, [Upadhyay et al.
(2001)). The value of the scaling constant ¢ is generally recommended in the range 0.5
to 1.0 (see, for example, [Mishra and Upadhyay| (2019)).

3 Model Comparison

The polytomous responses affected by several factors represented in Table [I] have sug-
gested analysing a polytomous logistic regression model for the dataset with (m—1)(k+1)
regression coefficients, although one cannot deny the possibility of having some of the
regression coeflicients being insignificant in the sense that they are close to zero. If one
finds some of the regression coefficients close to zero, one can undoubtedly ignore these
regression coefficients and come up with a simplified model. The question arises about
whether one should really consider the initially proposed model or whether the simplified
model can be better answered if one entertains the comparison of the two models using
some well-known Bayesian tool of model comparison. Some of the most frequently used
model comparison tools are the Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC) and Deviance information criterion (DIC), etc. This paper considers
DIC as the criterion for model comparison if the scope of simplified models appears to
be a possibility (Zhang and Yang (2023)). The DIC proves to be quite beneficial where
the posterior samples are obtained through MCMC simulation. The criterion is based
on deviance, which can be defined as

D(0) = —2 x log L(6),

where 6 is the unknown parameter of the model and L(#) is the corresponding likelihood
function. Following Spiegelhalter et al. (2002), one can write

pD:W_D(é)a

where the term pp is known as an effective number of parameters, | (0) is the posterior
mean of deviance and D(#) is a point estimate of deviance with € being the posterior
mean of 6. As such, the DIC can be defined as

DIC = D(6) + 2pp. (7)
The DIC so defined is calculated for each model under consideration and the model that
provides the least value of DIC can finally be recommended as an appropriate model for
the data in hand.

4 Numerical Illustration

To illustrate the model formulation given in Section [2, a real-life dataset of mRS scores
was used from 280 subjects collected by the team of one of the co-authors at Sir Sunder-
lal Hospital, Banaras Hindu University. This dataset was previously analysed by |Pandey
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et al. (2024)) from a Bayesian perspective where the authors considered the impact of
covariates, presuming only the binary outcomes of the mRS score. The present illus-
tration generalizes the assumption given in [Pandey et al.| (2024)) by taking the outcome
variable as a categorical variable with multiple categories with the intent of assessing the
influence of associated explanatory variables on each category of the outcome variable
individually.

Table 3: Description of the associated explanatory variables

Explanatory variable Interpretation

Diabetes Individual is diabetic or not

Dyslipidemia Individual is suffering from dyslipidemia or not
Dyslipidemia-DAA Individual is diagnosed with dyslipidemia at the time of admission
FamilyDM Family history of diabetes

Ryletube Ryle tube required for the individual or not

Location Location where the incidence of stroke happened

Midline shift Information about the midline shift occurred in the brain
Ratio Ratio of left to right hemisphere of the brain

RBC Red blood cell level in the blood

In the original dataset, the variable mRS score contains seven categorical responses from
levels 0 to 6 where, as already mentioned, the category 0 corresponds to no disability
condition and, therefore, it is considered as the baseline category. These mRS scores
are further affected by nine explanatory variables. An interpretation of these variables
is provided in Table [3| for clarification. It is important to mention that the complete
dataset is not shown in the paper because of its confidentiality and space restrictions,
although interested readers may approach one of the co-authors from the Department
of Neurology for the purpose of academic use only.

Before proceeding further, let us standardize the predictors since there might be dis-
parities between their scales. As such, the technique adopted by |Gelman! (2008)) is used
in which the binary variables are moved to have an average of zero with a deviation equal
to unity, while the rest of the predictors are scaled to have a zero mean with standard
deviation 0.5. Now the coefficients associated with these standardized predictors are
assigned the independent prior distribution N(0,30) as mentioned previously. The joint
posterior distribution for all the regression coefficients was obtained accordingly.

To obtain the posterior samples, the joint posterior distribution was subjected to the
Metropolis algorithm with the settings described earlier in Subsection and conver-
gence based on ergodic averages was observed as the single run of the chain progressed.
The value of the scaling constant ¢s was found to be 0.5. The plots of the ergodic av-
erages for some of the important regression coefficients are shown in These
plots not only confirm the convergence of the running Metropolis chain but also confirm
that the convergence is obtained within somewhat less than 5K iterations. A similar
finding was noticed for other variates too, although not shown in the paper. After as-
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sessing the convergence based on ergodic averages, 1000 samples with a constant gap of
10 units were obtained. The motive behind acquiring samples at the equidistant gap was
to reduce the presence of serial correlation among the generating variates. Table [] show-
cases the posterior based inferences in the form of posterior means, standard deviations
and the highest posterior density intervals with 0.95 coverage probability (0.95 HPDI) of
the parameters drawn from these finally generated posterior samples of size 1000. In the
table, the coefficients are presented as 8j where j = 1,2,...,6 and [ = 0,1,...,9. In the
second subscript, the first value of [ is reserved for the intercept, whereas the remaining
values, 1,2,...,9, are used to denote Diabetes, Dyslipidemia, Dyslipidemia-DAA, Fam-
ilyDM, Ryletube, Location, Midline shift, Ratio, RBC, respectively. Thus, 3;o shows
the various intercepts and the rest of the coefficients explain the impact of different co-
variates on the mRS score for each category: j, j = 1,2,...,6. Say, for example, (11 is
the regression coeflicient associated with the explanatory variable diabetes for the mRS
score category 1. A similar interpretation can be given to all other coefficients.

Now coming on to the results given in Table [d] it is worth noting that the positive
values of the estimated posterior mean indicate that the corresponding parameters are
contributing to increasing the mRS score, a fact that can be considered against the
health of an individual. The negative values of the estimated posterior mean, on the
other hand, can be considered to have a negative impact on the mRS score, but this fact
cannot be proclaimed in totality unless specific data are made available to focus on the
negative impact of the corresponding estimated regression coefficients.

Looking further at the results reported in Table |4} it is evident that in comparison to
the baseline category, the occurrence of midline shift in the brain, dyslipidemia (already
occurred or diagnosed at the time of admission), family history of diabetes and the
requirement for ryle tube are contributing significantly in increasing the mRS score of
the individuals from 0 to 1, which means that these factors are causing little deterioration
in the brain of healthy individuals. Moreover, while studying the increase in mRS score
from 0 to 2, the variables showing major effects were found to be diabetes, location
of stroke in the brain, left to right hemisphere ratio of the brain, and family history
of diabetes. The roles of other variables such as midline shift and the requirement for
ryle tube are comparatively less effective but cannot be overlooked (see Table . Next,
observing the increase in mRS score from 0 to 3, dyslipidemia diagnosed at the time
of admission, ryle tube, midline shift, left to right hemisphere ratio, and family history
of diabetes appear to be important factors causing the increase in the mRS score. One
can also notice that some of the predictor variables are acting differently (that is, either
having significant or negligible impact) up to the category score 3. The reason might
be attributed to the non-availability of data corresponding to some predictors to obtain
precise estimates for all the categories. Also, the degree of disability is not too severe
to reach any precise conclusion. Moving towards the inferences for higher individuals’
mRS scores from the baseline category, we can see that almost all the predictor variables
play a significant role in its increase, indicating a rapid decrease in the individuals’ brain
health.
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Table 4: Estimated posterior characteristics of different regression parameters.

Coefficients Posterior mean Posterior SD 0.95 HPDI | Coefficients Posterior mean Posterior SD 0.95 HPDI
Bio 3.24 1.18 (-0.40,6.95) | Bao 5.16 1.48 (0.65,9.71)
B -0.28 0.06 (-0.50,0.14) | Bn 0.95 0.24 (0.12,1.85)
B2 1.45 0.41 (0.20,2.71) | Ba2 1.32 0.38 (0.15,2.51)
B3 0.54 0.19 (-0.06,1.21) | Bas 1.46 0.31 (0.45,2.55)
Bia 0.64 0.18 (0.10,1.26) | Baa 1.63 0.38 (0.41,2.82)
Bis 0.87 0.23 (0.15,1.60) | Bis 1.23 0.31 (0.13,2.40)
P16 0.06 0.006 (-0.13,0.08) | Bae 0.66 0.21 (-0.08,1.53)
Bir 1.47 0.39 (0.20,2.76) | Bar 0.52 0.15 (0.05,1.12)
Bis -0.31 0.09 (-0.65,-0.09) | Bag 1.66 0.40 (0.28,2.97)
By 0.06 0.005 (-0.10,0.21) | Bag 0.06 0.005 (-0.06,0.18)
Bao 3.51 1.11 (0.12,7.12) | Bso 5.34 1.37 (1.12,9.72)
Ba1 1.18 0.26 (0.30,2.05) | 851 1.71 0.37 (0.51,2.98)
B2 -0.03 0.006 (-0.13,0.09) | Bs2 1.46 0.35 (0.17,2.71)
Ba3 -0.03 0.005 (-0.12,0.10) | Bs3 1.45 0.33 (0.28,2.56)
Boa 0.86 0.22 (0.15,1.55) | Bs4 1.63 0.43 (0.25,3.10)
Bas 0.43 0.16 (-0.05,1.10) | Bs5 1.56 0.41 (0.20,2.95)
B 0.78 0.21 (0.11,1.57) | Bs6 1.93 0.48 (0.32,3.53)
Bor 0.66 0.21 (0.03,1.39) | Bs7 1.47 0.37 (0.22,2.75)
Bas 0.81 0.23 (0.11,1.53) | Bss 1.66 0.32 (0.41,2.77)
Ba29 -0.03 0.005 (-0.11,0.10) | Bs9 0.56 0.21 (-0.11,1.19)
B30 4.10 1.13 (0.54,7.83) | Bso 5.20 1.24 (0.97,9.15)
Ba1 0.01 0.006 (-0.09,0.10) | Be1 0.70 0.21 (0.04,1.41)
Ba2 -0.53 0.17 (-1.14,0.18) | Be2 1.03 0.29 (0.11,2.15)
Bas 1.39 0.34 (0.21,2.52) | Be3 0.93 0.26 (0.10,1.97)
B34 0.86 0.22 (0.14,1.77) | Bea 0.89 0.23 (0.17,1.86)
Bas 1.36 0.35 (0.18,2.67) | Bss 0.56 0.19 (-0.19,1.31)
B36 -0.06 0.005 (-0.16,0.08) | Bss 0.36 0.14 (-0.16,0.93)
Ba7 0.95 0.31 (-0.21,2.43) | Be7 0.72 0.23 (-0.12,1.61)
Bas 0.95 0.28 (0.05,1.99) | Bes 1.23 0.31 (0.20,2.31)
B39 -0.28 0.11 (-0.78,0.15) | Bgg 0.37 0.13 (-0.13,0.85)

Initially, it was hypothesised that some of the variables such as Diabetes and FamilyDM
might be closely associated, leading to an investigation of potential correlation between
them. Similarly, the variables Dyslipidemia and Dyslipidemia-DAA might have some
positive correlation. As such, we worked on the correlation coefficients between different
covariates and, in most cases, the values were found to be quite small, leading to almost
independence of these covariates, or more appropriately, very weak associations between
the different covariates. Truly speaking, a real conclusion is difficult to draw due to
the non-availability of appropriate data that can aptly convey a message on the inde-
pendence or dependence of these covariates. Say, for instance, considering the variables
Diabetes and FamilyDM, it was observed that the data size was either too small or it
was independently provided for the two sets of variables.

Besides, it can also be observed that some of the covariates have a negligible effect
on the mRS score of a certain category. This fact can be concluded by observing the
value of the associated regression coefficients close to zero with a narrow 0.95 HPDI
encompassing zero in between as well. These coefficients are (16, 822, 823, 5829, 831, B36
and B49. If one assumes that these coefficients are equal to zero, the model becomes
notably simpler and then drawing inferences from the simplified model is expected to be
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easier than the originally considered model.

Further assessment to determine whether the simplified model is really beneficial, a
comparison of the reduced model, that is, the model excluding Big, S22, B23, B29, [31,
B36, Pag and the full model (which contains all the covariates) is proposed using DIC. The
corresponding values of DIC for the two models are shown in Table[5} It can be seen that
the reduced model provides a smaller value of DIC in comparison to the corresponding
value for the full model. Thus, one can confidently recommend the reduced model for
developing the desired inferences.

Table 5: DIC values for the full
model and the reduced model

Model DIC
Full model 3490.61
Reduced model | 3426.14

5 Conclusion

It is common to observe multiple explanatory variables in medical studies. Some of
these explanatory variables have little to no effect on the outcome variable. Using
a polytomous logistic regression model, the present paper successfully delves into an
examination of mRS scores ranging between 0 — 6 in neurological patients based on
a real dataset. A thorough Bayes analysis is presented by employing the Metropolis
algorithm, demonstrating that the procedure is both standard and adept at offering
nearly all the desired inferential aspects. The findings suggest that when it comes to
individuals with high mRS scores, ranging between 4 and 6, almost every explanatory
variable is playing a significant role in raising the mRS score and, thereby, increasing
the severity of disability. However, with low mRS scores where the degree of disability
is not that severe, some of the explanatory variables such as location in the brain where
the stroke occurs, pre-existing dyslipidemia, diabetes and red blood cell level, etc. can
be considered to have minimal impact on the mRS score. The paper suggests that if
one removes the associated regression coefficients and considers a simplified model, the
simplified model stands better than the full model observed on the basis of DIC. As such,
the simplified model can be considered appropriate for further inferential developments.
A word of remark: our study never suggests giving up these explanatory variables, but
rather proposes to give slightly less attention to these explanatory variables if the mRS
scores are low, that is, less than or equal to three.
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Figure 1: Plots of the ergodic averages for some of the regression coefficients.
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