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This paper compares four methods of combining n independent tests. The
methods are Fisher, logistic, sum of p-values and inverse normal. It is as-
sumed that n independent test statistics {T (i), i = 1, ..., n} are available to
combine the n independent tests. The four methods are compared, as n → ∞,
via exact Bahadur slope under the assumption that the test statistics follow
Conditional Laplace Distribution T (i)|ξi ∼ L(τξi, 1), ξi ∈ [a,∞), a ≥ 0 where
ξ1, ξ2, ... are distributed according to the distribution function (DF) Hξ . It
is shown that Fisher’s method performs the best as the evidence against the
null hypothesis
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independent tests , Bahadur efficiency , Exact Bahadur Slope.

1 Introduction

Rapid developments in many fields, such as molecular biology and bioinformatics, require
more statistical testing to be performed simultaneously. This is because large amount
of information are available for researchers in such fields. The more statistical tests to
be performed, the higher Type I error rate is expected. A natural question that arises is
whether there is a global method that can combine evidences from these sources while
keeping error rates at their acceptable levels. In order to control the Type I error, p-
values from multiple tests can be adjusted through false discovery rate and its extended
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methods (Cheng and Pounds, 2007). However, large sample sizes are required in large-
scale hypothesis testing.

The omnibus methods of combining p-values from numerous individual tests may
combine evidence from multiple sources, and reduce the high dimensionality of p-values
into rich information. Several omnibus methods for combining p-values are available in
literature. These methods include, but not limited to, Fisher’s (Fisher, 1932), inverse
normal (Stouffer et al., 1949), Lancaster’s (Lancaster, 1961), Tippett’s (Tippett, 1931),
logistic (Mudholkar and George, 1979) and sum of p-values methods (Edgington, 1972).
These methods rely on the assumption that the individual tests from which p-values
calculated are independent. Recently Dai et al. (2014) and DJ (2019) proposed new
approaches for combining p-values from dependent tests.

These methods of combining p-values can be judged using several criteria, such as
consistency, admissibility, minimaxity, local optimality, Bahadur exact slope and Pit-
man efficiency. Marden (1991) introduced recently a new criteria for evaluating test
statistics based on p-values. Combining p-values methods are studied and compared by
many researchers. A key result was that no single combining method is uniformly the
best, see for example Birnbaum (1955) and more recently Loughin (2004) and Kocak
(2017).(Littell and Folks, 1971) and Littell and Folks (1973) showed under mild con-
ditions that the Fisher’s method is optimal among all methods for combining a finite
number of independent tests. A recent study by Heard and Rubin-Delanchy (2018), who
compared between several combining methods, provide guidance about how a powerful
combiner might be chosen in practice.

Most of the work cited above compare between methods assuming finite number of
independent tests. Limited work can be found in literature that assume infinite number
of independent tests. Abu-Dayyeh and El-Masri (1994), Al-Masri (2010), and Al-Talib
et al. (2019) compare between different combiners when the number of independent test
approaches infinity via exact Bahadur slope. They assumed that the distributions under
the alternative hypothesis are triangular, exponential, and normal respectively.

Different from the above, we consider combining n independent tests under conditional
Laplace distribution. Limiting behavior, as n → ∞, is studied for four methods, namely,
Fisher, inverse normal, logistic, and sum of p-values. These methods are chosen for their
ease of implementation as well as their spanning the range of comparing criteria. The
four combination methods are compared via exact Bahadur slop (EBS).

The remainder of this paper is organized as follows. The specific problem is given in
Section 2. Section 3 reviews necessary definitions and preliminaries that are available in
literature. Section 4 provides a derivation of the EBS under the Laplace distribution.

2 The specific problem

Consider n-hypotheses of the form

H
(i)
0 : ηi = 0 vs H

(i)
1 : ηi ∈ Ωi − {0} (1)
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such that eachH
(i)
0 is rejected for large values of some random variable T (i), i = 1, 2, ..., n.

Then, the n-hypotheses are combined into one as

H
(i)
0 : (η1, ..., ηn) = (0, ..., 0) vs H

(i)
1 : (η1, ..., ηn) ∈ Ω1×Ω2× . . .×Ωn−{(0, ..., 0)}. (2)

Additionally, the p-value of the i-th test is given by

Pi = P
H

(i)
0

(
T (i) > t

)
= 1− F

H
(i)
0

(t) , (3)

where, F
H

(i)
0

(t) is the cumulative distribution function (CDF) of T (i) under H
(i)
0 . Note

that Pi ∼ U(0, 1) under H
(i)
0 .

This study considers the case when T (i)|ξi ∼ L(τξi, 1) with ηi = τξi, i = 1, . . . , n.
Where, ξ1, ξ2, . . . ξn are independent identically distributed with undetermined CDF Hξ

with support defined on [a,∞), a ≥ 0.
Therefore (1) reduces to

H0 : τ = 0 vs H1 : τ > 0, (4)

We will also consider four combining methods, namely, Fisher, logistic, sum of P-values
and inverse normal. These procedures rejectH0 in (4) for large values of−2

∑n
i=1 log(Pi),

−
∑n

i=1 log
(

Pi
1−Pi

)
, −

∑n
i=1Φ

−1(Pi), and −
∑n

i=1 Pi respectively. Where, Φ is the cdf of

standard normal distribution. These methods will be compared via EBS as n → ∞.

3 Definitions and preliminaries

In this section we list necessary definitions and theorems that are available in literature.
These theorems are necessary for our development in the next section.

Definition (Bahadur efficiency and exact Bahadur slope (EBS), (Bahadur, 1959)) Let
X1, . . . , Xn be i.i.d. from a distribution with a probability density function f(x, θ),

and we want to test H0 : θ = θ0 vs. H1 : θ ∈ θ − {θ0}. Let
{
T
(1)
n

}
and

{
T
(2)
n

}
be

two sequences of test statistics for testing H0. Let the significance attained by T
(i)
n be

L
(i)
n = 1 − Fi

(
T
(i)
n

)
, where Fi

(
T
(i)
n

)
= PH0

(
T
(i)
n ≤ ti

)
, i = 1, 2. Then there exists

a positive valued function Ci(θ) called the exact Bahadur slope of the sequence {T (i)
n }

such that
Ci(θ) = lim

θ→∞
−2n−1 ln

(
Li
n

)
with probability 1 (w.p.1) under θ and the Bahadur efficiency of

{
T
(1)
n

}
relative to{

T
(2)
n

}
is given by eB (T1, T2) = C1(θ)/C2(θ).

The following two theorems can be found in Serfling (1980). They are used to give
the EBS for tests based on sums of iid random variables.
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Theorem 3.1. Let X1, X2, . . . , Xn be i.i.d. with distribution function F and put Sn =∑n
i=1Xi. Assume existence of the moment generating function M(t) = EF

(
etX

)
in the

neighbourhood of zero. Put m(z) = inft e
−ztM(t). Then limn→∞−2n−1 lnPF (Sn ≥ nz) =

−2 lnm(z).

Theorem 3.2. Let {Tn} be a sequence of test statistics which satisfies the following:

1. Under H1: n− 1
2Tn → b(θ) a.s. under θ, where b(θ) is a real function.

2. There exists an open interval I containing {b(θ) : θ ∈ Θ} , and a function g con-
tinuous on I, such that

lim
n→∞

−2n−1 log
[
1− Fn(n

1
2 t)

]
= g(t),

where Fn is the distribution function of Tn under H0.

Then the EBS of {Tn} is C(θ) = g(b(θ)).

Theorem 3.3. Let X1, · · · , Xn be i.i.d. with probability density function f(x, θ), and
we want to test H0 : θ = 0 vs. H1 : θ > 0. For j = 1, 2, let Tn,j =

∑n
i=1 fi(xi)/

√
n be a

sequence of statistics such that H0 will be rejected for large values of Tn,j and let φj be
the test based on Tn,j. Assume Eθ(fi(x)) > 0,∀θ ∈ θ, E0(fi(x)) = 0, V ar(fi(x)) > 0 for
j = 1, 2. Then
1. If the derivative b′j(0) is finite for j = 1, 2, then

limθ→0
C1(θ)
C2(θ)

= V arθ=0(f2(x))
V arθ=0(f1(x))

[
b′1(0)
b′2(0)

]2
,

where bi(θ) = Eθ(fi(x)), and Cj(θ) is the EBS of test φj at θ.
2. If the derivative b′j(0) is infinite for j = 1, 2, then

lim
θ→0

C1(θ)

C2(θ)
=

V arθ=0(f2(x))

V arθ=0(f1(x))

[
lim
θ→0

b′1(θ)

b′2(θ)

]2
.

The following theorems can be found in many references, see for example D’Agostino
(2017) and the references therein.

Theorem 3.4. If T
(1)
n and T

(2)
n are two test statistics for testing H0 : θ = 0 vs. H1 :

θ > 0 with distribution functions F
(1)
0 and F

(2)
0 under H0, respectively, and that T

(1)
n is

at least as powerful as T
(2)
n at θ for any α, then if φj is the test based on T

(j)
n , j = 1, 2,

then
C(1)
φ1

(θ) ≥ C(2)
φ2

(θ).

Corollary 1. If Tn is the uniformly most powerful test for all α, then it is the best via
EBS.

Theorem 3.5.
2t ≤ mS(t) ≤ et, ∀ : 0 ≤ t ≤ 0.5,

where

mS(t) = inf
z>0

e−zt e
z − 1

z
.
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Theorem 3.6.

1. mL(t) ≥ 2te−t, ∀t ≥ 0,

2. mL(t) ≤ te1−t, ∀t ≥ 0.852,

3. mL(t) ≤ t
(

t2

1+t2

)3
e1−t, ∀t ≥ 4,

where mL(t) = infz∈(0,1) e
−ztπz csc(πz) and csc is an abbreviation for cosecant

function.

Theorem 3.7. For x > 0,

ϕ(x)

[
1

x
− 1

x3

]
≤ 1− Φ(x) ≤ ϕ(x)

x
.

Where ϕ is the pdf of standard normal distribution.

Theorem 3.8. For x > 0,

1− Φ(x) >
ϕ(x)

x+
√

π
2

.

Lemma 3.9.

1. mL(t) ≥ inf
0<z<1

e−zt = e−t

2. mL(t) ≤
e−t2/(t+1)

(
πt
t+1

)
sin

(
πt
t+1

)

3.

{
ms(t) = infz>0

e−zt(1−e−z)
z ≤ infz>0

e−zt

z ≤ −et, t < 0

ms(t) ≥ −2t, −1
2 ≤ t ≤ 0.

4.
x− 1

x
≤ lnx ≤ x− 1, x > 0

Theorem 3.10. For any integrable function f and any η in the interior of Θ, the integral∫
f(x)e

∑
ηiTi(x)h(x)dµ(x)

is continuous and has derivatives of all orders with respect to the η′s, and these can be
obtained by differentiating under the integral sign.
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4 Derivation of the EBS with general DF Hξ

In this section we will study testing problem (4). We will compare the four methods viz.
Fisher, logistic, sum of P-values and the inverse normal method via EBS. Let X1, . . . , Xn

be i.i.d. with conditional probability density function L(τξ, 1), and we want to test (4).
The P-value in this case is given by

Pi = 1− FH0(x) = 1− F0(x) =
1
2

{
1− sgn(x)

(
1− e−|x|

)}
, x ∈ R (5)

The next four lemmas give the EBS for Fisher (CF ), logistic (CL), inverse normal
(CN ), and sum of p-values (CS) methods.

Lemma 4.1. The EBS for the methods mentioned above are as follows:

� A1 Fisher method. CF (τ) = bF (τ)− 2 ln(bF (τ)) + 2 ln(2)− 2,
where

bF (τ) = 2 ln 2 + 2τ EHξ
ξ − 2 (ln 2− 1)EHξ

e−τξ.

� A2 Logistic method. CL(τ) = −2 ln(m(bL(τ))), where

mL(t) = inf
z∈(0,1)

e−ztπz csc(πz)

and

bL(τ) = −1
2 + 1

2 EHξ
e−τξ + τ EHξ

ξ + ln 2EHξ
eτξ + EHξ

ln
(
2− e−τξ

)
− EHξ

eτξ ln
(
2− e−τξ

)
− 1

4 EHξ
e−τξ ln

(
32eτξ − 16

)
.

� A3 Sum of p-values method. CS(τ) = −2 ln(m(bS(τ))), where

mS(t) = inf
z>0

e−zt 1− e−z

z

and

bS(τ) = −1
2 EHξ

e−τξ − τ

4
EHξ

ξe−τξ.

� A4 Inverse Normal method. CN (τ) = −2 ln(m(bN (τ))) = b2N (τ) where

bN (τ) = −1
2EHξ

(∫
R
Φ−1

(
1
2

{
1− sgn(x)

(
1− e−|x|

)})
e−|x−τξ|dx

)
Proof. Proof of A1

TF = −2
n∑

i=1

ln
[
1
2

{
1− sgn(x)

(
1− e−|x|)}]

√
n

.



340 Obeidat, Al-Masri

By the strong law of large number (SLLN) Theorem (2)

TF√
n

w.p.1−−−→ bF (τ) = −2EH1 ln
[
1
2

{
1− sgn(x)

(
1− e−|x|

)}]
then

bF (τ) = −2EHξ
EL(τξ,1) ln

[
1
2

{
1− sgn(x)

(
1− e−|x|

)}]
= 2 ln 2− 2EHξ

∫
R
ln

{
1− sgn(x)

(
1− e−|x|

)}
1
2e

−|x−τξ| dx

= 2 ln 2− EHξ
(I1 + I2 + I3) .

Hence under H1 : τ > 0, then

I1 =

∫
x<0

ln (2− ex) ex−τξ dx = (ln 4− 1) e−τξ

I2 =

∫
0<x<τξ

xex−τξ dx = 1− τξ − e−τξ

and

I3 =

∫
x>τξ

xeτξ−x dx = −1− τξ,

then

bF (τ) = 2 ln 2−EHξ

(
−2τξ + 2 (ln 2− 1) e−τξ

)
= 2 ln 2+2τ EHξ

ξ−2 (ln 2− 1)EHξ
e−τξ.

Now under H0, then by Theorem 1, we have mS(t) = infz>0 e
−ztMS(z), where

MS(z) = EF (e
zX). Under H0 : −1

2

{
1− sgn(x)

(
1− e−|x|)} ∼ U(−1, 0), so MS(z) =

1−e−z

z , by part (2) of Theorem 2 we complete the proof, that is

CF (τ) = −2 ln(mF (bF (τ))) = −2 ln

(
bF (τ)

2
e1−

bF (τ)

2

)
= bF (τ)−2 ln(bF (τ))+2 ln(2)−2.

4.1 The Limiting ratio of the EBS for different tests when τ → 0

Corollary 2. The limits of ratios for different tests when τ → 0 are as follows:

B1 eB (TS , TF ) → 1.56

B2 eB (TL, TF ) → 1.21585

B3 eB (TN , TF ) → 1.32504
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B4 eB (TN , TL) → 1.08981

B5 eB (TS , TN ) → 1.1781

B6 eB (TS , TL) → 1.2839

Proof of B1.
bF (τ) = 2 ln 2 + 2τ EHξ

ξ − 2 (ln 2− 1)EHξ
e−τξ.

Therefore
b′F (τ) = 2EHξ

ξ + 2 (ln 2− 1)EHξ
ξe−τξ,

then
lim
τ→0

b′F (τ) = ln(4)EHξ
ξ < ∞.

Also
bS(τ) = −1

2 EHξ
e−τξ − τ

4
EHξ

ξe−τξ,

then
lim
τ→0

b′S(τ) =
1
4 EHξ

ξ < ∞.

Now underH0 : hF (x) = −2 ln
[
1
2

{
1− sgn(x)

(
1− e−|x|)}] ∼ χ2

2 and hS(x) = −1
2

{
1− sgn(x)

(
1− e−|x|)} ∼

U(−1, 0), so V arτ=0(hF (x)) = 4 and V arτ=0(hS(x)) = 1
12 , also,

b′S(0)

b′F (0)
=

1

4 ln(4)
. By

applying Theorem 3 we can get eB (TS , TF ) = lim
τ→0

CS(τ)

CF (τ)
= 1.56103. Similarly we can

prove the other parts.

4.2 The Limiting ratio of the EBS for different tests when τ → ∞

Corollary 3. The limits of ratios for different tests τ → ∞ are as follows:
D1 eB (TL, TF ) → 1

2

D2 eB (TN , TS) → 0, eB (TN , TL) → 0, eB (TS , TL) → 0

D3 From D1 and D2, eB (TN , TF ) → 0, eB (TS , TF ) → 0

Proof of eB (TL, TF ) → 1
2 . By Lemma 1 part (1) CL(τ) ≤ 2bL(τ) . So

lim
τ→∞

CL(τ)

CF (τ)
≤ lim

τ→∞

2bL(τ)

bF (τ)− 2 ln(bF (τ)) + 2 ln(2)− 2

where
bF (τ) = 2 ln 2 + 2τ EHξ

ξ − 2 (ln 2− 1)EHξ
e−τξ.
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and

bL(τ) = −1
2 + 1

2 EHξ
e−τξ + τ EHξ

ξ + ln 2EHξ
eτξ + EHξ

ln
(
2− e−τξ

)
− EHξ

eτξ ln
(
2− e−τξ

)
− 1

4 EHξ
e−τξ ln

(
32eτξ − 16

)
.

Now we will check the limit for bL(τ)terms when τ → ∞,

EHξ
e−τξ → 0, ln 2EHξ

eτξ−EHξ
eτξ ln

(
2− e−τξ

)
= EHξ

eτξ ln
[

2
2−e−τξ

]
→ 0, EHξ

ln
(
2− e−τξ

)
→

ln 2,

EHξ
e−τξ ln

(
32eτξ − 16

)
= EHξ

e−τξ ln
(
16eτξ

[
2− e−τξ

])
= −τ EHξ

ξe−τξ − ln 16EHξ
e−τξ − EHξ

e−τξ ln
[
2− e−τξ

]
→ 0.

It is clear that it is sufficient to obtain the limit of lim
τ→∞

−1
2 + ln 2 + τ EHξ

ξ

bF (τ)
. Then

lim
τ→∞

−1
2 + ln 2 + τ EHξ

ξ

2 ln 2 + 2τ EHξ
ξ − 2 (ln 2− 1)EHξ

e−τξ
= lim

τ→∞

EHξ
ξ

2EHξ
ξ
= 1

2 .

Then

lim
τ→∞

CL(τ)

CF (τ)
≤ 1

2 .

Also, by Theorem (6) part (2), we have

CL(τ) ≥ bL(τ)− 2 ln [bL(τ)]− 1,

so
CL(τ)

CF (τ)
≥ bL(τ)− 2 ln [bL(τ)]− 1

bF (τ)
.

Now it is sufficient to obtain the limit of lim
τ→∞

bL(τ)

bF (τ)
, which is reduce to lim

τ→∞

−1
2 + ln 2 + τ EHξ

ξ

bF (τ)
.

So,

lim
τ→∞

CL(τ)

CF (τ)
≥

−1
2 + ln 2 + τ EHξ

ξ

2 ln 2 + 2τ EHξ
ξ − 2 (ln 2− 1)EHξ

e−τξ
=

1

2
.

Then lim
τ→∞

CL(τ)

CF (τ)
≥ 1

2
.

By pinching theorem, we have lim
τ→∞

CL(τ)

CF (τ)
=

1

2
.

Proof of eB (TN , TS) → 0. We have

CN (τ) = b2N (τ)
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where

bN (τ) = −1
2EHξ

EL(τξ,1)

(
Φ−1

(
1
2

{
1− sgn(x)

(
1− e−|x|

)})
|ξ
)
.

By lemma 1 part (3) CS(τ) ≥ −2 − 2 ln (−bS(τ)) , where bS(τ) = −1
2 EHξ

e−τξ −
τ

4
EHξ

ξe−τξ.

So

lim
τ→∞

CN (τ)

CS(τ)
≤ lim

τ→∞

{
−1

2EHξ
EL(τξ,1)

(
Φ−1

(
1
2

{
1− sgn(x)

(
1− e−|x|)})|ξ)}2

−2− 2 ln (−bS(τ))
.

Putting u = x− τξ, we get

CN (τ)

CS(τ)
≤

{
−1

2EHξ
EL(0,1)

(
Φ−1

(
1
2

{
1− sgn(u+ τξ)

(
1− e−|u+τξ|)})|ξ)}2

−2− 2 ln (−bS(τ))
.

Again, let t = Φ−1
(
1
2

(
1− sgn(u+ τξ)

[
1− e−|u+τξ|

]))
, then, 2Φ(t) = 1 − sgn(u +

τξ)
[
1− e−|u+τξ|

]
, and 2ϕ(t)

∣∣∣∣ dtdu
∣∣∣∣ = e−|u+τξ|

2
. Then,

CN (τ)

CS(τ)
≤

{
−1

4EHξ
EN (0,1) (t|ξ)

}2

−2− 2 ln (−bS(τ))
.

Now using L’Hopital’s rule, we get, bS(τ) → 0 as τ → ∞, and EN (0,1) (t|ξ) = 0. Then

lim
τ→∞

CN (τ)

CS(τ)
≤ 0.

So

eB (TN , TS) → 0.

Proof of eB (TN , TL) → 0. From the last two proofs, it is clear that eB (TN , TL) → 0.

Proof of eB (TS , TL) → 0. By lemma 1 part (3) CS(τ) ≤ −2 ln 2 − 2 ln (−bS(τ)) , where

bS(τ) = −1
2 EHξ

e−τξ − τ

4
EHξ

ξe−τξ.

And by Theorem (6) part (2), we have CL(τ) ≥ bL(τ)− 2 ln [bL(τ)]− 1, then

CS(τ)

CL(τ)
≤ −2 ln 2− 2 ln (−bS(τ))

bL(τ)− 2 ln [bL(τ)]− 1
.

Now it is sufficient to obtain the limit of CS(τ)
CL(τ)

≤ ln(−bS(τ))
bL(τ)

. Then

lim
τ→∞

CS(τ)

CL(τ)
≤ lim

τ→∞

ln
(
1
2 EHξ

e−τξ + τ
4 EHξ

ξe−τξ
)

−1
2 + ln 2 + τ EHξ

ξ
.
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From the last proofs, also, it is sufficient to obtain the limit of

lim
τ→∞

CS(τ)

CL(τ)
≤ lim

τ→∞

ln
(
τ
4 EHξ

ξe−τξ
)

−1
2 + ln 2 + τ EHξ

ξ
= lim

τ→∞

ln
(
τ
4 EHξ

ξe−τξ
)

τ EHξ
ξ

.

By comparing the dominated terms, then,

lim
τ→∞

ln
(
τ
4 EHξ

ξe−τξ
)

τ EHξ
ξ

= 0.

Then

lim
τ→∞

CS(τ)

CL(τ)
≤ 0.

So,
eB (TS , TL) → 0

4.3 Comparison of the EBS for the four combination procedures

From the relations in section (4.1) we conclude that locally as τ → 0, the sum of p-values
procedure is better than all other procedures since it has the highest EBS, followed in
decreasing order by the inverse normal and the logistic procedure. The worst is the
Fisher’s procedure, i.e,

CS(τ) > CN (τ) > CL(τ) > CF (τ).

Whereas, from result of Section (4.2) as τ → ∞ the Fisher’s procedure is better than
the other procedures, followed in decreasing order by the logistics procedure, and the
sum of p-values. The worst is inverse normal procedure, i.e,

CF (τ) > CL(τ) > CS(τ) > CN (τ)
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