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A new distribution is proposed in this paper using the length-biased dis-
tribution as a special case of the weighted distributions. It is called the
length-Bias Loai distribution. The properties of this distribution are inves-
tigated, including moments, moment generating function, and the reliability
functions and many others. Various numerical studies are carried out, they
show that the distribution right skewed and leptokurtic. Different methods
of estimation are used to estimate the distribution parameters. A simulation
study is carried out to see the efficiency of the estimation methods, it shows
that the distribution’s parameters are approximately unbiased and consis-
tent. An application to a real data set is conducted to show the goodness of
fit for the suggested distribution. It illustrates that the proposed distribution
fits this data better than the other competence distributions.

keywords: Loai distribution, length biased, moments, reliability analysis,
Rényi entropy, methods of estimation.

1 Introduction

It is not correct to use the original distribution for observations recorded from a random
process, because the probability of these observations are not equal. The idea of weighted
distributions introduced by Fisher (1934) and developed by Rao (1965) can be applied in
this case. The weighted distribution is defined for a random variable X with probability
density function (pdf) g(x) as:

gw(x) =
w(x)g(x)

E(w(X))
, (1.1)
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where w(x) is a non-negative weighted function and E(w(X)) is exist. Using w(x) = x,
we have the length biased distribution. Thus the pdf of the length biased distribution
is defined by Patil and Ord (1976) as:

gw(x) =
xg(x)

E(X)
(1.2)

Length biased distributions have been used by many authors to generate new distri-
butions. For example, Al-Omari and Alsmairan (2019) generated the length biased Suja
distribution. Gharaibeh (2022) used the idea of length biased distributions to propose
weighted Gharaibeh distribution. Al-Omari et al. (2019a) proposed size-biased Ishita
distribution and applied it to real data. Al-Omari et al. (2023) studied the asymmetric
right-skewed size-biased Bilal distribution with mathematical properties. Usman et al.
(2019) proposed the Marshall-Olkin Length-Biased exponential distribution. Alidamat
and Al-Omari (2021) suggested the extended length biased two parameters Mirra dis-
tribution, they applied it to engineering data. Sharma et al. (2018) introduced length
and area-biased Maxwell distribution. Al-Omari et al. (2019b) suggested power length-
biased Suja distribution as a new extension of the length-biased Suja distribution. Shen
et al. (2009) used semi-parametric transformations to model the length-biased data. Al-
Omari and Alanzi (2021) suggested and studied the properties of the one parameter
inverse length biased Maxwell distribution. Das and Roy (2011) suggested the length-
biased form of weighted Weibull distribution.

Loai distribution is a new life time two-parameter distribution proposed by Alzoubi
et al. (2022) as a mixture of gamma(3, θ) and Lindley with parameter θ with mixture
proportions 1

α+1 and α
α+1 . This distribution will be modified using the idea of length

biased distribution. The pdf of Loai distribution is defined as:

g(x|α, θ) =
θ2

α+ 1

[
1

2
αθx2 +

(1 + x)

θ + 1

]
e−θx, x > 0, θ > 0, α > 0, (1.3)

with mean

E(X) =
3α(θ + 1) + θ + 2

θ(θ + 1)(α+ 1)
(1.4)

2 Length Biased Loai Distribution

This section will define the pdf and cdf of the length biased Loai distribution (LBLD).

Definition 2.1 The random variable X is said the LBLD if its pdf is given by

gl(x) =
θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−θx, x > 0, θ, α > 0, (2.1)

Corollary 2.1 The function defined in (2.1) is a pdf .
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Proof 2.1∫ ∞

0
gl(x)dx =

∫ ∞

0

θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−θxdx

=
θ3(θ + 1)

3α(θ + 1) + θ + 2

[
3α

θ3
+

t+ 2

t3(t+ 1)

]
=

θ3(θ + 1)

3α(θ + 1) + θ + 2

[
3α(t+ 1) + θ + 2

θ3(θ + 1)

]
= 1 □

The corresponding cdf of LBLD can be derived as:

Gl(X) =

∫ x

0
gl(x)dx =

∫ x

0

θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθu3 +

u(u+ 1)

θ + 1

]
e−θudu

=

(
(−α(θ + 1)(θx(θx(θx+ 3) + 6) + 6)

−2(θx(θx+ θ + 2) + θ + 2))e−θx + 6a(θ + 1) + 2(θ + 2)

)
2(3α(θ + 1) + θ + 2)

= 1−

(
(α(θ + 1)(θx(θx(θx+ 3) + 6) + 6)

+2(θx(θx+ θ + 2) + θ + 2))e−θx

)
(2.2)
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Figure 1: The pdf and cdf of LBLD for different values of α and θ.

3 Moments and Related Measures

This section introduces the moments and related measures and the moment generating
function of LBLD.
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3.1 Moments

The rth moment of a random variable X is defined by

E(Xr) =

∫
x
xrg(x)dx (3.1)

Theorem 3.1 Let X be an LBLD random variable with pdf defined in (2.1), then the
rth moment of X is

E(Xr) =
α(θ + 1)Γ(r + 4) + θΓ(r + 2) + θ2Γ(r + 1)

2θr(3α(θ + 1) + θ + 2)
(3.2)

Proof 3.1

E(Xr) =

∫ ∞

0

θ3(θ + 1)

3α(θ + 1) + θ + 2
xr
[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−θxdx

=

∫ ∞

0

θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθxr+3 +

xr+1(x+ 1)

θ + 1

]
e−θxdx

=

∫ ∞

0

θ3

3α(θ + 1) + θ + 2

[
1

2
αθ(θ + 1)xr+3 + xr+2 + xr+1

]
e−θxdx

=
θ3

3α(θ + 1) + θ + 2

[
α(θ + 1)Γ(r + 4)

2θr+3
+

Γ(r + 3)

θr+3
+

Γ(r + 2)

θr+2

]
□

For r =1, we get the first moment (mean) of the LBLD random variable. The second,
third and fourth moments can be calculated by substituting r = 2, 3 and 4 in (3.2).
Thus, we have

E(X) = µ =
12α(θ + 1) + 2θ + 6

θ(3α(θ + 1) + θ + 2)
(3.3)

E(X2) =
60α(θ + 1) + 6θ + 24

θ2(3α(θ + 1) + θ + 2)
(3.4)

E(X3) =
360α(θ + 1) + 24θ + 120

θ3(3α(θ + 1) + θ + 2)
(3.5)

E(X4) =
2520α(θ + 1) + 120θ + 720

θ4(3α(θ + 1) + θ + 2)
(3.6)

3.2 Related measures

The variance and the standard deviation of the random variable X that follows an LBLD
distribution is defined using (3.3) and (3.4) by

σ2 = V ar(X) =
(
E(X2)− µ2

)
=

60α(θ + 1) + 6θ + 24

θ2(3α(θ + 1) + θ + 2)
−
(
12α(θ + 1) + 2θ + 6

θ(3α(θ + 1) + θ + 2)

)2

=

(
144α2 + 144α2θ2 + 288α2θ + 660αθ + 480α

+144αθ2 − θ4 + 16θ2 + 24θ − 36αθ3

)
θ2 (3α (θ + 1) + θ + 2)2
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σ =

√√√√( 144α2 + 144α2θ2 + 288α2θ + 660αθ + 480α

+144αθ2 − θ4 + 16θ2 + 24θ − 36αθ3

)
θ (3α (θ + 1) + θ + 2)

(3.7)

The coefficient of variation (cv) is defined using (3.3) and (3.7) as

cv =
σ

µ
=

√√√√( 144α2 + 144α2θ2 + 288α2θ + 660αθ + 480α

+144αθ2 − θ4 + 16θ2 + 24θ − 36αθ3

)
12α(θ + 1) + 2θ + 6

Using (3.3), (3.4), (3.5) and (3.7), the skewness is defined to be

sk(X) =
E(X3)− 3µE(X2) + 2µ3

σ3

=

 360α(θ+1)+24θ+120
3α(θ+1)+θ+2 − 3

(
12α(θ+1)+2θ+6
3α(θ+1)+θ+2

)
×
(
60α(θ+1)+6θ+24
3α(θ+1)+θ+2

)
+ 2

(
12α(θ+1)+2θ+6
3α(θ+1)+θ+2

)3



√√√√√√

 144α2 + 144α2θ2 + 288α2θ + 660αθ + 480α

+144αθ2 − θ4 + 16θ2 + 24θ − 36αθ3




3

((3α(θ+1)+θ+2))3

The kurtosis is defined using (3.3), (3.4), (3.5), (3.6) and (3.7) as

ku(X) =
E(X4)− 4µE(X3) + 6µ2E(X2)− 3µ4

σ4

=

 2520α(θ+1)+120θ+720
3α(θ+1)+θ+2 − 4

(
12α(θ+1)+2θ+6
3α(θ+1)+θ+2

)(
360α(θ+1)+24θ+120

3α(θ+1)+θ+2

)
+6
(
12α(θ+1)+2θ+6
3α(θ+1)+θ+2

)2 (
60α(θ+1)+6θ+24
3α(θ+1)+θ+2

)
− 3

(
12α(θ+1)+2θ+6
3α(θ+1)+θ+2

)4



 144α2 + 144α2θ2 + 288α2θ + 660αθ + 480α

+144αθ2 − θ4 + 16θ2 + 24θ − 36αθ3




2

(3α(θ+1)+θ+2)4



Electronic Journal of Applied Statistical Analysis 283

Table 1: Related moments measures for LBLD for different values of α and θ

α θ µ σ Sk Ekur cv α θ µ σ Sk Ekur cv

3 2 1.0536 1.2089 1.0294 0.631 1.1474 3 3.5 0.3478 0.6038 1.8134 2.9844 1.7359

4 2 1.0405 1.213 1.043 0.6367 1.1657 4 3.5 0.3426 0.6029 1.8366 3.0644 1.76

5 2 1.0326 1.2154 1.0516 0.6411 1.177 5 3.5 0.3394 0.6023 1.8509 3.1141 1.7748

6 2 1.0273 1.217 1.0575 0.6445 1.1847 6 3.5 0.3373 0.6019 1.8605 3.148 1.7848

3 2.5 0.6786 0.9301 1.3237 1.3016 1.3705 3 4 0.2665 0.5045 2.0225 3.8948 1.8932

4 2.5 0.6692 0.9309 1.3423 1.3375 1.3912 4 4 0.2624 0.5035 2.0472 3.9933 1.9187

5 2.5 0.6634 0.9314 1.3538 1.3602 1.4039 5 4 0.2599 0.5028 2.0623 4.0542 1.9343

6 2.5 0.6596 0.9317 1.3616 1.3759 1.4126 6 4 0.2583 0.5023 2.0725 4.0956 1.9449

3 3 0.4727 0.7391 1.5826 2.1103 1.5634 3 4.5 0.2106 0.4294 2.2146 4.8275 2.0389

4 3 0.4658 0.7387 1.604 2.1699 1.586 4 4.5 0.2074 0.4283 2.2405 4.9431 2.0655

5 3 0.4615 0.7384 1.6171 2.2072 1.5999 5 4.5 0.2054 0.4276 2.2563 5.0144 2.0819

6 3 0.4587 0.7382 1.626 2.2326 1.6093 6 4.5 0.2041 0.4272 2.2669 5.0628 2.093

Table 1 shows the numerical results of the mean, standard deviation, coefficient of
skewness, coefficient of excess kurtosis and coefficient of variation of the LBLD. The
shape of the LBLD is skewed to right because all values of coefficient of skewness are
positive which confirms the plot of the LBLD pdf (Figure 1 (left)). It shows that the
mean values are decreasing as the values of both distribution parameters are increasing.
The standard deviation, coefficient of skewness, coefficient of excess kurtosis and coeffi-
cient of variation vales are positively related with the values of distribution parameters.

3.3 Moment generating function

The moment generating function of a random variable X that has an LBLD is defined
as:

MX(t) = E(etX) =

∫ ∞

0
etxgl(x)dx

=

∫ ∞

0
etx

θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−θxdx

=

∫ ∞

0

θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−(θ−t)xdx

=
3αθ4 + (2 + θ − t)(θ − t)

(θ − t)4(2 + θ + 3α(1 + θ))
, t < θ

4 Reliability Analysis

The reliability functions for the length biased Loai distribution that will be derived in
the section are: survival, hazard rate, cumulative hazard function, reversed hazard rate
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and odds rate functions. They are derived as

Rl(t) = 1−Gl(t) =

(
θ4t3α+ 3θ3t2α+ 6θ2tα+ 6θα+ θ3t3α+ 3θ2t2α

+6θtα+ 6α+ 2θ2t2 + 2θ2t+ 4θt+ 2θ + 4

)
e−θt

6θα+ 6α+ 2θ + 4

hl(t) =
gl(t)

1−Gl(t)
=

2θ3(θ + 1)
[
1
2αθt

3 + t(t+1)
θ+1

]
e−θt(

θ4t3α+ 3θ3t2α+ 6θ2tα+ 6θα+ θ3t3α+ 3θ2t2α

+6θtα+ 6α+ 2θ2t2 + 2θ2t+ 4θt+ 2θ + 4

)
e−θt

rhl(t) =
gl(t)

Gl(t)
=

2θ3(θ + 1)
[
1
2αθt

3 + t(t+1)
θ+1

]
e−θt

1−

(
θ4t3α+ 3θ3t2α+ 6θ2tα+ 6θα+ θ3t3α+ 3θ2t2α

+6θtα+ 6α+ 2θ2t2 + 2θ2t+ 4θt+ 2θ + 4

)
e−θt

CHl(t) = −ln(1−Gl(t)) = −ln

 θ4t3α+ 3θ3t2α+ 6θ2tα+ 6θα

+θ3t3α+ 3θ2t2α+ 6θtα+ 6α

+2θ2t2 + 2θ2t+ 4θt+ 2θ + 4

 e−θt

+θt+ ln(6θα+ 6α+ 2θ + 4)

Ol(t) =
Gl(t)

1−Gl(t)
=

6θα+ 6α+ 2θ + 4−

 θ4t3α+ 3θ3t2α+ 6θ2tα+ 6θα

+θ3t3α+ 3θ2t2α+ 6θtα+ 6α

+2θ2t2 + 2θ2t+ 4θt+ 2θ + 4

 e−θt

(
θ4t3α+ 3θ3t2α+ 6θ2tα+ 6θα+ θ3t3α+ 3θ2t2α

+6θtα+ 6α+ 2θ2t2 + 2θ2t+ 4θt+ 2θ + 4

)
e−θt
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Figure 2: The reliability functions of LBLD for different values of α and θ.

5 Order Statistics and Quantile Function

In statistics, order statistics are playing a very important role in many areas, like the
detection of outliers and quality control and many other areas. This section will provide
the pdf of the jth, the minimum, and maximum order statistics. Also, we will derive the
quantile function of the LBLD.

5.1 Order statistics

Consider the random sample X1, X2, · · · , Xn selected from LBLD with pdf gl(x) defined
in (2.1). Let X(1), X(2), · · · , X(n) be the order statistics. Then the pdf of the jth order
statistic (David and Nagaraja (2003)) is defined using (2.1), (2.2) and (5.1) as:

g(j)(x) = j

(
n

j

)
gl(x)[Gl(x)]

j−1[1−Gl(x)]
n−j =

j
(
n
j

)
θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]

×

[
1−

(
θ4x3α+ 3θ3x2α+ 6θ2xα+ 6θα+ θ3x3α+ 3θ2x2α

+6θxα+ 6α+ 2θ2x2 + 2θ2x+ 4θx+ 2θ + 4

)
e−θx

6θα+ 6α+ 2θ + 4

]j−1

×

[( θ4x3α+ 3θ3x2α+ 6θ2xα+ 6θα+ θ3x3α+ 3θ2x2α

+6θxα+ 6α+ 2θ2x2 + 2θ2x+ 4θx+ 2θ + 4

)
6θα+ 6α+ 2θ + 4

]n−j

e−θ(n−j+1)x

The first and last order statistics of LBLD can be calculated using j = 1 and j = n;
respectively. Thus we have
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g(1)(x) =

n

(
θ4x3α+ 3θ3x2α+ 6θ2xα+ 6θα+ θ3x3α+ 3θ2x2α

+6θxα+ 6α+ 2θ2x2 + 2θ2x+ 4θx+ 2θ + 4

)n−1

(6θα+ 6α+ 2θ + 4)n−1

×

[
θ3
(
αθ(θ + 1)x3 + 2x(x+ 1)

)
2(3α(θ + 1) + θ + 2)

e−nθx

]

g(n)(x) = n

[
1−

(
θ4x3α+ 3θ3x2α+ 6θ2xα+ 6θα+ θ3x3α+ 3θ2x2α

+6θxα+ 6α+ 2θ2x2 + 2θ2x+ 4θx+ 2θ + 4

)
e−θx

6θα+ 6α+ 2θ + 4

]n−1

×

[
θ3
(
αθ(θ + 1)x3 + 2x(x+ 1)

)
2(3α(θ + 1) + θ + 2)

e−θx

]

5.2 Quantile function

Quantile function is another method to visualize order statistics and tolerate simple
derivation of many of their important properties (Deshpande et al. (2017)). The quantile
function of a probability distribution with cdf , Gl(x), is defined by xq = G−1

l (q) or
q = Gl(xq), where 0 < q < 1. Thus, for LBLD the quantile function is the real solution
of the following equation:

1− q =

(
θ4x3qα+ 3θ3x2qα+ 6θ2xqα+ 6θα+ θ3x3qα+ 3θ2x2qα

+6θxqα+ 6α+ 2θ2x2q + 2θ2xq + 4θxq + 2θ + 4

)
e−θxq

6θα+ 6α+ 2θ + 4
(5.1)

The quantile function defined in (5.1) can not be solved explicitly. But Figure 3 shows
that the quantile function has exactly one solution for xq > 0. The quantile function
defined in (5.1) can not be solve explicitly. But Figure 3 (right) shows that the quantile
function has exactly one solution for xq > 0. It shows the plot of the pdf of jth order
statistics from a sample of size n =10 for α of 3.5 and θ = 3. We have selected j to be
1-10. It shows that the peak of the plot gets sharper for larger values of j.

6 Gini Index

Gini index (GI) (Corrado (1909)) is the most used measure in economics inequality. GI
measures the amount or probability of a randomly selected variable to be classified in a
wrong way (Giorgi and Gigliarano (2017)). Gini index is defined as:

GI = 1− 1

µ

∫ ∞

0
(1−Gl(x;α, θ))

2dx (6.1)
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Figure 3: The pdf of order statistics and the quantile function of LBLD

For LBLD, using (6.1) and (2.2) it is given by:

GI = 1− θ(θ + 1)(α+ 1)

4(3α(θ + 1) + θ + 2)2

∫ ∞

0

 θ4x3α+ 3θ3x2α+ 6θ2xα+ 6θα

+θ3x3α+ 3θ2x2α+ 6θxα+ 6α

+2θ2x2 + 2θ2x+ 4θx+ 2θ + 4


2

e−2θxdx

= 1− (θ + 1)(α+ 1)

4(3α(θ + 1) + θ + 2)2


45α2(θ+1)2

8 + 65(θ+1)2(3α+2)
4 + 3(θ+1)2(3α+2)2

4

+3(α(θ+1)(6α(θ+1)+2θ+4)+12(θ+1)(3α+2)(3α(θ+1)+θ))
4

+ (θ+1)(3α+2)(6α(θ+1)+2θ+4)+2(θ+3α(θ+1))2

2

+(3α(θ + 1) + θ + 2)(2θ(θ + 3α(θ + 1)) + 1)


Table 2 shows the values of the Gini index for some values α and θ. We have used the
values of α of 3, 3.5, 4, 4.5, 5, 5.5 and the values of θ of 3, 3.5, 4, 4.5, 5, 5.5, 6. It shows
that the values of the Gini index are all between 0 and 1.

7 Stochastic Ordering

To compare between two random variables X and Y , the most common procedure that
can be used is through their means and variances. But the problem in that is the mean of
X may be greater than the mean of Y and the median of Y is greater than the median
of X. This problem can be solved through stochastic ordering (Khaledi and Kochar
(1999)). The idea of Stochastic ordering has gained more attention in reliability analysis
and statistics (Yaming (2009)).
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Table 2: Gini index for some values of α and θ

θ α GI θ α GI θ α GI θ α GI

3 3 0.8981 4 3 0.673 5 3 0.538 6 3 0.4482

3 3.5 0.9069 4 3.5 0.6797 5 3.5 0.5435 6 3.5 0.4527

3 4 0.9138 4 4 0.6849 5 4 0.5477 6 4 0.4562

3 4.5 0.9192 4 4.5 0.689 5 4.5 0.551 6 4.5 0.4591

3 5 0.9237 4 5 0.6925 5 5 0.5538 6 5 0.4614

3 5.5 0.9275 4 5.5 0.6953 5 5.5 0.5561 6 5.5 0.4633

3 6 0.9306 4 6 0.6977 5 6 0.558 6 6 0.4649

3.5 3 0.7694 4.5 3 0.598 5.5 3 0.489 6.5 3 0.4136

3.5 3.5 0.777 4.5 3.5 0.604 5.5 3.5 0.4939 6.5 3.5 0.4178

3.5 4 0.7829 4.5 4 0.6086 5.5 4 0.4978 6.5 4 0.4211

3.5 4.5 0.7877 4.5 4.5 0.6124 5.5 4.5 0.5009 6.5 4.5 0.4237

3.5 5 0.7916 4.5 5 0.6154 5.5 5 0.5034 6.5 5 0.4258

3.5 5.5 0.7948 4.5 5.5 0.6179 5.5 5.5 0.5055 6.5 5.5 0.4276

3.5 6 0.7975 4.5 6 0.6201 5.5 6 0.5072 6.5 6 0.4291

Consider the two random variables X and Y with probability density, cumulative
distribution and reliability functions: gl(x), gl(y), Gl(x), Gl(y), Ḡl(x) = 1 − Gl(x) and
Ḡl(y) = 1−Gl(y); respectively. Then

1. Mean residual life order denoted by X ≤MRLO Y , if mx(x) ≤ my(y), ∀x.

2. Hazard rate order denoted as X ≤HRO Y , if ḠX(x)
ḠY (x)

is decreasing if x ≥ 0.

3. Stochastic order denoted as X ≤SO Y , if Ḡ(x) ≤SO ḠY (x), ∀x.

4. Likelihood ratio order denote as X ≤LRO Y , if fX(x)
fY (x) is decreasing for x ≥ 0.

Shaked and Shanthikumar (1994) showed that:

X ≤LRO Y ⇒ X ≤HRO Y

⇓
X ≤SO Y

⇒ X ≤MRLO Y

Theorem 7.1 Let X and Y be two independent random variable with probability density
functions gX(x, α, θ) and gY (x, β, ζ); respectively. If β < θ and ζ < α, then X ≤LRO Y ,
X ≤HRO Y , X ≤MRLO Y and X ≤SO Y .
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Proof 7.1 Consider Ξ = gX(x,α,θ)
gY (x,β,ζ) . Thus,

Ξ =

θ3(θ+1)
3α(θ+1)+θ+2

[
1
2αθx

3 + x(x+1)
θ+1

]
e−θx

β3(β+1)
3ζ(β+1)+β+2

[
1
2ζβx

3 + x(x+1)
β+1

]
e−βx

=
θ3(3ζ(β + 1) + β + 2)(θ + 1)

[
1
2αθx

3 + x(x+1)
θ+1

]
β3(3α(θ + 1) + θ + 2)(β + 1)

[
1
2ζβx

3 + x(x+1)
β+1

]e−(θ−β)x

∴ ln(Ξ) = ln

 θ3(3ζ(β + 1) + β + 2)(θ + 1)
[
1
2αθx

3 + x(x+1)
θ+1

]
β3(3α(θ + 1) + θ + 2)(β + 1)

[
1
2ζβx

3 + x(x+1)
β+1

]e−(θ−β)x


= ln

[
θ3(3ζ(β + 1) + β + 2)(θ + 1)

β3(3α(θ + 1) + θ + 2)(β + 1)

]
+ ln

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
−ln

[
1

2
ζβx3 +

x(x+ 1)

β + 1

]
− (θ − β)x

Deriving with respect to x, we get:

∂ln(Ξ)

∂x
=

3αθ(θ + 1)x2 + 4x+ 2

αθx3 + 2x(x+ 1)
− 3ζβ(β + 1)x2 + 4x+ 2

ζβx3 + 2x(x+ 1)
− (θ − β)

∂ln(Ξ)
∂x < 0 if β < θ, ζ < α. Thus, X ≤LRO Y , X ≤HRO Y , X ≤MRLO Y and X ≤SO Y .

8 Bonferroni and Lorenz Curves

As well as the Gini index, the Bonferroni and Lorenz curves are very important in
economics, demography (Kakwani and Podder (1973)). The Bonferroni and Lorenz
curves for a LBLD random variable X are, respectively, defined as:

B =
1

pµ

∫ q

0
xgl(x)dx =

(α+ 1)

pθ3(3α(θ + 1) + θ + 2)

×

(
0.5α(θ + 1)(e−qθ(−qθ(qθ(qθ(qθ + 4) + 12) + 24)− 24) + 24)

+θ(e−qθ(−qθ(qθ + 2)− 2) + 2) + e−qθ(−qθ(qθ(qθ + 3) + 6)− 6) + 6

)

Z =
1

µ

∫ q

0
xgl(x)dx =

(α+ 1)

θ3(3α(θ + 1) + θ + 2)

×

(
0.5α(θ + 1)(e−qθ(−qθ(qθ(qθ(qθ + 4) + 12) + 24)− 24) + 24)

+θ(e−qθ(−qθ(qθ + 2)− 2) + 2) + e−qθ(−qθ(qθ(qθ + 3) + 6)− 6) + 6

)
,

where µ = E(X)
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9 Entropy

Shannon (1948) introduced the entropy in a general theory of communication. It is an
accurate measure of uncertainty, which makes the second law of thermodynamics under-
standable. In statistics, it is the measure of uncertainty of the probability distribution
of a random variable X Wang (2008). The Shannon (Shannon (1948)), Rényi (Rényi
(1961)) and Tsallis (Tsallis (1988)) entropies of LBLD random variable X are defined
as:

Sρ
l = −

∫ ∞

0
gl(x)log(gl(x))dx = −

∫ ∞

0

θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−θx

×log

(
θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−θx

)
dx

Rρ
l =

ρ

1− ρ
log

∫ ∞

0
[gl(x)]

ρdx

=
ρ

1− ρ
log

∫ ∞

0

[
θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3 +

x(x+ 1)

θ + 1

]
e−θx

]ρ
dx; ρ > 0, ρ ̸= 1

=
ρ

1− ρ
log

(ρi)(ρ−i
j

)
θ3ρ(θ + 1)ρ

(
1
2αθ

)ρ−i
Γ(ρ+ 2i+ j + 1)

(3α(θ + 1) + θ + 2)ρ(θ + 1)ρ−i(ρθ)ρ+2i+j+2


T ρ
l =

1

ρ− 1

[
1−

∫ ∞

0
[gl(x)]

ρdx

]

=
1

ρ− 1

1−
(ρi)(ρ−i

j

)
θ3ρ(θ + 1)ρ

(
1
2αθ

)ρ−i
Γ(ρ+ 2i+ j + 1)

(3α(θ + 1) + θ + 2)ρ(θ + 1)ρ−i(ρθ)ρ+2i+j+2

 ; ρ > 0, ρ ̸= 1

Table 3 shows some results of Shannon, Rènyi and Tsallis entropies for the values of
α of 1, 1.5, 2, 2.5, 3 and 3.5 and values of θ of 1.5, 2, 2.5, 3 and 3.5. It shows that
all entropy values are decreasing as the values of θ are increasing. Entropy values are
increasing as the values of α are increasing.

10 Stress-Strength Reliability

Consider the two independent random variables X and Y from Loai distribution, where
X represents the strength of the system and Y is the stress applied to this system (Al-
marashi et al. (2020)). The component failed to work at the moment that the stress
applied to it exceeds the strength and the component will function satisfactorily when-
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Table 3: Numerical results for entropy using different values of α and θ with ρ=5.

α θ Shannon Renyi Tsallis α θ Shannon Renyi Tsallis

1.0 1.5 1.62047 1.31110 0.24868 2.5 1.5 1.63161 1.31374 0.24869

1.0 2.0 1.33634 1.02909 0.24592 2.5 2.0 1.34641 1.02905 0.24592

1.0 2.5 1.11571 0.81009 0.24021 2.5 2.5 1.12503 0.80807 0.24013

1.0 3.0 0.93525 0.63092 0.22996 2.5 3.0 0.94402 0.62739 0.22967

1.0 3.5 0.78254 0.47925 0.21324 2.5 3.5 0.79090 0.47452 0.21254

1.5 1.5 1.62864 1.31527 0.24870 3.0 1.5 1.63142 1.31238 0.24869

1.5 2.0 1.34415 1.03209 0.24597 3.0 2.0 1.34595 1.02724 0.24589

1.5 2.5 1.12328 0.81222 0.24030 3.0 2.5 1.12438 0.80593 0.24005

1.5 3.0 0.94265 0.63238 0.23008 3.0 3.0 0.94324 0.62500 0.22948

1.5 3.5 0.78982 0.48019 0.21338 3.0 3.5 0.79000 0.47194 0.21215

2.0 1.5 1.63108 1.31498 0.24870 3.5 1.5 1.63095 1.31112 0.24868

2.0 2.0 1.34620 1.03091 0.24595 3.5 2.0 1.34526 1.02564 0.24587

2.0 2.5 1.12506 0.81039 0.24022 3.5 2.5 1.12354 0.80408 0.23997

2.0 3.0 0.94423 0.63006 0.22989 3.5 3.0 0.94228 0.62296 0.22931

2.0 3.5 0.79123 0.47747 0.21298 3.5 3.5 0.78896 0.46975 0.21181

ever X > Y . The stress strength model is defined as p(Y < X) (Hassan (2017)).

p(Y < X) =

[
θ3(θ + 1)

3α(θ + 1) + θ + 2

]2 ∫ ∞

0

∫ x

0

([
1

2
αθx3 +

x(x+ 1)

θ + 1

]

×
[
1

2
αθy3 +

y(y + 1)

θ + 1

]
e−θ(x+y)dydx

)

=

∫ ∞

0

αθ(θ + 1)x3 + 2x(x+ 1)

2(θ + 1) (3α (θ + 1) + θ + 2)



((3α+ 1) θ + 3α+ 2) e−θx

−
(
αθ4 + αθ3

)
x3 e

−2θx

2

−
(
3αθ3 + (3α+ 2) θ2

)
x2 e

−2θx

2

−
(
(6α+ 2) θ2 + (6α+ 4) θ

)
x
e−2θx

2

− ((6α+ 2) θ + 6α+ 4)
e−2θx

2


dx

=
(3α+ 1) θ + 3α+ 2

2θ3 · (θ + 1)
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11 Parameters Estimation Methods

11.1 Maximum likelihood method

Let X1, X2, ...Xn be a random sample from LBLD, then the likelihood function L(x, α, θ) is
defined by

L = L(x, α, θ) =

n∏
i=1

gl(xi, α, θ)

=

n∏
i=1

[
θ3(θ + 1)

3α(θ + 1) + θ + 2

[
1

2
αθx3

i +
xi(xi + 1)

θ + 1

]
e−θxi

]

=

[
θ3(θ + 1)

3α(θ + 1) + θ + 2

]n n∏
i=1

[
1

2
αθx3

i +
xi(xi + 1)

θ + 1

]
e−θ

∑n
1 xi

Thus the log-likelihood function is

ℓ = ln(L) = ln

{[
θ3(θ + 1)

3α(θ + 1) + θ + 2

]n n∏
i=1

[
1

2
αθx3

i +
xi(xi + 1)

θ + 1

]
e−θ

∑n
1 xi

}

= 3nln(θ) + nln(θ + 1)− nln(3α(θ + 1) + θ + 2)− θ

n∑
1

xi

+

n∑
1

[
ln(α(θ + 1)θx3

i + 2xi(xi + 1))
]
− ln(2(θ + 1))

The maximum likelihood estimates (MLEs) of LBLD parameters can be obtained by equating
the following derivatives to zero and solving with respect to the parameters.

∂ℓ

∂α
=

−3n(θ + 1)

3α(θ + 1) + θ + 2
+

n∑
1

[
ln(α(θ + 1)θx3

i + 2xi(xi + 1))− ln(2(θ + 1))
]

∂ℓ

∂θ
=

3n

θ
+

n

θ + 1
− n(3α+ 1)

3α(θ + 1) + θ + 2
+

n∑
1

[
α(2θ + 1)

α(θ + 1)θx3
i + 2xi(xi + 1)

− 1

θ + 1
− xi

]

There is no exact solution for the system of equations { ∂ℓ
∂α = 0, ∂ℓ

∂θ = 0}. Therefore, we can
solve it numerically.

11.2 Ordinary and weighted least square methods

Swain et al. (1988) suggested the ordinary least square (OLS) and weighted least square (WLS)
methods of estimation to estimate the parameters of beta distributions. Consider that Gl(x(k))

be the cdf of kth order statistic of the order statistics X(1), X(2), ..., X(n). The OLS and WLS
estimators can; respectively be obtained by minimizing the following functions with respect to
the parameters (Yılmaz et al. (2021)).

ROLS =

n∑
k=1

[
Gl(x(k))−

k

n+ 1

]2
, WWLS =

n∑
k=1

(n+ 1)2(n+ 2)

k(n+ 1− k)

[
Gl(x(k))−

k

n+ 1

]2
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Thus, the OLS can be defined using (2.2) as:

ROLS =

n∑
k=1

1−
(

(α(θ + 1)(θx(k)(θx(k)(θx(k) + 3) + 6) + 6)

+2(θx(k)(θx(k) + θ + 2) + θ + 2))e−θx(k)

)
2(3α(θ + 1) + θ + 2)

− k

n+ 1


2

=

n∑
k=1


n+ 1− k

n+ 1
−

(
α(θ + 1)

(
θ3x3

(k) + 3θ2x2
(k) + 6θx(k) + 6θ

)
(2θ2(x2

(k) + x(k)) + 4θx(k) + 2θ + 4)e−θx(k)

)
2(3α(θ + 1) + θ + 2)



2

Thus, the OLS estimators of α and θ are the solutions of the following equations

∂ROLS

∂α
= 0,

∂ROLS

∂θ
= 0

The WLS of LBLD is defined as

WWLS =

n∑
k=1

(n+ 1)2(n+ 2)

k(n+ 1− k)


n+ 1− k

n+ 1
−

(
α(θ + 1)

(
θ3x3

(k) + 3θ2x2
(k) + 6θx(k) + 6θ

)
(2θ2(x2

(k) + x(k)) + 4θx(k) + 2θ + 4)e−θx(k)

)
2(3α(θ + 1) + θ + 2)



2

Again, the WLS estimators of α and θ are the solutions of the following equations

∂WOLS

∂α
= 0,

∂WOLS

∂θ
= 0

11.3 Method of maximum product of spacings

Maximum product spacing (MPS) method of estimation is an alternative to the maximum like-
lihood method. It is proposed by Cheng and Amin (1979, 1983). This method depends on
maximizing the geometric mean of the spacings of the data with respect to the parameters. The
MPS method provides consistent and asymptotically efficient estimators whether MLE exists or
not. The uniform spacings is defined as:

Ψk(α, θ) = Gl(x(k)|α, θ)−Gl(x(k−1)|α, θ), k = 1, ..., n,

where Gl(x(k)|α, θ) = 0 at k = 0 and 1 at k = n+ 1. It is clear that
∑n+1

i=1 Ψk(α, θ) = 1.

The MPS estimators, α̂MPS and θ̂MPS , of α and θ can be obtained by maximizing the geo-
metric mean of the spacings, that is,
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GM(α, θ|x) =

(
n+1∏
k=1

Ψi(α, θ)

) 1
n+1

=


n+1∏
k=1



 (α(θ + 1)(θx(k)(θx(k)(θx(k) + 3) + 6) + 6)

+2(θx(k)(θx(k) + θ + 2) + θ + 2))e−θx(k)


2(3α(θ+1)+θ+2)

−

 (α(θ + 1)(θx(k−1)(θx(k−1)(θx(k−1) + 3) + 6) + 6)

+2(θx(k−1)(θx(k−1) + θ + 2) + θ + 2))e−θx(k−1)


2(3α(θ+1)+θ+2)





1
n+1

Now, the natural logarithm gives

NL(α, θ|x) =
1

n+ 1

n+1∑
k=1

ln



 (α(θ + 1)(θx(k)(θx(k)(θx(k) + 3) + 6) + 6)

+2(θx(k)(θx(k) + θ + 2) + θ + 2))e−θx(k)


2(3α(θ+1)+θ+2)

−

 (α(θ + 1)(θx(k−1)(θx(k−1)(θx(k−1) + 3) + 6) + 6)

+2(θx(k−1)(θx(k−1) + θ + 2) + θ + 2))e−θx(k−1)


2(3α(θ+1)+θ+2)


α̂MPS and θ̂MPS can be obtained by solving the following nonlinear system of equations with
respect to the parameters α and θ.

∂NL(α, θ|x)
∂α

=
1

n+ 1

n+1∑
k=1

∆1(x(k)|α, θ)−∆1(x(k−1)|α, θ)
Ψi(α, θ)

= 0

∂NL(α, θ|x)
∂θ

=
1

n+ 1

n+1∑
k=1

∆2(x(k)|α, θ)−∆2(x(k−1)|α, θ)
Ψi(α, θ)

= 0,

where

∆1(x(k)|α, θ) =
∂G(x(k)|α, θ)

∂α
, ∆2(x(k)|α, θ) =

∂G(x(k)|α, θ)
∂θ

(11.1)

11.4 Methods of minimum distances

Wolfowitz (1957) proposed the method of minimum distance obtain strong consistent estimators.
Consider the random sample of size n, say X1, · · · , Xn with cdf G(x|α, θ) and let Gn(x) be the

empirical distribution function based on the sample x = (x1, · · · , xn). If (α̂, θ̂) is the vector of

estimators of (α, θ), then G(x|α̂, θ̂) is an estimator of Gl(x|α, θ). Assuming (α̂, θ̂) is exist, such
that

d[Gl(x|α̂, θ̂), Gn(x)] = inf{d[G(x|α, θ), Gn(x)]},

where d[., .] is the distance between G(x|α̂, θ̂) and Gn(x), then (α̂, θ̂) is called the minimum-
distance estimate of (α, θ) (Drossos and Philippou (1980)).



Electronic Journal of Applied Statistical Analysis 295

11.5 Cramer-Von-Mises method

Cramer-Von-Mises method (Cramér (1928); Von Mises (1928)) usually called W 2, is a method
used in one-sample applications to compare between the theoretical cumulative distribution func-
tion G∗(x) of a random variable and a given empirical distribution Gn(x) using the goodness of
fit. It is also used as a part of the minimum distance method of estimation. It is defined as

ϱ2 =

∫ ∞

−∞
[Gn(x)−G∗

l (x)]
2
dG∗

l (x)

For a random sample of size n with observed values x1, · · · , xn sorted in an ascending order the
Cramer-Von Mises test statistic value is (Stephens (1986)),

CVM2 =

n∑
k=0

[
Gl(x(k), α, θ)−

2k − 1

2n

]2
+

1

12n

Thus for a random sample of size n from Loai distribution with observed values x1, · · · , xn sorted
in an ascending order the Cramér-von Mises test statistic value is

CVM2 =
1

12n
+

n∑
k=0

[
G(x(k), α, θ)−

2k − 1

2n

]2

=
1

12n
+

n∑
k=1

1−
(

(α(θ + 1)(θx(k)(θx(k)(θx(k) + 3) + 6) + 6)

+2(θx(k)(θx(k) + θ + 2) + θ + 2))e−θx(k)

)
2(3α(θ + 1) + θ + 2)

− 2k − 1

2n


2

The Cramer-von Mises estimators α̂ and θ̂ of α and θ can be obtained by minimizing W 2. These
estimators are the solutions of the following system of nonlinear equations

n∑
k=0

[
2Gl(x(k), α, θ)−

2k − 1

n

]
∆1(x(k)|α, θ) = 0

n∑
k=0

[
2Gl(x(k), α, θ)−

2k − 1

n

]
∆2(x(k)|α, θ) = 0,

where ∆1 and ∆2 are defined in (11.1).

11.6 Method of Anderson-Darling

Anderson and Darling (1952) introduced a method of estimating the distribution parameters.
This method is called Anderson-Darling method of estimation, it is defined as

AD = −n− 1

n

n∑
k=0

(2k − 1)
{
log[Gl(x(k);α, θ)] + log[Ḡl(x(n+1−k);α, θ)]

}
(11.2)

The estimators α̂AD and θ̂AD can be obtained by minimizing (11.2), or by solving the following
nonlinear system of equations.
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∂AD(α, θ|x)
∂α

=

n∑
k=0

(2k − 1)

{[
∆1(x(k)|α, θ)
G(x(k);α, θ)

]
−

∆1(x(k)|α, θ)
Ḡ(x(n+1−i);α, θ)

}
= 0

∂AD(α, θ|x)
∂θ

=

n∑
k=0

(2k − 1)

{
log[

∆2(x(k)|α, θ)
G(x(k))

;α, θ)]−
∆2(x(k)|α, θ)

Ḡ(x(n+1−k);α, θ)

}
= 0,

where Ḡ = 1−G and ∆1 and ∆2 are defined in (11.1).

12 Simulation Study

A simulation study is performed in this section to test the accuracy of the estimators of the LBLD
distribution parameters with the help of R software R Core Team (2021). For this purpose,
N = 1500 samples are generated, each of size 50, 100, 300, and 500 for values of α = 3 and θ =
1.5. For each sample, the estimators of the parameter space ϕ = (α, θ) using MLE, OLS, WLS,
MPS, CVM, and AD methods of estimation with their mean square error (MSE) and the bias
are obtained. Then, the average bias (AB) and the mean square error (MSE) are calculated as
follows:

AB(ϕ̂) =
1

N

N∑
i=1

(ϕ̂− ϕ), MSE =
1

N

N∑
i=1

(ϕ̂− ϕ)2

Table 4 shows that the WLS method of estimation is the best method for estimating both
parameters, regardless the sample size used.

13 Real Data Application

In this section, we will test the applicability of the proposed distribution by considering a real-life
time data set and comparing its goodness of fit with some existing distributions. This data set
is reported in Ross (2010) and represents 48 reaction times (in seconds) to a certain stimulus
recorded by a psychologist. The data are given in Table 5. The goodness of fit of the proposed
distribution is compared with the following distributions:

� Loai distribution (Loai) (Alzoubi et al. (2022)): (See (1.3))

� Exponential distribution (Exp) (Kingman (1982)).

� Transmuted Aradhana distribution (T. Arad) (Gharaibeh (2020))

f(x) = θ3(1+x)2

θ2+2θ+2 e
−θx

(
1− λ+ 2λe−θx

(
1 + θx(θ2+2θ+2)

θx+2θ+2

))
, x, θ > 0, |λ| ≤ 1

� Pranav distribution (Pran) (Shanker (2015)): f(x) = α2(α+x)
α2+1 e−αx, x, α > 0

� Benrabia distribution (Br.) (Benrabia and Alzoubi (2022)):

f(x) = θ
α+θ

(
α+ xα−2θα−1

Γ(α−1)

)
e−θx, x, θ > 0, α > 1

� Gamma distribution (Gam) (Johnson et al. (1970)): f(x) = θαxα−1e−θx

Γ(α) , x, α, θ > 0.

� Lindley distribution (Lind) (Ghitany et al. (2008)): f(x) = α2(1+x)e−αx

1+α , x, α > 0
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Table 4: Parameter Estimates and their average biases and mean squares errors, when
α = 0.5.

Method n α̂ θ̂ AB(α̂) MSE(α̂) AB(θ̂) MSE(θ̂)

MLE

50

3.152871 1.603173 0.152871 0.023369 0.103173 0.010645

OLS 3.080675 1.554248 0.080675 0.006508 0.054248 0.002943

WLS 3.028712 1.534770 0.028712 0.000824 0.034770 0.001209

cv 3.081520 1.509044 0.081520 0.006646 0.009044 0.000082

MPS 2.215823 1.544529 -0.784177 0.614934 0.044529 0.001983

AD 3.599086 1.500372 0.599086 0.358904 0.000372 0.000000

MLE

100

3.064931 1.542442 0.064931 0.004216 0.042442 0.001801

OLS 3.071232 1.543758 0.071232 0.005074 0.043758 0.001915

WLS 3.015435 1.514369 0.015435 0.000238 0.014369 0.000206

cv 3.217368 1.498033 0.217368 0.047249 -0.001967 0.000004

MPS 2.440163 1.519425 -0.559837 0.313418 0.019425 0.000377

AD 3.234412 1.485611 0.234412 0.054949 -0.014389 0.000207

MLE

300

3.027274 1.515767 0.027274 0.000744 0.015767 0.000249

OLS 3.051275 1.529172 0.051275 0.002629 0.029172 0.000851

WLS 3.016020 1.509483 0.016020 0.000257 0.009483 0.000090

cv 3.534389 1.494560 0.534389 0.285571 -0.005440 0.000030

MPS 2.687529 1.503691 -0.312471 0.097638 0.003691 0.000014

AD 3.139813 1.487234 0.139813 0.019548 -0.012766 0.000163

MLE

500

3.015758 1.511154 0.015758 0.000248 0.011154 0.000124

OLS 3.045811 1.528302 0.045811 0.002099 0.028302 0.000801

WLS 3.009473 1.507542 0.009473 0.000090 0.007542 0.000057

cv 2.962686 1.497238 -0.037314 0.001392 -0.002762 0.000008

MPS 2.764535 1.502655 -0.235465 0.055444 0.002655 0.000007

AD 3.136523 1.490340 0.136523 0.018638 -0.009660 0.000093

Table 5: reaction times (in seconds) to a certain stimulus recorded by a psychologist.

1.1, 2.1, 0.4, 3.3, 1.5, 1.3, 3.2, 2.0, 1.7, 0.6, 0.9, 1.6, 2.2, 2.6, 1.8, 0.9,

2.5, 3.0, 0.7, 1.3, 1.8, 2.9, 2.6, 1.8, 3.1, 2.6, 1.5, 1.2, 2.5, 2.8, 0.7, 2.3,

0.6, 1.8, 1.1, 2.9, 3.2, 2.8, 1.2, 2.4, 0.5, 0.7, 2.4, 1.6, 1.3, 2.8, 2.1, 1.5
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For comparison, we consider the following goodness of fit criteria: -2lnL, Akaike Information
Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian Information Criterion
(BIC), Kolmogorov-Smirnov Statistic (KS-Statistic) and its p-value, where

AIC = −2lnL+ 2k, AICC = AIC +
2k(k + 1)

n− k − 1
BIC = −2lnL+ kln(n), KS = sup

x
|Fn(x)− F0(x)|,

where L is the likelihood function, k is the number of parameters, n is the sample size and Fn(x)
is the empirical distribution function.

Table 6: −2lnL, AIC, AICC, BIC, KS statistic and the p-values of the fitted distribu-
tions.

Dist −2ln(L) AIC CAIC BIC HQIC KS pv MLE SE

α̂=5.740 0.845
LBLD 122.9 126.913 127.179 130.655 128.33 0.096 0.537

θ̂=2.474 0.473

α̂=11.011 7.399
Loai 124.970 128.970 129.237 132.713 130.385 0.102 0.525

θ̂=1.567 0.139

Exp 155.7 157.700 157.800 159.600 158.4 0 0.259 0.003 θ̂=0.537 0.077

θ̂=1.137 0.062
T. Arad 268.4 272.400 272.500 272.200 274.30 0.112 0.245

λ̂=0.930 0.081

α̂=1.476 0.052
Pran 268.3 272.254 272.403 277.116 274.21 0.110 0.260

θ̂=0.986 0.068

α̂=2.548 0.910
Br 153.5 157.545 157.811 161.287 158.96 0.260 0.003

θ̂=0.614 0.354

α̂=3.032 0.540
Gam 414.9 418.867 419.089 422.953 420.45 0.155 0.132

θ̂=0.168 0.032

Lind 423.2 425.183 425.256 427.226 425.98 0.185 0.040 α̂=0.105 0.010

14 Conclusion

This article proposed a length biased Loai distribution (LBLD) and studied various properties of
the distribution. The moments, mode, reliability analysis functions and the different methods of
estimating the distribution parameters, have been examined. Applications of the new distribution
have also been established with real life data. The results are compared with some distributions,
showed that the LBLD provides a better fit than the other distributions.
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