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In this article, we introduce a new three-parameter Fréchet distribution
via the modified Lehmann Type-II class of distributions and investigate its
properties, inferential methods, and real-world application. Fundamental
distributional properties such as the quantile function, moments, moment
generating function, entropy, and order statistics have been discussed. In-
ferential results have been obtained within the classical and Bayesian frame-
works, utilizing a progressive censoring scheme. In the classical estimation
framework, maximum likelihood estimation and maximum product spacing
estimation are considered to obtain the estimates using the Newton-Raphson
method. In addition, approximate confidence intervals have been derived us-
ing maximum likelihood estimation estimates. Meanwhile, we have used
informative and non-informative prior via likelihood and product spacing
functions to find the Bayes estimates in the Bayesian framework. Since the
posterior distributions cannot be expressed in closed form, we employ a com-
bination of Gibbs sampling and the Metropolis-Hastings algorithm to obtain
the Bayes estimates. Furthermore, credible intervals are constructed using
the Bayes estimates under informative and non-informative Prior. A com-
prehensive simulation study is carried out to assess the performance of the
proposed estimation techniques. To demonstrate the practical utility of the
proposed model, a real-life dataset is analyzed, showcasing the effectiveness
of the proposed methodologies.
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1 Introduction

Developing new probability distributions allows researchers to explore real-life problems
to adequately fit asymmetric and complex random events. This has led to the develop-
ment of several models in the literature. The most straightforward and handy models
introduced in research are the Lehmann Type-I (L-I) and Lehmann Type-II (L-II) by
Lehmann (1953). The L-I model is often discussed in favour of power function (PF)
distribution. The PF is defined as the simple exponentiation of any baseline model with
cumulative distribution function (CDF) defined as

F (x; θ,∆) = [G(x,∆)]θ, x > 0,

where θ > 0 is a shape parameter, ∆ is a vector of the parameter(s), and G(x;∆) is the
baseline distribution. Gupta et al. (1998) practised the L-I class on exponential distri-
bution. The simplicity and usefulness of the PF distribution have attracted researchers
to explore its further applications, extensions, and generalizations in different areas of
research. Cordeiro and De Castro (2011) proposed a dual transformation of the L-II
with CDF given by

F (x; θ,∆) = 1− [1−G(x;∆)]θ, x > 0,

where θ, ∆ and G(x;∆) are as defined earlier. The merit of the L-II distribution is its
closed-form features, which enable one to derive and study its properties easily. Both
models (L-I and L-II) have been extensively explored in the literature. Among them
is Dallas (1976), who established a relationship between PF and Pareto distributions.
Meniconi and Barry (1996) found the PF as the best-fitted model for electronic com-
ponents data independence of record values-based characterization was discussed by
Chang (2007). Ahsanullah et al. (2013) also discussed the characterization of the PF
distribution based on lower record values, and Naveed-Shahzad et al. (2015) derived the
moments by using different methods.
Moreover, L-II G family-based development has gained much attention recently. Arshad
et al. (2021) introduced a bathtub-shaped failure rate model and explored its application
using engineering data. Tomazella et al. (2022) discussed several mathematical prop-
erties of L-II Fréchet distribution and explored its application to aircraft maintenance
data, and Awodutire et al. (2020) studied some statistical measures of the generalized
half-logistic and explored its application to sports data. Also, Badmus et al. (2014) pro-
posed the weighted Weibull via L-II and applied it to textile engineering data, Ogunde
et al. (2020) extended the Gumbel Type-II via exponentiated L-II G class and applied
it to biological data, and Lehmann Type-II Lomax distribution has been proposed and
studied by Isa et al. (2023). Recently, a new extension of the L-II class has been proposed
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by Balogun et al. (2021), known as the modified Lehmann Type-II (ML-II) G class of
distributions. The CDF is given by

F (x;α, γ,∆) = 1−
[
1−G(x;∆)

1− γG(x;∆)

]α
, x ∈ R, (1)

where G(x;∆) ∈ (0, 1) is the CDF of any arbitrary baseline model, ∆ is a vector of pa-
rameter(s), dependent on (m× 1) with −∞ < γ < 1, and α > 0 are the scale and shape
parameters, respectively. They proposed the modified Lehmann Type-II-exponential
(ML-II-Exp) distribution as a special case. Elshahhat et al. (2022) applied the Type-II
Lehmann Fréchet via progressive Type-II censoring to survival data. Nevertheless, this
work is motivated by the flexibility of the Fréchet distribution in the literature. The
Fréchet distribution is one of the commonly used distributions in extreme value theory.
It can model different failure rates compared to other known classical distributions. Some
of its applications can be found in fields like physics, engineering, and biology, among
others. Extensions of the Fréchet distribution can be found in Barreto-Souza et al.
(2011), Chakraborty et al. (2019), Salah et al. (2020), Al-Babtain et al. (2020). Other
extensions have been the three-parameter Kumaraswamy-Fréchet distribution (KFD)
by Shahbaz et al. (2012) and Yousof et al. (2018). Tomazella et al. (2022) showed that
the KFD has a simple structure, but its parameters are non-identifiable. Therefore,
they proposed the Type-II Lehmann Fréchet distribution (LDF-TII). Most of the above
studies have been done on the properties and applications of the proposed distribution.
Also, the parameters have been estimated in the above work without using a censoring
scheme. So, in this study, the main goal is to propose an extension of the one parameter
Fréchet via the ML-II class of distribution and perform inference and applications under
the progressive Type-II censoring scheme. To the best of our knowledge, this distribu-
tion has not been introduced in the literature and neither has it been considered under
progressive Type-II censoring. The purpose of a life testing experiment in reliability is to
assess a product’s durability by subjecting it to operational conditions until it fails. In
life testing experiments, the goal is to obtain data on the time to failure to estimate the
reliability of a product and predict its performance over time. Performing a life-testing
experiment is mainly dependent on time and cost. Assume a life test is conducted to
monitor items until they fail. These items could be any life-testing experiments that
will be observed until their failure. However, we recognize that the lifetime of items may
not always be precisely recorded. Due to time and cost constraints, it is not feasible
to continue the experiment until all items have failed. As a result, censored data is
helpful for life-testing experiments. Censored data consists of observations that are only
partially observed. A Type-I censoring scheme and a Type-II censoring scheme are the
two most popular censoring schemes. In the Type-I censoring scheme, failures occur
randomly, but the experimental duration is pre-fixed. In contrast, the Type-II censoring
scheme observes a fixed number of failures with varying experimental durations. The
main disadvantage of these schemes is that it is useless if the experimenter wishes to
remove units at any other point than the endpoint during the experiment. Some testing
units should be eliminated early to utilize the surviving units for other experiments (see,
Cohen (1963)). Because of these limitations, it is impossible to prevent survival units
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from losing contact with experimental units or breaking unexpectedly at places other
than the endpoint. To address these issues, researchers have proposed progressive cen-
soring schemes (PCS), which are more flexible and allow experimenters to remove live
units during the experiment. A more detailed discussion of these censoring schemes can
be found in Balakrishnan and Aggarwala (2000). In this study, we focus on a progres-
sive Type-II censoring scheme. It is described as follows: suppose a test starts with n
identical testing units, and m(m < n) is a prefixed integer. When the first failure x1:m:n

is observed, R1 units are randomly removed from the remaining n − 1 surviving units.
When x2:m:n of the second failure, R2 units are randomly removed from the remaining
n − R1 − 2 surviving units. It is continued in this fashion and is terminated when mth

failure occurs at time xm:m:n, and Rm = n −m −
m−1∑
i=1

Ri surviving units are removed

from the test. R = (R1, R2, · · · , Rm) is pre-fixed scheme. While a number of studies
have been done by many researchers using PCS, one may refer to Maurya et al. (2019),
Mahto et al. (2020) and Prakash et al. (2024) for more details. The rest of the paper
is organized as follows: In section 2, we proposed a three-parameter Modified Lehmann
Type-II Fréchet distribution by extending the one parameter Fréchet distribution. The
statistical properties such as quantile function, moments and moment generating func-
tion, entropy and order statistics of the proposed distribution have been discussed in
Section 3. Further, we have used classical and Bayesian methods for inference purposes.
In section 4, we have discussed the maximum likelihood estimation (MLE) and maximum
product spacing estimation (MPSE) for parameter estimation, and by using MLE esti-
mates, we constructed the approximate confidence intervals for the model parameters.
Whereas in section 5, Bayesian estimates have been obtained by using informative and
non-informative prior (INIP) via the likelihood function as well as the product spacing
function. Furthermore, to provide the application of the proposed methodologies in real
life, we have taken real data on the mortality rate of Japanese children under five years
of age and discussed in section 7. From the simulation results, it has been observed
that the proposed methods provide satisfactory results for the real data. Lastly, the
concluding remarks of the study have been pointed out in section 8.

2 Modified Lehmann Type-II Fréchet Distribution

In this section, we extend the one parameter Fréchet distribution by the idea of Balogun
et al. (2021). Considering the one parameter Fréchet distribution with CDF and proba-

bility density function (PDF) defined as G(x;β) = e−x
−β

and g(x;β) = βx−(β+1)e−x
−β

for β > 0 respectively as the baseline distribution in equation (1), we obtain the proposed
distribution known as the Modified Lehmann Type-II Fréchet (MLIIFr) distribution.
The CDF is given by

F (x;α, β, γ) = 1−

[
1− e−x

−β

1− γe−x−β

]α
, x > 0, α > 0, β > 0, −∞ < γ < 1, (2)
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where γ is a scale parameter, and α and β are shape parameters. The PDF is given by

f(x;α, β, γ) = αβ(1−γ)x−(β+1)e−x
−β
(
1− e−x

−β
)α−1 (

1− γe−x
−β
)−(1+α)

, x > 0. (3)

The corresponding hazard rate function is given by

h(t;α, β, γ) = αβ(1− γ)t−(β+1)e−t
−β
(
1− e−t

−β
)−1 (

1− γe−t
−β
)−1

, t > 0. (4)

The plot presented in Figure (1) indicates that the MLIIFr distribution exhibits heavy
tails for all parameter combinations. It is a highly flexible and adaptable model suitable
for a wide range of real-world data, especially in scenarios involving skewed distributions
and heavy tails. Its ability to model different tail behaviors and peak shapes makes it
valuable for extreme value modelling and reliability analysis. Also, from the hazard
rate plot of the MLIIFr distribution it is evident of s adaptability to different real-world
situations. It can model scenarios with increasing, decreasing, or non-monotonic hazard
rates, making it suitable for various reliability, survival analysis, and risk management
applications. This versatility is crucial for accurately capturing the behavior of systems
over time and predicting their reliability and failure patterns effectively. It is appropriate
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Figure 1: Plots of the PDF f(x) and hazard rate h(t) functions of the MLIIFr distribution

to obtain the linear representation of the PDF of the proposed model before going
ahead with deriving the statistical properties. Therefore, making use of the following
generalized binomial expansion

(1− z)k =
∞∑
i=0

(−1)i
(
k

i

)
zi, |z| < 1 and (1− z)−k =

∞∑
j=0

(
k + j − 1

j

)
zj , |z| < 1. (5)

We have (
1− e−x

−β
)α−1

=

∞∑
i=0

(−1)i
(
α− 1

i

)(
e−x

−β
)i

(6)
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and (
1− γe−x

−β
)−(1+α)

=

∞∑
j=0

(
j − α− 2

j

)(
γe−x

−β
)j
. (7)

Substituting equation (6) and (7) into equation (3) and after some simplifications, we
obtain the linear representation of the MLIIFr distribution as

f(x;α, β, γ) = αβ(1− γ)

∞∑
i,j=0

Ψijx
−(β+1)

(
e−x

−β
)i+j+1

, (8)

where Ψij = (−1)iγj
(
α−1
i

)(
j−α−2

j

)
.

3 Statistical Properties

In this section, statistical properties of the MLIIFr distribution, including the quantile
function, moments, moment generating function, Renyi entropy, and order statistics,
have been discussed.

3.1 Quantile function

The quantile function is important in describing the random variable of a distribution. It
helps in generating random samples which are useful in simulations. It can also compute
shape measures such as skewness and kurtosis. The quantile function of the MLIIFr
distribution for u ∈ (0, 1) is given by

Xu =

[
− ln

(
(1− u)1/α − 1

γ(1− u)1/α − 1

)]−1/β

.

3.2 Moments

The moments of distribution are important in estimating measures of variation like the
variance, standard deviation, coefficient of variation, mean deviation, median deviation,
kurtosis, skewness and so on.
The kth non-central moment by definition is given as

µ
′
k =

∫ ∞

0
xkf(x)dx. (9)

Substituting equation (8) into equation (9), we have

µ
′
k = αβ(1− γ)

∞∑
i.,j=0

Ψij

∫ ∞

0
xkx−(β+1)

(
e−x

−β
)i+j+1

.
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Using of the identity Γ(s) =
∫∞
0 ys−1e−ydy, the kth non-central moment of the MLIIFr

distribution can be written as

µ
′
k = α(1− γ)

∞∑
i,j=0

Ψij(i+ j + 1)−(1−k/β)Γ (1− k/β) , β > k.

The kth incomplete moment, by definition, is given as

Mk(x) =

∫ y

0
xkf(x)dx. (10)

Substituting equation (8) into equation (10), we have

Mk(x) = αβ(1− γ)
∞∑

i,j=0

Ψij

∫ y

0
xkx−(β+1)

(
e−x

−β
)i+j+1

. (11)

After some algebra and making use of the incomplete gamma function

Γ(a, y) =
∫ y
0 x

a−1e−xdx, we obtain the kth incomplete moment of the MLIIFr as

Mk(x) = α(1− γ)
∞∑

i,j=0

Ψij(i+ j + 1)−(1−k/β)Γ
(
1− k/β, (i+ j + 1)x−β

)
, β > k.

3.3 Moment generating function

The moment generating function (MGF) helps in determining the moments of a random
variable. By definition, the moments of a random variableX are given asMx(z) = E(ezx)
if only it exists. Applying series expansion, Mx(z) =

∑∞
k=0

zk

k! µ
′
k. Therefore,

Mx(z) = α(1− γ)

∞∑
i,j,k=0

Ψij

(
zk(i+ j + 1)−(1−k/β)

k!

)
Γ (1− k/β) , β > k.

3.4 Entropy

It is an essential measure of uncertainty associated with a random variable. The Shan-
non entropy was proposed by Shannon (1948) and defined by IS(X) = E[−log(f(x))]
which is the most widely used in the application. Nevertheless, Rényi entropy, which was
proposed by Rényi (1961), has gained more attention in recent times. This is because the
Rényi entropy is capable of generalizing several other entropy measures, including Shan-
non entropy (see, Csiszár and Körner (2011)). The Rényi entropy of random variable X
with pdf is defined by

IR(X) =
1

1− δ
log

{∫ ∞

0
f δ(x)

}
dx, δ > 0 and δ ̸= 0. (12)
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From equation (12), we can write

f δ(x) = αδβδ(1− γ)δx−δ(β+1)
(
e−x

−β
)δ (

1− e−x
−β
)δ(α−1) (

1− γe−x
−β
)−δ(1+α)

.

Using binomial expansion and after some algebra, we have

f δ(x) = αδβδ(1− γ)δ
∞∑

a,b=0

Φabx
−δ(β+1)

(
e−x

−β
)δ+a+b

,

where Φab = (−1)aγb
(
δ(α−1)

a

)(δ(1+α)+b−1
b

)
. Therefore,∫ ∞

0
f δ(x)dx = αδβδ(1− γ)δ

∞∑
a,b=0

Φab

∫ ∞

0
x−δ(β+1)

(
e−x

−β
)δ+a+b

dx.

After some algebra manipulations and making use of the gamma function, Γ(s) =∫∞
0 ys−1e−ydy, we obtain

IR(X) =
1

1− δ
log

 αδβδ−1(1− γ)δ

(δ + a+ b)
δ(β+1)−1

β

∞∑
a,b=0

ΦabΓ

(
δ(β + 1)− 1

β

) .

3.5 Order Statistics

In life tests of components and reliability studies, order statistics are very useful. Let
x1, x2, . . . , xn be a random sample of size n that follows the MLIIFr distribution and
x1:n < x2:n < . . . < xn:n be the corresponding order statistics. Then, the PDF of the ith

order statistics is defined as

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x)

n−i∑
w=0

(−1)w
(
n− i

w

)
(F (x))w+i−1. (13)

Substituting equations (2) and (3) in equation (13), we obtain

fi:n(x) =
αβ(1− γ)n!

(i− 1)!(n− i)!
x−(β+1)e−x

−β
(
1− e−x

−β
)α−1 (

1− γe−x
−β
)−(1+α)

×
n−i∑
w=0

(−1)w
(
n− i

w

)[
1−

(
1− e−x

−β

1− γe−x−β

)α]w+i−1

.

The PDF of the nth order statistics is defined as

fn:n = n[F (x)]n−1f(x). (14)

Substituting equations (2) and (3) in equation (14), will give

fn:n = nαβ(1−γ)

[
1−

(
1− e−x

−β

1− γe−x−β

)α]n−1

x−(β+1)e−x
−β
(
1− e−x

−β
)α−1 (

1− γe−x
−β
)−(1+α)

.
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The PDF of the first-order statistics is defined as

f1:n = n[1− F (x)]n−1f(x). (15)

Substituting equations (2) and (3) in equation (15) will give

fn:n = nαβ(1−γ)

[(
1− e−x

−β

1− γe−x−β

)α]n−1

x−(β+1)e−x
−β
(
1− e−x

−β
)α−1 (

1− γe−x
−β
)−(1+α)

.

4 Classical Estimation

In this section, the MLE method and MPSE method have been discussed as a classical
estimation. Also, the approximate confidence interval (ACI) has been constructed using
MLE estimates.

4.1 Maximum Likelihood Estimation

The MLEs of the model parameters of the MLIIFr distribution are derived from a
progressively censored sample in this section. The Type-II PCS x1:m:n, . . . , xm:m:n is
constructed from the MLIIFr distribution. For simplicity, we have denoted data as
(x1, . . . , xm), where xi = xi:m:n, i = 1, . . . ,m throghout the paper. Based on the ob-
served data, the likelihood function (LF) can be written as

L(x;α, β, γ) ∝
m∏
i=1

f(xi;α, β, γ) (1− F (xi;α, β, γ))
Ri . (16)

Substituting equation (2) and equation (3) into equation (16), we have

L(x;α, β, γ) ∝
m∏
i=1

αβ(1−γ)x−β−1
i e−x

−β
i

(
1− e−x

−β
i

)α−1 (
1− γe−x

−β
i

)−α−1
(

1− e−x
−β
i

1− γe−x
−β
i

)αRi
.

(17)
The log-likelihood function by taking proportional constant A can be written as

logL = logA+
m∑
i=1

logα+ log β + log(1− γ)− (β + 1) log xi − x−βi + (α− 1) log
(
1− e−x

−β
i

)
− (α+ 1) log

(
1− γe−x

−β
i

)
+ αRi log

(
1− e−x

−β
i

1− γe−x
−β
i

)
.

For finding the MLE estimates of the model parameter, we need to compute the first
partial derivatives of logL with respect to α, β and γ and equate with zero. So, we
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obtain the normal equations, which are given as

∂ logL

∂α
=

m∑
i=1

1

α
+ log(1− e−x

−β
i )− log(1− γe−x

−β
i ) +Ri log

(
1− e−x

−β
i

1− γe−x
−β
i

)
. (18)

∂ logL

∂β
=

m∑
i=1

1

β
− log xi +

(1− α) log xi

x−βi (e−x
−β
i − 1)

− γ log xi(α+ 1)

x−βi (γ − e−x
−β
i )

+
(1− γ)αRi log xie

−x−βi

x−βi (e−x
−β
i − 1)(γ − e−x

−β
i )

.

(19)

∂ logL

∂γ
=

m∑
i=1

1

γ − 1
+
αRi + α+ 1

(e−x
−β
i − γ)

. (20)

MLEs of the parameters α, β, and γ can be calculated by solving the above equations
(18)-(20). As the above expressions are complex, finding explicit solutions for the param-
eters is difficult, so a numerical approximation technique is used to obtain the required
solution. We have used the Newton-Raphson iteration method to find model parameter
estimates.

4.1.1 Approximate Confidence Interval

Due to the complex equations (18)-(20), the asymptotic confidence intervals (ACIs) of
the model parameters are challenging to determine. As a result, 100(1−ψ)% approximate
confidence intervals of α, β, and γ have been obtained using a variance-covariance matrix
for the corresponding MLEs by inverting the observed Fisher information matrix. The
inverse of the observed Fisher information matrix is given as

Î−1(α̂, β̂, γ̂) =


−∂2 logL

∂α2 −∂2 logL
∂α∂β −∂2 logL

∂α∂γ

−∂2 logL
∂β∂α −∂2 logL

∂β2 −∂2 logL
∂β∂γ

−∂2 logL
∂γ∂α −∂2 logL

∂γ∂β −∂2 logL
∂γ2


−1

(α̂,β̂,γ̂)

=

 var(α̂) cov(α̂, β̂) cov(α̂, γ̂)

cov(β̂, α̂) var(β̂) cov(β̂, γ̂)

cov(γ̂, α̂) cov(γ̂, β̂) var(γ̂)

 ,
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where the elements of the matrix are given as

∂2 logL

∂α2
=

m∑
i=1

−1

α2
;
∂2 logL

∂γ2
=

m∑
i=1

−
1

(γ − 1)2
+

(α+ αRi + 1)(
γ − e−x

−β
i

)2 ,
∂2 logL

∂α∂β
=
∂2 logL

∂β∂α
=

m∑
i=1

log xi

x−βi (1− e−x
−β
i )

+
γ log xi

x−βi (e−x
−β
i − γ)

+
(1− γ)Ri log xie

−x−β
i

x−βi (e−x
−β
i − 1)(γ − e−x

−β
i )

,

∂2 logL

∂α∂γ
=
∂2 logL

∂γ∂α
=

m∑
i=1

1

(e−x
−β
i − 1)

+
Ri

(e−x
−β
i − γ)

,

∂2 logL

∂β2
=

m∑
i=1

−
1

β2
−

(α− 1)(log xi)
2
(
e−x

−β
i (x−βi − 1)− x−βi

)
x−2β
i

(
e−x

−β
i − 1

)2 +
γ(α+ 1)(log xi)

2
(
γx−βi + (1− x−βi )e−x

−β
i

)
x−2β
i

(
γ − e−x

−β
i

)2
+
α(1− γ)Ri(log xi)

2e−x
−β
i

(
x−βi (e−x

−β
i − 1)− 1

)
γ − e−x

−β
i

(
(x−βi − 1)e−x

−β
i − x−βi

)
x−2β
i

(
γ − e−x

−β
i

)2 (
e−x

−β
i − 1

)2 −
(log xi)

2

x−βi
,

∂2 logL

∂β∂γ
=
∂2 logL

∂γ∂β
=

m∑
i=1

(α+ αRi + 1)(log xi)e
−x−β

i

x−βi

(
γ − e−x

−β
i

)2 .

Therefore, the ACIs of α, β and γ are
[
α̂± Zψ

2

√
var(α̂)

]
,

[
β̂ ± Zψ

2

√
var(β̂)

]
and[

γ̂ ± Zψ
2

√
var(γ̂)

]
, respectively. Where var(α̂), var(β̂) and var(γ̂) are the elements of the

leading diagonal in Î−1(α̂, β̂, γ̂) and Zψ
2
is the

(
ψ
2

)
th quantile of the standard normal

distribution. Despite the capabilities of MLE and its wide use in parameter estimation,
MPSE provides a better alternative in specific contexts. In statistical analysis, MPSE
is beneficial because it is robust in handling misspecification, outliers, and spacing dis-
tribution. Since MLE and MPSE can handle different scenarios, selecting one over the
other should be determined by the specific features of the data and the model. The
following subsection discusses the MPSE.

4.2 Maximum Product Spacing Estimation

In this subsection, we have used the MPSE to estimate the parameters of the statistical
model. This method maximizes the geometric mean of the spacings in the data, i.e.,
the difference between the CDF values at neighbouring points. There is a similarity
between MPSE and MLE. The MLE selects the parameter values that maximize the
likelihood function, just as MPSE does, by maximizing the product of the CDF gaps at
adjacent ordered points. Based on the probability integral transform, MPSE assumes
that independent samples derived from a random variable are uniformly distributed
over its CDF. A specific quantitative measure of uniformity has been used to select
parameter values for MPSE to ensure that the observed data is consistent. Ng et al.
(2012) introduced MPSE under Type-II PCS. According to Anatolyev and Kosenok
(2005), MPSE is more efficient in small samples with skewed or heavy-tailed distributions
than MLE. Based on the Type-II progressive censoring scheme, product spacing (PS) is
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defined as follows:

S =
m+1∏
i=1

[F (xi;α, β, γ)− F (xi−1;α, β, γ)]
m∏
i=1

[1− F (xi;α, β, γ)]
Ri ,

S = D1 ·Dm+1

m∏
i=2

[F (xi;α, β, γ)− F (xi−1;α, β, γ)]

m∏
i=1

[1− F (xi;α, β, γ)]
Ri , (21)

where

Di =


D1 = F (x1),

Di = F (xi)− F (xi−1); i = 2, . . . ,m.

Dm+1 = 1− F (xm).

The equation (21) can be written as

S = D1 ·Dm+1

m∏
i=2

(Di)
m∏
i=1

(1− F (xi;µ, σ))
Ri .

Di represents the spacing, as introduced by Cheng and Amin (1983). By using equation
(2), the PS function can be written as

S =

(
1−

1− e−x
−β
1

1− γe−x
−β
1

)α(
1− e−x

−β
m

1− γe−x
−β
m

)α m∏
i=2

 1− e
−x−β

i−1

1− γe
−x−β

i−1

α −

 1− e−x
−β
i

1− γe−x
−β
i

α m∏
i=1

 1− e−x
−β
i

1− γe−x
−β
i

αRi

.

(22)

logS = α log

(
1−

1− e−x
−β
1

1− γe−x
−β
1

)
+ α log

(
1− e−x

−β
m

1− γe−x
−β
m

)
+

m∑
i=2

α log

 1− e
−x−β

i−1

1− γe
−x−β

i−1

α −

 1− e−x
−β
i

1− γe−x
−β
i

α
+

m∑
i=1

αRi log

 1− e−x
−β
i

1− γe−x
−β
i

 .



414 Prakash et al.

By maximizing the PS function for α, β and γ, we can find the estimates of model
parameters as follows:

∂ logS

∂α
= log

(
1−

1− e−x
−β
1

1− γe−x
−β
1

)
+ log

(
1− e−x

−β
m

1− γe−x
−β
m

)
+

m∑
i=1

Ri log

 1− e−x
−β
i

1− γe−x
−β
i



+
m∑
i=2

(
1−e−x

−β
i−1

1−γe−x
−β
i−1

)α
log

(
1−e−x

−β
i−1

1−γe−x
−β
i−1

)
−
(

1−e−x
−β
i

1−γe−x
−β
i

)α
log

(
1−e−x

−β
i

1−γe−x
−β
i

)
(

1−e−x
−β
i−1

1−γe−x
−β
i−1

)α
−
(

1−e−x
−β
i

1−γe−x
−β
i

)α = 0.

∂ logS

∂β
= −α

 log(x1)e
−x−β

1

xβ1 (γ − e−x
−β
1 )

+
log(xm)e−x

−β
m (γ − 1)

xβm(e−x
−β
m − 1)(γ − e−x

−β
m )

−
m∑
i=1

αRi

 log(xi)e
−x−β

i (γ − 1)

xβi (e
−x−β

i − 1)(γ − e−x
−β
i )



−
m∑
i=2

α(γ − e−x
−β
i )

(
e
−x

−β
i −1

e
−x

−β
i −γ

)α(
log(xi)e

−x
−β
i

x
β
i (γ−e−x

−β
i )

+
log(xi)(e

−x
−β
i −1)e

−x
−β
i

x
β
i (γ−e−x

−β
i )2

)
(e−x

−β
i − 1)

+
m∑
i=2

α(γ − e
−x−β

i−1 )

(
e
−x

−β
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e
−x
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i−1−γ

)α log(xi−1)e
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x
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i−1(γ−e
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−β
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+
log(xi−1)(e

−x
−β
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−x
−β
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x
β
i−1(γ−e

−x
−β
i−1 )2


(e

−x−β
i−1 − 1)

= 0.

∂ logS

∂γ
= −α

(
e−x

−β
1 − 1

(γ − 1)(γ − e−x
−β
1 )

)
−

α

γ − e−x
−β
m

− α
m∑
i=1

Ri

γ − e−x
−β
i

+ α

m∑
i=2

(
γ − e−x

−β
i

)(
1−e−x

−β
i

1−γe−x
−β
i

)α
+
(
e−x

−β
i − γ

)(
1−e−x

−β
i−1

1−γe−x
−β
i−1

)α
(
γ − e

−x−β
i−1

)(
γ − e−x

−β
i

)[(
1−e−x

−β
i

1−γe−x
−β
i

)α
−
(

1−e−x
−β
i−1

1−γe−x
−β
i−1

)α] = 0.

The above equations are in complex form, and solving these equations analytically is
challenging. Thus, Newton-Raphson iterative numerical methods have been used to solve
these equations. We discuss the Bayesian framework for estimating model parameters
in the following section.

5 Bayesian Estimation

This section explores the Bayesian estimation of the model parameters under progres-
sively censored data. We focus on deriving Bayesian estimates using the LF and PS
with associated credible intervals. Bayesian inference is highly dependent on the choice
of prior distributions. However, no specific guidelines exist for choosing optimal priors
for unknown parameters. We have used INIP for estimation purposes. The squared error
loss function (SELF) has been considered in this section, but one can also use alternative
loss functions for estimation purposes. In SELF, overestimations and underestimations
are treated equally, and errors are handled quadratically, so larger errors have a much
greater impact than smaller ones. As a result, SELF is very sensitive to deviations from
the actual parameter value. SELF can be defined as L(ζ, ζ̂) = (ζ − ζ̂)2, where ζ̂ denote
the estimated value of parameter ζ = (α, β, γ).
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5.1 Informative and non-informative Prior

In this subsection, we use piecewise independent gamma priors for the model parame-
ters α and β, while non-informative prior has been used for γ. It is important to note
that Jeffrey’s priors are challenging due to the complex nature of the Fisher information
matrix. Therefore, we have used independent gamma priors. A gamma prior is flexible
since it can accommodate informative and non-informative priors by selecting the ap-
propriate hyper-parameters. Furthermore, depending on the parameter values, it offers
flexibility in their shape. Additionally, independent gamma priors are simple, which can
reduce computational complexity. As a result, we can adopt it as appropriate prior to
the model parameter. Thus, the prior of α, β, and γ are given as

π1(α) ∝ αa1−1e−a2α, α, a1, a2 > 0;

π2(β) ∝ βb1−1e−b2β, β, b1, b2 > 0; π3(γ) ∝ 1, −∞ < γ < 1.

Where (a1, a2) and (b1, b2) are the hyper-parameters of α and β respectively. The joint
prior for ζ can be written as

π(ζ) ∝ αa1−1βb1−1e−a2α−b2β.

5.1.1 Using likelihood function

Following the Bayes theorem, based on the likelihood function (17), the joint posterior
density of α, β and γ can be written as

π∗
1(ζ|x) ∝ αa1+m−1βb1+m−1(1− γ)me−a2α−b2β

m∏
i=1

x−β−1
i e−x

−β
i

(
1− e−x

−β
i

)α−1+αRi
(
1− γe−x

−β
i

)−α−1−αRi
.

The conditional posterior density (CPD) of α, β and γ can be written as

π∗1(α|β, γ, x) ∝ αa1+m−1e
−α
(
a2−

∑m
i=1(1+Ri) log(1−e

−x−β
i )+(1+Ri) log(1−γe−x

−β
i )

)
, (23)

π∗1(β|α, γ, x) ∝ βb1+m−1eb2β
m∏
i=1

x−β−1
i e−x

−β
i

(
1− e−x

−β
i

)α−1+αRi (
1− γe−x

−β
i

)−α−1−αRi
,

(24)

π∗1(γ|α, β, x) ∝ (1− γ)m
m∏
i=1

(
1− γe−x

−β
i

)−α−1−αRi
. (25)

From the above equations (23)-(25), we can see that the CPD of α can be written
as a gamma density function. Whereas the CPDs of β and γ can not be expressed
in any well-known distribution. So, it is difficult to generate the samples of β and γ
directly. However, the CPD plots of β and γ are presented in Figure (2). It shows
that these distributions follow a nearly symmetrical pattern. Therefore, a Markov chain
Monte Carlo (MCMC) method, Metropolis-Hastings (MH) algorithm, has been used to
generate MCMC samples. So, we can use here Gibbs sampling with the MH algorithm
to find the Bayes estimates. The algorithm procedure is given in subsection (5.1.3).
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Figure 2: CPD plot of β and γ based on LF

5.1.2 Using product spacing function

As we have obtained the Bayes estimates using LF, in a similar way, the joint posterior
density of α, β and γ based on a PS function (22) can be written as

π∗2(ζ|x) ∝ αa1−1βb1−1e−a2α−b2β

(
1− 1− e−x

−β
1

1− γe−x
−β
1

)α(
1− e−x

−β
m

1− γe−x
−β
m

)α
m∏
i=2

[(
1− e−x

−β
i−1

1− γe−x
−β
i−1

)α
−

(
1− e−x

−β
i

1− γe−x
−β
i

)α] m∏
i=1

(
1− e−x

−β
i

1− γe−x
−β
i

)αRi
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The CPD of α, β and γ can be written as

π∗2(α|β, γ, x) ∝ αa1−1e−a2α

(
1− 1− e−x

−β
1

1− γe−x
−β
1

)α(
1− e−x

−β
m

1− γe−x
−β
m

)α
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i=2
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−β
i−1

1− γe−x
−β
i−1

)α
−

(
1− e−x

−β
i

1− γe−x
−β
i

)α] m∏
i=1

(
1− e−x

−β
i

1− γe−x
−β
i

)αRi
, (26)

π∗2(β|α, γ, x) ∝ βb1−1e−b2β

(
1− 1− e−x
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−β
1

)α(
1− e−x

−β
m
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1− e−x

−β
i−1

1− γe−x
−β
i−1

)α
−

(
1− e−x

−β
i

1− γe−x
−β
i

)α] m∏
i=1

(
1− e−x

−β
i

1− γe−x
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π∗2(γ|α, β, x) ∝

(
1− 1− e−x
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. (28)

The CPDs for α, β and γ, as given in equations (26)-(28) can not be expressed in
any standard statistical distribution. However, from the CPDs plot presented in Figure
(3), we can use the normal distribution to generate posterior samples. We use the MH
algorithm to find the Bayes estimates. A hybrid MCMC algorithm is given in the next
subsection to obtain the Bayes (point or interval) estimates for model parameters.
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Figure 3: CPD plot of α, β and γ based on PS

5.1.3 Hybrid MCMC Algorithm

In this subsection, we introduced the MCMC algorithm that integrates Gibbs sampling
and the MH algorithm. The Gibbs sampling method is employed for updating the
parameter α, while the MH algorithm is utilized to update the parameters β and γ.
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The process for generating MCMC samples based on the LF of α, β and γ involves the
following steps:

1. Set the initial guesses (α(0), β(0), γ(0)) = (α̂, β̂, γ̂).

2. Set p = 1.

3. Obtain αp from Gamma
(
m+ a1,

(
a2 −

∑m
i=1(1 +Ri) log(1− e−x−β

i ) + (1 +Ri) log(1− γe−xβ
i )
))

.

4. Obtain β∗ and γ∗ from N(β̂, var(β̂)) and N(γ̂, var(γ̂)), respectively, then apply the
MH algorithm as follows:

a) Calculate

Rβ =
π∗1
(
β∗
∣∣αp, γp−1, x

)
π∗1 (β

p−1|αp, γp−1, x)
and Rγ =

π∗1
(
γ∗
∣∣αp, βp−1, x

)
π∗1 (γ

p−1|αp, βp−1, x)
.

b) Obtain Wβ = min{1, Rβ} and Wγ = min{1, Rγ}.
c) Obtain u1 and u2 from the uniform U(0, 1) distribution.

d) If u1 ≤ Wβ, set β
p = β∗, else set βp = βp−1. Similarly, if u2 ≤ Wγ , set

γp = γ∗, else set γp = γp−1.

5. Set p = p+ 1.

6. Repeat steps (3-5) G times in order to obtain enough observations.

To obtain the desired estimates, we first discard the initial G0 samples to eliminate any
potential bias from the initial values or burn-in period. This process ensures that the
remaining samples are more representative of the target distribution. The estimates
for the parameters α, β, and γ under the SELF are then calculated as follows: α̂ =

1
G−G0

∑G
p=G0+1 α

p, β̂ = 1
G−G0

∑G
p=G0+1 β

p and γ̂ = 1
G−G0

∑G
p=G0+1 γ

p.
To develop the Bayesian MCMC estimates using the PS function for parameters such

as α, β, and γ. We can easily follow the same steps of the MH algorithm as discussed
in subsection (5.1.3).

5.2 Credible Interval

The following steps have been followed to obtain the Bayesian credible intervals (CIs)
for model parameters (α, β, γ):

1. Arrange αp, βp and γp in increasing order for p = 1, . . . , G−G0.

2. Determine the level of significance ψ.

3. We can get the (1 − ψ)% CIs for α, β and γ as

(
α

[
ψ(N−N0)

2

]
, α[(G−G0)(1−ψ

2
)]
)
,(

β

[
ψ(G−G0)

2

]
, β[(G−G0)(1−ψ

2
)]
)

and

(
γ

[
ψ(G−G0)

2

]
, γ[(G−G0)(1−ψ

2
)]
)
.

Using the above steps, we can obtain the CIs of model parameters in both LF and PS
approaches.
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6 Simulation Study

A Monte Carlo simulation is used in this section to compare the results of the above
estimation method for MLIIFr under progressively censored data. We have generated
a progressively Type-II censored sample, (x1, . . . , xm) by using a pre-fixed censoring
scheme (R1, . . . , Rm). For sample generation, we have used the algorithm proposed by
Balakrishnan and Sandhu (1995). The following censoring schemes have been used in
simulations:

Scheme I: R =
(
n−m, 0∗m−1

)
,

Scheme II: R =
(
0∗m−1, n−m

)
,

Scheme III: R =

(
n−m

2
, 0∗m−2,

n−m

2

)
.

This study calculates point and interval estimations based on the above censoring schemes
and different combinations of (n,m). The estimates of model parameters have been cal-
culated for classical and Bayesian frameworks. ACIs and CIs have been obtained using
MLE and Bayes estimates under INIP via LF and PS. In addition, interval estimation is
calculated for a significance level of ψ = 0.05. The actual value of the model parameter
is taken (α, β, γ) = (1.05, 1.45, 0.65). The value of hyper parameters (a1, a2) = (2.1, 2)
and (b1, b2) = (4, 2.75) has been taken for informative prior in Bayesian estimates. We
select hyper-parameters in such a way that the prior mean corresponds to the expected
value of each parameter. A more detailed explanation can be found in Kundu (2008).
The simulation is performed 1000 times for each combination of (n,m) and scheme.
The simulations have been conducted using R software. Table 1 provides the average
estimates and mean squared errors (MSEs) using MPSE. Table 2 provides the point
and interval estimates along with ACIs and coverage probabilities (CPs) using MLE.
Parameter estimates and associated MSEs of model parameters in the Bayesian frame-
work, along with CIs and CPs, are noted in Table 3 and 4 via LF and PS, respectively.
MSEs have been used to compare point estimates, while interval estimates are compared
through interval lengths. The difference between upper and lower bounds determines
the interval length. In the classical framework, the MSEs using MPSE are lower than
MLE, as seen in Table 1 and 2. In the Bayesian framework, Table 3 and 4 show that
Bayes estimates via PS have smaller MSEs than via LF in most cases. Further, the MSE
value is minimal compared to all methods when we use Bayes estimates via PS in most
cases. In addition, we can also observe that by decreasing the value of m for a fixed
n, MSEs value increases in most cases as shown in Table 1-4 and MSEs decreases by
increasing the value of n. In interval estimation, we can see from Table 2-4 that the
interval lengths of CIs are shorter than ACIs, and CPs are at a nominal level in both
methods. CPs of confidence intervals are often nearly identical to their actual values of
0.95.



420 Prakash et al.

Table 1: Average estimates and MSEs for various combinations of (n,m) by using MPSE

n m R α̂ MSE(α) β̂ MSE(β) γ̂ MSE(γ)

35 30 I 1.0878 0.2412 1.6311 0.1852 0.7232 0.0537

25 1.0557 0.2514 1.6711 0.1873 0.7228 0.0601

20 0.9941 0.2538 1.6859 0.2035 0.7394 0.0694

35 30 II 0.9196 0.2193 1.7091 0.1361 0.6753 0.0562

25 0.9120 0.2282 1.6232 0.1436 0.7202 0.0655

20 0.9371 0.2487 1.6195 0.1484 0.7683 0.0685

35 30 III 0.9559 0.2316 1.6994 0.1667 0.6613 0.0547

25 0.8962 0.2497 1.6682 0.1768 0.6854 0.0626

20 0.8892 0.2638 1.6684 0.2035 0.7141 0.0694

45 40 I 1.0617 0.1715 1.6563 0.1202 0.6746 0.0508

35 1.1105 0.1834 1.6505 0.1543 0.7079 0.0531

30 1.0305 0.2316 1.6965 0.1694 0.7043 0.0564

45 40 II 0.9733 0.1734 1.6661 0.1233 0.6492 0.0496

35 0.9327 0.1996 1.6538 0.1273 0.6726 0.0516

30 0.9544 0.2097 1.6099 0.1334 0.7298 0.0563

45 40 III 0.9912 0.2009 1.6865 0.1184 0.6544 0.0481

35 0.9431 0.2048 1.6839 0.1231 0.6473 0.0582

30 0.9384 0.2155 1.6534 0.1329 0.6774 0.0598

55 50 I 1.1108 0.1351 1.6401 0.1169 0.6784 0.0382

45 1.1278 0.1498 1.6404 0.1251 0.6914 0.0401

40 1.1301 0.1504 1.6437 0.1276 0.6955 0.0475

55 50 II 0.9902 0.1479 1.6713 0.0958 0.6401 0.0449

45 0.9783 0.1654 1.6373 0.1013 0.6502 0.0569

40 0.9404 0.1896 1.6204 0.1203 0.6617 0.0561

55 50 III 1.0242 0.1537 1.6741 0.0811 0.6389 0.0327

45 0.9759 0.1775 1.6646 0.0944 0.6372 0.0486

40 0.9788 0.1855 1.6401 0.1073 0.6646 0.0518

7 Application

In this section, we demonstrate the usefulness and flexibility of the MLIIFr distribution
using mortality data of Japanese children under five years. Also, the performance of
the MLIIFr distribution is compared with other distributions. The performance of the
distributions about providing better parametric fit to the dataset is compared using the
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Cramér-von
Misses (W ∗), Anderson-Darling (A∗) and Kolmogorov-Smirnov (KS) statistics. The dis-
tribution with the least value of these measures provides a reasonable fit to the dataset.
The fit for the MLIIFr distribution is compared with other distributions, including the
two-parameters Weibull, Fréchet, Weibull exponential (WE), Power-Lomax, Dagum and
Modified Lehmann Type-II Exponential (MLII-Ex) distributions. The CDFs of the com-
peting models are presented in Table 5. The data consists of the mortality rate of children
in Japan under five years of age from 1976 to 2022. The data has been represented in
Table 6 and taken from https://data.worldbank.org/indicator/SH.DYN.MORT
(accessed on 29 Aug 2024). Table 7 shows the goodness of fit and information criteria
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Table 2: Average estimates, MSEs, ACIs and CPs for various combinations of (n,m) by
using MLE

n m R α̂ β̂ γ̂ ACI(α) ACI(β) ACI(γ)

35 30 I 1.0863 1.5441 0.6236 (0.4441,1.7284) (0.8003,2.2877) (0.0503,0.9691)

0.2824 0.1991 0.1164 84.5 90.8 86.6

25 1.0631 1.5282 0.6061 (0.4290,1.6970) (0.7846,2.2718) (0.0430,0.9551)

0.2915 0.2051 0.1212 83.8 90.2 83.4

20 1.0961 1.5189 0.6551 (0.4650,1.7270) (0.7754,2.2624) (0.0549,1.2550)

0.3112 0.2089 0.1303 81.4 93.3 81.9

35 30 II 1.0653 1.4991 0.6988 (0.4829,1.6476) (0.79949,2.1985) (0.0764,0.9821)

0.2331 0.1472 0.0941 80.7 86.7 84.1

25 1.0699 1.5194 0.7573 (0.5091,1.6307) (0.8112,2.2276) (0.1413,0.9723)

0.2438 0.1576 0.1034 78.7 94.1 82.2

20 0.9823 1.5312 0.7945 (0.4009,1.5637) (0.8063,2.2558) (0.1504,0.9385)

0.2616 0.1744 0.1112 94.1 94.8 86.2

35 30 III 1.0536 1.5273 0.6299 (0.4186,1.6887) (0.7837,2.2710) (0.0253,0.96346)

0.2481 0.1916 0.1354 88.3 89.5 85.8

25 1.1338 1.4989 0.6928 ( 0.5649,1.7027) (0.7936,2.2042) (0.0815,0.9041)

0.2661 0.1941 0.1483 86.4 84.4 78.3

20 0.9791 1.5825 0.6756 (0.3700,1.5882) (0.7859,2.3792) (0.0747,0.8959)

0.2884 0.2221 0.1709 78.9 89.6 87.8

45 40 I 1.1426 1.5367 0.5686 (0.4401,1.8452) (0.8794,2.1940) (0.0174,0.9548)

0.1821 0.1344 0.0887 83.5 93.1 88.2

35 1.1311 1.5087 0.6337 (0.4984,1.7636) (0.8517,2.1658) (0.1206,0.9468)

0.1921 0.1604 0.1021 83.7 87.2 77.4

30 1.1214 1.5329 0.5896 (0.5240,1.7179) (0.8776,2.1882) (0.0284,0.8508)

0.2523 0.1843 0.1121 87.2 86.3 79.2

45 40 II 1.1621 1.4681 0.6929 (0.5269,1.7973) (0.8547,2.0816) (0.2348,0.9510)

0.1976 0.1417 0.0885 83.4 89.9 83.4

35 1.0387 1.4996 0.6813 (0.4478,1.6295) (0.8760,2.1232) (0.1212,0.92414)

0.2142 0.1592 0.0931 83.1 92.3 87.2

30 1.1021 1.4371 0.6803 (0.4907,1.7094) (0.8315,2.0424) (0.0335,0.9743)

0.2567 0.1736 0.1047 83.9 88.2 81.2

45 40 III 1.0588 1.6152 0.5935 (0.3437,1.7739) (0.8996,2.3308) (0.0380,0.9650)

0.2071 0.1474 0.1114 85.2 95.1 91.3

35 1.0659 1.5876 0.6182 (0.4349,1.6969) (0.8898,2.2855) (0.0161,0.8204)

0.2128 0.1547 0.1227 82.7 87.6 82.8

30 1.1262 1.5336 0.6995 (0.4913,1.7611) (0.8549,2.2124) (0.1374,0.9616)

0.2215 0.1625 0.1433 88.1 93.5 84.8

55 50 I 1.1318 1.5099 0.6147 (0.4511,1.8125) (0.9300,2.0899) (0.1519,0.9865)

0.1621 0.1136 0.0689 88.2 89.4 86.4

45 1.0621 1.5647 0.5675 (0.4260,1.6981) (0.9682,2.1612) (0.0649,0.9700)

0.1346 0.1316 0.0841 80.9 92.9 83.7

40 1.1243 1.4738 0.6404 (0.4774,1.7625) (0.9080,2.0395) (0.1934,0.9874)

0.1158 0.1318 0.0933 85.3 86.4 78.8

55 50 II 1.1268 1.5138 0.6274 (0.4552,1.7984) (0.9317,2.0958) (0.1427,0.9008)

0.1774 0.1006 0.0743 82.1 91.2 84.7

45 1.0444 1.5286 0.6341 (0.4192,1.6697) (0.9427,2.1146) ( 0.0903,0.9778)

0.1856 0.1163 0.1019 82.3 87.4 86.5

40 1.1449 1.4419 0.6618 (0.5287,1.7611) (0.8910,1.9928) (0.0491,0.9644)

0.1968 0.1214 0.1088 81.8 92.1 81.5

55 50 III 1.0667 1.5941 0.6041 (0.4146,1.7189) (0.9772,2.2107) (0.1161,0.9091)

0.1974 0.0929 0.0773 79.9 89.2 89.6

45 1.0787 1.5168 0.6341 (0.3973,1.7602) (0.9075,2.1261) (0.1248,0.8643)

0.1993 0.1087 0.0971 85.2 91.5 91.2

40 1.0782 1.5404 0.6201 (0.4917,1.6647) (0.9470,2.1339) (0.0349,0.9154)

0.2064 0.1099 0.1014 86.1 89.2 90.2
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Table 3: Average estimates, MSEs, CIs and CPs for various combinations of (n,m) by
Bayes estimation using LF

n m R α̂ β̂ γ̂ CI(α) CI(β) CI(γ)

35 30 I 1.0335 1.5841 0.5984 (0.6996,1.4337) (1.5334,1.6396) (0.5478,0.6538)

0.1043 0.0039 0.0044 98.25 96.16 97.72

25 1.0443 1.3822 0.6947 (0.7931,1.6089) (1.4368,1.6269) (0.4460,0.6383)

0.1233 0.0046 0.0049 94.57 97.35 95.63

20 1.1268 1.4285 0.5996 (0.7013,1.6538) (1.3670,1.5867) (0.5363,0.6536)

0.1448 0.0056 0.0054 91.67 98.28 95.26

35 30 II 1.0937 1.3864 0.6285 (0.7445,1.5100) (1.3193,1.5473) (0.4945,0.6802)

0.0947 0.0036 0.0039 93.34 97.92 94.71

25 1.1016 1.5316 0.6271 (0.7090,1.6057) (1.4670,1.5957) (0.5677,0.6898)

0.1032 0.0045 0.0043 96.52 94.87 98.17

20 1.1903 1.4425 0.6124 (0.7225,1.6031) (1.4393,1.5412) (0.5590,0.7799)

0.1197 0.0053 0.0052 95.52 97.38 94.98

35 30 III 1.1313 1.4417 0.5805 (0.7677,1.5677) (1.1922,1.5919) (0.4860,0.6914)

0.1036 0.0044 0.0043 97.25 97.71 98.89

25 1.0598 1.4528 0.5995 (0.6903,1.5167) (1.2983,1.5885) (0.4394,0.6558)

0.1097 0.0061 0.0051 95.72 98.96 99.23

20 1.1621 1.3969 0.6957 (0.6128,1.5123) (1.3442,1.5535) (0.6402,0.7499)

0.1134 0.0072 0.0061 93.62 96.82 97.37

45 40 I 1.0688 1.6145 0.6384 (0.7605,1.4362) (1.6549,1.7673) (0.4785,0.6978)

0.0643 0.0031 0.0033 95.82 98.51 98.92

35 1.0511 1.4782 0.6507 (0.6782,1.4213) (1.4198,1.5385) (0.5978,0.7018)

0.0795 0.0037 0.0036 98.36 96.26 98.12

30 1.1122 1.5901 0.6136 (0.7482,1.5504) (1.4343,1.7429) (0.5529,0.6678)

0.0811 0.0041 0.0041 98.06 96.82 99.24

45 40 II 1.0838 1.3897 0.6041 (0.8031,1.6872) (1.3332,1.5415) (0.5475,0.7507)

0.0753 0.0029 0.0029 95.81 97.96 95.82

35 1.0285 1.4579 0.6832 (0.7181,1.3987) (1.3987,1.6117) (0.4396,0.7445)

0.0787 0.0034 0.0032 98.82 96.72 98.26

30 1.1036 1.4003 0.7111 (0.7567,1.8553) (1.3434,1.6603) (0.5398,0.7763)

0.0827 0.0039 0.0039 96.27 98.17 95.92

45 40 III 1.0897 1.5527 0.6301 (0.7212,1.3455) (1.3942 ,1.7063) (0.5021,0.7008)

0.0682 0.0035 0.0035 98.95 95.29 94.98

35 1.1104 1.5682 0.6613 (0.7381,1.5978) (1.4288,1.7429) (0.5142,0.7209)

0.0727 0.0043 0.0039 96.37 98.71 96.26

30 0.9605 1.5256 0.6638 (0.6504,1.3307) (1.4719,1.5808) (0.5180,0.7131)

0.0758 0.0052 0.0045 98.45 97.68 96.88

55 50 I 1.0136 1.5347 0.7178 (0.7348,1.3542) (1.4787,1.5844) (0.5685,0.7847)

0.0234 0.0017 0.0028 96.47 97.85 97.73

45 1.0372 1.4638 0.6894 (0.7540,1.3722) (1.4120,1.6150) (0.4319,0.7364)

0.0341 0.0024 0.0031 95.67 96.33 97.88

40 1.1205 1.4094 0.6985 (0.7735,1.5378) (1.3500,1.5695) (0.4944,0.7521)

0.0503 0.0032 0.0037 95.82 97.35 96.68

55 50 II 1.0186 1.5314 0.6136 (0.8179,1.5502) (1.3502,1.5762) (0.4656,0.7540)

0.0212 0.0015 0.0025 95.36 98.07 96.17

45 1.0922 1.5271 0.6554 (0.7839,1.4633) (1.3666,1.5838) (0.4981,0.7116)

0.0254 0.0023 0.0029 94.82 98.36 96.59

40 1.1086 1.5789 0.6236 (0.7829,1.2316) (1.3125,1.6526) (0.4683,0.7755)

0.0324 0.0029 0.0033 97.38 95.97 94.92

55 50 III 1.0489 1.5213 0.6639 (0.7769,1.3641) (1.3225,1.6223) (0.5171,0.7107)

0.0227 0.0021 0.0028 98.88 95.91 95.63

45 1.0796 1.4684 0.6811 (0.896,1.3754) (1.4219,1.6864) (0.4276,0.7378)

0.0322 0.0027 0.0036 96.96 98.37 96.84

40 1.0598 1.5638 0.6177 (0.7564,1.4197) (1.4138,1.6201) (0.3570,0.6760)

0.0408 0.0034 0.0039 97.93 97.85 95.55
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Table 4: Average estimates, MSEs, CIs and CPs for various combinations of (n,m) by
Bayes estimation using PS

n m R α̂ β̂ γ̂ CI(α) CI(β) CI(γ)

35 30 I 1.0512 1.4075 0.5854 (0.5171,1.2482) (1.4321,1.6812) (0.4906,0.6532)

0.0823 0.0025 0.0033 98.27 95.18 95.92

25 0.9053 1.4177 0.5739 (0.4499,1.1535) (1.4217,1.6366) (0.5228,0.6601)

0.0924 0.0031 0.0036 95.88 97.38 98.79

20 0.8772 1.4953 0.5649 (0.5175,1.1285) (1.3451,1.6454) (0.4994,0.6561)

0.1061 0.0038 0.0041 99.03 95.27 96.83

35 30 II 1.0731 1.5373 0.6018 (0.6837,1.1898) (1.3763,1.5916) (0.4439,0.6601)

0.0749 0.0021 0.0031 96.96 98.63 97.95

25 1.1606 1.4261 0.5816 (0.5321,1.2180) (1.4056,1.5211) (0.5134,0.6537)

0.0834 0.0027 0.0036 97.92 97.65 95.85

20 0.8729 1.4943 0.6166 (0.4188,1.1923) (1.4267,1.5655) (0.5848,0.6503)

0.0947 0.0032 0.0039 95.16 99.37 96.77

35 30 III 1.0725 1.4409 0.5829 (0.4027,1.1357) (1.3746,1.5157) (0.5280,0.6643)

0.0946 0.0027 0.0037 97.96 95.88 98.91

25 0.9706 1.4832 0.6992 (0.5354,1.0930) (1.4656,1.5878) (0.6397,0.7541)

0.1021 0.0031 0.0041 95.29 98.55 97.63

20 1.1024 1.5262 0.6867 (0.5161,1.3727) (1.4562,1.5664) (0.6172,0.7505)

0.1093 0.0041 0.0048 98.47 99.26 96.91

45 40 I 1.0556 1.4121 0.6717 (0.6027,1.0794) (1.3524,1.5613) (0.6421,0.7475)

0.0539 0.0016 0.0023 95.72 98.36 95.99

35 0.8994 1.5066 0.6794 (0.6366,1.1969) (1.4503,1.6602) (0.6116,0.7252)

0.0645 0.0019 0.0027 97.74 95.85 99.63

30 1.1851 1.5216 0.6259 (0.6270,1.1419) (1.4550,1.5920) (0.5727,0.6860)

0.0679 0.0023 0.0031 95.79 98.16 97.19

45 40 II 1.0883 1.5283 0.6303 (0.6450,1.1543) (1.4707,1.5775) (0.5783,0.6733)

0.0582 0.0019 0.0021 95.09 97.61 98.87

35 1.0353 1.4171 0.6331 (0.5839,1.0928) (1.3648,1.4706) (0.5752,0.6891)

0.0623 0.0021 0.0036 98.94 95.82 97.18

30 1.0516 1.5806 0.6089 (0.5909,1.1047) (1.5220,1.6384) (0.5512,0.6748)

0.0732 0.0026 0.0041 99.01 98.52 95.99

45 40 III 1.0812 1.3849 0.7135 (0.5863,1.1255) (1.3416,1.4280) (0.6123,0.7674)

0.0613 0.0019 0.0028 95.26 98.88 97.71

35 0.9812 1.4133 0.6973 (0.6202,1.1353) (1.40613,1.5016) (0.5201,0.7157)

0.0749 0.0021 0.0031 97.91 99.16 95.86

30 1.1336 1.5082 0.6731 (0.6581,1.1962) (1.4468,1.5720) (0.6202,0.7254)

0.0812 0.0025 0.0038 96.58 97.91 95.82

55 50 I 1.0878 1.4397 0.6632 (0.6311,1.1406) (1.3676,1.4700) (0.5558,0.6715)

0.0133 0.0011 0.0018 98.92 97.31 95.83

45 1.1272 1.4662 0.6553 (0.6080,1.1823) (1.4065,1.5359) (0.5975,0.7085)

0.0173 0.0012 0.0024 94.99 98.97 98.12

40 1.2336 1.4655 0.6593 (0.6304,1.1964) (1.4140,1.5186) (0.6018,0.7068)

0.0274 0.0015 0.0026 97.51 96.16 96.93

55 50 II 0.9616 1.5055 0.6962 (0.7109,1.2155) (1.4606,1.5521) (0.6305,0.7537)

0.0254 0.0009 0.0014 95.05 98.62 97.35

45 1.1023 1.4182 0.6814 (0.7550,1.1645) (1.3648,1.4725) (0.6275,0.7364)

0.0312 0.0012 0.0018 99.86 97.15 95.72

40 1.1065 1.5062 0.6644 (0.7255,1.1601) (1.4446,1.5662) (0.5982,0.7002)

0.0419 0.0013 0.0023 95.93 97.45 98.23

55 50 III 1.0521 1.4722 0.6612 (0.6523,1.1427) (1.4119,1.5281) (0.5673,0.6948)

0.0265 0.0013 0.0017 98.52 95.65 97.41

45 1.1015 1.4963 0.6915 (0.6148,1.1573) (1.4483,1.5430) (0.6211,0.7230)

0.0289 0.0013 0.0019 95.14 98.52 98.05

40 0.9546 1.4746 0.6379 (0.5909,1.1145) (1.4154,1.5274) (0.6196,0.7160)

0.0345 0.0016 0.0026 96.64 98.07 97.82
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of the fitted distributions. It can be seen that the MLIIFr distribution provides a rea-
sonable fit to the dataset among the other distributions fitted since it has the least AIC,
BIC, K-S, A∗, W ∗ and −2 logL values. Also, the p value is the maximum in the case
of MLIIFr distribution than others. Figure 4 shows the QQ, empirical, and histogram
plots for the Data. Using QQ plots, data can be assessed by comparing sample quan-
tiles (blue dots) with theoretical quantiles (red line). An alignment of the points along
the red line indicates a good fit. Yellow shading indicates the 95% bootstrap interval,
which indicates the range of expected variation. Deviations within expected variability
lie in this area, while those beyond are outside the theoretical distribution. As we can
see from the QQ plot, most points are within the bootstrap interval. Furthermore, the
empirical CDF plot shows that the data fits the MLIIFr distribution well. As seen in
the histogram, there is a peak at the lower values followed by a long tail at the higher
values. Additionally, the PDF plot shows that MLIIFr distribution is useful in modelling
data with heavy tails and asymmetry.

To study under Type-II PCS, we assumed m = 31. We have noted the reading for
all censoring schemes R discussed in section 6. Both classical and Bayesian methods
have been used to calculate the estimates for data, and results are noted in Table 8.
We can see that CI has a shorter interval length than ACI. The real data estimates are
consistent with the simulation study. Further, we generated 15000 MCMC samples of
(α, β, γ) using LF for trace and histogram plots based on all three schemes. Each trace
and histogram plot presented in Figures (5)-(7), the symmetric Bayes estimate and its
bounds of 95% CI are expressed by solid red horizontal lines. In addition, the Bayes
estimates are plotted with dashed blue vertical lines in histogram plots. As a result, we
can conclude that the proposed estimation methodologies based on data provide a good
demonstration of the modified Lehmann Type-II Fréchet distribution lifetime model.

Table 5: Competing distributions

Model CDF

1. Weibull F (x) = 1− e−βx
α
, x ≥ 0, α, β > 0.

2. Fréchet F (x) = e−αx
−β
, x ≥ 0, α, β > 0.

3. Dagum F (x) = (1 + λx−α)−β, x ≥ 0, α, β, λ > 0.

4. WE F (x) = 1− e
−
(
αβx
γ

)k
, x ≥ 0, α, β, γ, k > 0.

5. MLII-Ex F (x) = 1−
(

e−θx

1−α+αe−θx

)β
, x ≥ 0,−∞ < α < 1, θ, β > 0.

6. Power-Lomax F (x) = 1− λα
(
xβ + λ

)−α
, x ≥ 0, α, β, λ > 0.
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Table 6: Japan’s infant mortality rate from 1976 to 2022

12.5 11.8 11.1 10.5 9.9 9.3 8.8 8.3 7.9 7.5 7.1 6.8 6.6 6.5 6.3 6.2

6.1 6.0 5.9 5.7 5.5 5.2 5.0 4.7 4.5 4.3 4.1 4.0 3.9 3.7 3.6 3.5

3.4 3.3 3.2 3.2 3.0 2.9 2.8 2.8 2.7 2.6 2.5 2.5 2.4 2.3 2.3

Table 7: Information criteria and goodness of fit of Data

Model −2 logL AIC BIC W ∗ A∗ KS (p value)

MLIIFr 216.6489 222.6458 228.1962 0.1070 0.6987 0.0852(0.8838)

Dagum 232.9447 228.9447 264.4952 0.1270 0.8120 0.1099(0.6230)

Fréchet 251.5899 255.5899 259.2902 0.1082 0.8279 0.2663(0.0025)

Power-Lomax 217.6711 223.6711 229.2215 0.1097 0.7848 0.1066(0.6597)

WE 219.6698 227.6698 235.0704 0.1378 0.9619 0.1141(0.5734)

Weibull 219.6697 223.6697 229.3700 0.1378 0.9613 0.1145(0.5692)

MLII-Ex 252.9192 258.9198 264.4698 1.8926 10.1589 0.3554(0.0002)
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Figure 4: QQ plot (left), empirical CDF plot (centre) and histogram plot (right) for Data

Table 8: Parameter estimates based on PCS for Data using the proposed methods

Scheme Parameter MLE MPSE INIP(LF) INIP(PS) CI(LF) CI(PS) ACI

I α 0.9641 1.1603 0.9304 0.9936 (0.6176,1.4191) (0.7797,1.1692) (0.0000,2.8617)

β 3.5462 3.4273 3.5231 3.2216 (3.0917,3.9954) (3.0273,3.4446) (0.9289,6.1632)

γ 0.9968 0.9971 0.9959 0.9984 (0.9921,0.9985) (0.9977,0.9991) (0.9912,0.9999)

II α 0.1408 0.1406 0.1392 0.1252 (0.1128,0.1734) (0.1023,0.1520) (0.0721,0.2094)

β 5.2861 5.3054 5.2681 5.2712 (4.7727,5.7815) (5.2385,5.2996) (4.2133,6.3587)

γ 0.9967 0.9971 0.9957 0.9975 (0.9912,0.9985) (0.9966,0.9985) (0.9917,0.9999)

III α 0.2254 0.2287 0.2227 0.2601 (0.1658,0.3076) (0.2306,0.2981) (0.0579,0.3928)

β 4.9853 4.9839 5.0027 4.9553 (4.3076,5.7748) (4.9408,4.9818) (2.7445,7.2262)

γ 0.9971 0.9973 0.9963 0.9981 (0.9917,0.9989) (0.9973,0.9986) (0.9908,0.9999)
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Figure 5: Trace and histogram plots of parameters for scheme I using INIP via LF
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Figure 6: Trace and histogram plots of parameters for scheme II using INIP via LF
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Figure 7: Trace and histogram plots of parameters for scheme III using INIP via LF

8 Conclusion

This study introduced a new three-parameter Fréchet distribution known as the Modified
Lehmann Type-II Fréchet (MLIIFr) distribution via the modified Lehmann Type-II class
of distribution. Some essential properties of the proposed distribution are studied. The
model parameters have been estimated under a Type-II progressive censoring scheme
using multiple estimation techniques, including MLE, MPSE, and Bayesian estimation
with INIP via likelihood and product spacing functions. Additionally, ACIs and CIs
have been obtained using MLE and INIP-based approaches. Monte Carlo simulations
were employed to derive and compare the inferential results. Our findings indicate that
the Bayesian estimation method via product spacing yielded the lowest MSEs across the
various estimation techniques. Regarding interval estimation, the CIs showed shorter
lengths than the ACIs, while CPs were satisfactory for both. The applicability of the
MLIIFr distribution has been demonstrated using real-life data on the mortality rates
of Japanese children under five years of age. Furthermore, the goodness of fit of the
model was compared with five other distributions, and the MLIIFr distribution provided
a superior fit to the data. This indicates that the proposed distribution can be effectively
used to analyze real-world data sets. As a direction for future research, the inferential
methodologies proposed in this study can be extended to other lifetime models by apply-
ing different censoring schemes, such as block censoring and unified progressive hybrid
censoring. These alternative schemes may provide further insights and enhance the ap-
plicability of the proposed approaches across various statistical models and real-world
data sets.
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