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The probability distribution is of great significance in probability the-
ory, which is inherent in virtually all the branches of science. It is said
to be used selectively in actuarial science with reference to insurance and
finance, medicine, agriculture, demography and econometrics. However, the
main contribution of the current research work is to propose a new distri-
bution called as neutrosophic exponentiated power Lomax distribution or
briefly NEPL. Several other mathematical characteristics that describe life
survival and the related characteristics, such as hazard rate and functions
and moment-generating functions and other tests of mean, variance, and
standard deviation, asymmetry and kurtosis, have been built and analyzed.
Monte Carlo method has been applied also to assess the efficiency of NEPL
distribution estimate. Therefore, the results of the simulation carried out
for this study reveal that the process of estimating with reasonable degree of
accuracy is feasible only when the size of the sample is comparatively large.
The existence of the premature infant staying time data has been utilised
to illustrate the specific manner in which the elaborated NEPL distribution
has been suggested for being applied. Based on the discussions of the pre-
vious sections, it can be deduced that the NEPL distribution is also general
in terms of its applications because it can deal with all forms of data that
is, it does not distinguish between certainty, probabilities of uncertainties,
ambiguties or imprecisions.
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©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



84 Al-Mutar,Algamal

1 Introduction

Neutrosophy, philosophical and mathematical formation, was created by Florentin Smaran-
dache (Smarandache, 1999). As for the general themes, it refers to the interaction of
opposites on the one hand and the issue of the study of indeterminacy on the other
hand. Consequently, there appears a new set of approaches, neoclassical logic and set
theory, which are the extensions of classical logic and set theory and aim at solving the
problems of inconsistency, indeterminacy, and imperfect information.

The basis of neutrosophic statistics is that often in the data, there is information,
which is vague and cannot be quantified in the classic sense and therefore cannot be
properly processed in the framework of traditional statistical methods. Neutrosophic
statistics is used as a way to handle and do more comprehensive analysis on such data.
The use of fuzzy logic was expanded by (Smarandache, 1999). to create neutrosophy,
which enables the depiction of uncertainty, ambiguity, and contradiction.

Traditional analysis often suggests that the deeper the data, the clearer it is, hence
very often each of the observations gets a numerical value. However, as it has been
observed, in most real life settings, information can be ambiguous or about which there
is limited detail given. To get around these constraints, neosophic statistics offers ways
of dealing with the unpredictable, scarce, and contradictory data (Smarandache, 1999,
2014, 2022; Guan et al., 2019).

As already mentioned, neosophic statistics consider three measures that in some ways
reflect the particularities of the evaluated propositions: truth membership, indetermi-
nacy membership, and falsity membership. They all depict the extent of truth, openness,
or falsehood that is correlated with a hypothesis or an observation. These degrees are
represented in a manner similar to a fuzzy set by the membership functions [2, 3].

Neutrophic statistics are used in many different fields, including image processing, data
mining, pattern recognition, and decision-making (Guan et al., 2019; Mao et al., 2020;
Aslam, 2019; Taş et al., 2018). It provides a flexible mathematical tool for the analysis
and modeling of complex systems with a high level of imprecision and uncertainty.

The survival statistics are among the essential aspects of neutrosophic information
that have to be examined. Basically, the idea of survival analysis, often termed as event-
time analysis or time-to-event analysis, deals with the assessment of time to certain event
of interest. It is commonly applied in social science, engineering, medical research and
other fields where the time related results are issued. Most of the time when conducting
research where the temporal order is not certain or where subjects may not have the
same subsequent follow-ups survival analysis proves to be of great use. It could also
be the case that occurrence of a particular event of interest; an event say of failure, a
relapse or even a death, or any other event of interest (Bibani et al., 2023).

There are many statistical distributions that are widely used in survival analysis to
work on time-to-event data. This means that the features of the data and the as-
sumptions made concerning the underlying survival process drives the choice of the
distribution. These distributions are used for the assessment of time-to-event data in
engineering, social sciences, and other medical disciplines (Ahmed et al., 2024b,a). Dif-
ferent distributions may be chosen depending on the given characteristics of the data by
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the researchers as well as the hypotheses appropriate to the study. The literature review
reveals that many articles address neutrosophic probability distribution (Albassam et al.,
2023; Alsoboh et al., 2023; Shah et al., 2022). Recently, neutrosophic distributions, such
as the Neutrosophic Topp-Leone Extended Exponential distribution (Hammood et al.,
2025), neutrosophic inverse Gompertz distribution (Al-Saqal et al., 2025), and Neutro-
sophic Beta-Lindley distribution (Algamal et al., 2024) have been proposed to model
survival data.

Applications for the exponentiated power Lomax distribution can be found in many
domains, including survival analysis. In this work, we extended the applications of
the exponentiated power Lomax distribution to include neutrosophical data in interval
form with a degree of indeterminacy. Many qualities are investigated under the newly
proposed distribution and their applications are described with the help of simulated
and real data application.

2 Neutrosophic exponentiated power Lomax distribution

Probability distributions help in the portrayal of uncertainty that is prevalent in the data
set through depiction of the patterns of variation. In this regard distribution summaries,
the observations into a mathematical form which contains a few unknown parameters
and is the best possible understanding of the basic data generating mechanism. Survival
time distribution which is the probability description of the behavior of length of life
is to a certain extent depends on mode of succusses of the event under consideration.
NEPL would likely combine the flexibility of neutrosophic logic with the adaptability
of the exponentiated power Lomax distribution. This could provide a robust tool for
analyzing complex, uncertain data in fields like economics, finance, or engineering, where
both indeterminacy and heavy-tailed distributions are common.

From the given data set, the selection of the right distribution depends with the extent
of prior information regarding the physical characteristics of the process underlying the
observed data (Eliwa et al., 2021; Ijaz et al., 2020; Kharazmi et al., 2023).

The Lomax distribution (Pareto Type II) is a continuous probabilistic model used
in modeling for heavy-tailed distributions (Alnssyan, 2023; Hamad, 2023; Abiodun and
Ishaq, 2022). The Power Lomax distribution is an extension of the Lomax distribution
which is commonly applied in actuarial sciences, business, and reliability engineering
fields. Another advantage of this distribution is the introduction of another shape pa-
rameter which makes it possible to model lifetime data in the best manner as compared
to the Lomax distribution (Rady et al., 2016). The four-parameter Lomax distribu-
tion, named as exponentiated power Lomax distribution (EPL), which was proposed
by El-Monsef, Sweilam and Sabry (El-Monsef et al., 2021), is one of the survival time
distributions. Figure 1 shows the pdf of the exponentiated power Lomax distribution

The concept of neutrosophic probability as a function NP :→ [0, 1]3 was originally
presented by [2], where V is a neutrosophic sample space and defined the probability
mapping to take the form NP (Ω) = (ch (Ω) , ch (neutΩ) , ch (antiΩ)) = (ψ1, ψ2, ψ3)
with0 ≤ ψ1, ψ2, ψ3 ≤ 1 and 0 ≤ ψ1 + ψ2 + ψ3 ≤ 3. The term Θ represents the set of



86 Al-Mutar,Algamal

 

Figure 1: The pdf of exponentiated power Lomax distribution (El-Monsef et al., 2021)

sample space, R represents the set of real numbers, and ξ denotes a sample space event,
XN and YN denote neutrosophic random variable Hammood et al. (2025); Al-Saqal et al.
(2025); Algamal et al. (2024).

Definition 1 Consider Xis the real-valued crisp random variable, which has the
following definition: X : Θ → R

where Θ is the event space and XN neutrosophic random variable as follows:

XN : Θ → R (I) and XN = X + I, where I represents indeterminacy.

Theorem 1 Let XN = X+ I be the neutrosophic random variable and the CDF and
pdf of XN are (Granados, 2022), respectively

FXN
(x) = FX (x− I) , and fXN

(x) = fX (x− I) ,

Theorem 2 Let XN = X + I be the neutrosophic random variable, then the expected
value and variance can be derived as follows: E (XN ) = E (X) + Iand V (XN ) = V (X)
[20].

By supposing the neutrosophic variable could be expressed as: xN = xL+xUINwhere
IN ∈ {IL, IU} and xL and xUIN denote the determined and indeterminate parts, re-
spectively, the neutrosophic random variable xN ∈ {xL, xU} which follows the EPL
distribution has neutrosophic parameters.

LetX be neutrosophic continuous random variable follows a neutrosophic EPL (NEPL)
distribution, then its neutrosophic CDF and neutrosophic pdf are given by Eq.(1) and
Eq. (1), respectively

F (xN ) = (1− θN
δN

(
θN + xN

ϕN

)−δN
)τN , xN > 0; δN , ϕN , θN , τN > 0. (1)

f (xN ) = δNϕNτNθN
δNxN

ϕN−1
(
θN + xN

ϕN

)−δN−1
(1−θNδN

(
θN + xN

ϕN

)−δN
)τN (2)

The NEPL distribution provides better capability to model complex datasets than
traditional distribution models do. NEPL distribution extends traditional models thus
providing adequate capabilities for capturing various data patterns found in practical
applications. Figure 1 shows the NEPL distribution for different values of its parameters.
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Relating to Eq.(1) and Eq.(2), the neutrosophic survival and hazard functions of the
NEPL distribution are defined in Eq.(3) and Eq.(4), respectively,

S (xN ) = 1−
(
1− θN

δN
(
θN + xN

ϕN

)−δN
)τN

, (3)

h (xN ) =
δNϕNτNθN

δNxN
ϕN−1

(
θN + xN

ϕN
)−δN−1

(1− θN
δN

(
θN + xN

ϕN
)−δN )τN−1

1− (1− θNδN (θN + xNϕN )
−δN )τN

(4)
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Figure 2: The pdf of NEPL when δN ∈ [0.15, 0.21], ϕN ∈ [5.1, 5.3], θN ∈ [1, 1.3], and
τN ∈ [2, 2.4]

3 Parameter Estimation of NEPL Distribution

Five methods for estimating the NEPL distribution parameters are described:(1) the
maximum likelihood Method (MLE), (2) Anderson Darling method (AD), (3) Cramér-
von Mises method (CVM), (4) weighted least-squares method (WLS), and (5) the max-
imum product spacing method (MPS).
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Figure 3: The CDF of f NEPL when δN ∈ [0.15, 0.21], ϕN ∈ [5.1, 5.3], θN ∈ [1, 1.3], and
τN ∈ [2, 2.4]

3.1 MLE method

Assuming each of the random samples x1 , x2 , . . . , xn follows NEPL distribution, the
log-likelihood function is given by

lnL (δN , ϕN , θN , τN ) = nN log
(
δNϕNτNθ

δN
N

)
+ (τN − 1)

nN∑
iN=1

log

(
1− θδNN

(
xϕN
iN

+ θN

)−δN
)

− (δN + 1)

nN∑
iN=1

log
(
xϕN
iN

+ θN

)
+ (ϕN + 1)

nN∑
iN=1

log (xiN ) . (5)

The MLE of the parameters δ̂N , θ̂N , τ̂N , and ϕ̂N are the solutions of the following
simultaneous equations:

∂ lnL(δN ,ϕN ,θN ,τN )
∂δN

= 0, ∂ lnL(δN ,ϕN ,θN ,τN )
∂θN

= 0,
∂ lnL(δN ,ϕN ,θN ,τN )

∂ϕN
= 0, ∂ lnL(δN ,ϕN ,θN ,τN )

∂τN
= 0
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∂ lnL (δN , ϕN , θN , τN )

∂δN
=
nN
δN

+ nN log (θN )−
nN∑

iN=1

log
(
xϕN
iN

+ θN

)

+ (τN − 1)

nN∑
iN=1

θδNN

(
xϕN
iN

+ θN

)−δN
log

(
xϕN
iN

+ θN

)
− θδNN log (θN )

(
xϕN
iN

+ θN

)−δN

1− θδNN

(
xϕN
iN

+ θN

)−δN

(6)

∂ lnL(δN ,ϕN ,θN ,τN )
∂θN

= nN
ϕN

+
∑nN

iN=1 log (xiN )− (δN + 1)
∑nN

iN=1

x
ϕN
iN

log(xiN )

x
ϕN
iN

+θN
+

(τN − 1)
∑nN

iN=1

δNθN
δN x

ϕN
iN

log(xiN )
(
x
ϕN
iN

+θN

)−δN−1

1−θN
δN

(
xϕ
i +θN

)−δN

(7)

∂ lnL(δN ,ϕN ,θN ,τN )
∂ϕN

= δNnN
ϕN

− (δN + 1)
∑nN

iN=1
1

x
ϕN
iN

+θN
+ (τN − 1)

∑nN
iN=1

δNθN
δN

(
x
ϕN
iN

+θN

)−δN−1
−δNθN

δN−1
(
x
ϕN
iN

+θN

)−δN

1−θN
δN

(
x
ϕN
iN

+θN

)−δN

(8)

∂ lnL (δN , ϕN , θN , τN )

∂τN
=
nN
τN

+

nN∑
iN=1

log

(
1− θN

δN
(
xϕN
iN

+ θN

)−δN
)

(9)

3.2 AD method

The AD estimates of the parameters δ̂N , θ̂N , τ̂N , and ϕ̂N are attained by minimizing
the following equation with respect to the unknown parameters:

AD (δN , ϕN , θN , τN ) = −n−
n∑

iN=1

(2iN − 1)

n

[
log (F (Xi:nN ; δN , ϕN , θN , τN ))

+ log (1− F (Xi:nN ; δN , ϕN , θN , τN ))

]
(10)

3.3 CVM method

The CVM estimates δ̂N , θ̂N , τ̂N , and ϕ̂N are derived by minimizing the following ex-
pression with respect to NEPL parameters as:

CVM (δN , ϕN , θN , τN ) =
1

12n
+

n∑
iN=1

(
F (Xi:nN ; δN , ϕN , θN , τN )− 2iN − 1

2n

)2

(11)

3.4 WLS method

The WLS estimates δ̂N , θ̂N , τ̂N , and ϕ̂N are derived by minimizing Eq. (12) with respect
to NEPL parameters as:

WLS (δN , ϕN , θN , τN ) =
n∑

iN=1

(1 + n)2 (2 + n)

iN (n− iN + 1)

[
F (Xi:nN ; δN , ϕN , θN , τN )− iN

n+ 1

]2
.

(12)
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3.5 MPS method

The estimation of NEPL parameters using MPS method can be obtained by maximizing
Eq.(13)as:

MPS (δN , ϕN , θN , τN ) =
1

n+ 1

n+1∑
iN=1

log
(
F (Xi:nN ; δN , ϕN , θN , τN )

− F (Xi−1:nN ; δN , ϕN , θN , τN )
)
,

(13)

4 Simulation results

To investigate the efficacy of the NEPL of the neutrosophic parameters δN , θN , τN ,
and ϕN of the suggested EPL, simulation research is conducted in this section. A
random sample of sizes, n = 30, 50, 150 and 250, is created from NEPL using different
amalgams of neutrosophic parameters for the simulation. Estimated MLEs, AD, CVM,
WLS, and MPS of the neutrosophic parameters for 1000 replications at different sample
sizes using simulated data. Thus, for all sample sizes, the neutrosophic mean square
error (NMSE) and the neutrosophic average bias (NAB) are derived. The superior
neutrosophic estimator’s properties are evaluated using the estimations of NAB and
NMSE (Mustafa et al., 2023; Alanaz and Algamal, 2023; Alanaz et al., 2023).
Three cases of the NEPL neutrosophic parameters are determined: Case (1): δN ∈
[0.11, 0.17], ϕN ∈ [5, 5.4], θN ∈ [1, 1.5], and τN ∈ [2, 2.5]. Case (2): δN ∈ [0.15, 0.20],
ϕN ∈ [5.4, 6], θN ∈ [1.5, 2], and τN ∈ [2.3, 2.8]. And Case (3): δN ∈ [0.20, 0.25],
ϕN ∈ [5.7, 6.3], θN ∈ [1.8, 2.4], and τN ∈ [2.6, 3]. The results are given in Tables 1
– 6.
From Tables 1, 3, and 5, in terms of NAB, it is seen that, as predicted, the NAB for

δ̂N , θ̂N , τ̂N , and ϕ̂Ndecrease as sample sizes rise. It can also be deduced from Tables 1,
3, and 5 that the NAB values of the five estimators are varying as expected. The NAB
values of δ̂N , θ̂N , τ̂N , and ϕ̂N for MPS, WLS, and CVM are higher than MLE and AD
estimators.
Concerning the NMSE values, and for all sample sizes, the MLE estimator of δ̂N ,

θ̂N , τ̂N , and ϕ̂Nhas the smallest values comparing with AD, CVM, WLS, and MPS
estimators. Further, it is noticed from Tables 2, 4, and 6 that when theδ̂N , θ̂N , τ̂N , and
ϕ̂N increase regardless the values of the n, the NMSE are decreasing.

5 Real Application

From our study, we have used premature infant staying time data that we gathered from
Mosul hospital, Iraq for about four months to apply our proposed NEPL distribution.
The time corresponds to the number of days that the premature infant is alive after
discharge from the hospital. The subject population in the study is 100 premature
infants. However, premature infant times are not recorded accurately, the member
countries need to develop clear and accurate time definitions. Therefore, defining the
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Table 1: Average values of NAB for case 1

n 30 50 150 250

MLE δ̂N [0.1082,0.1097] [0.1058,0.1073] [0.1034,0.1049] [0.101,0.1025]

ϕ̂N [0.1183,0.1209] [0.1159,0.1185] [0.1135,0.1161] [0.1111,0.1137]

θ̂N [0.1103,0.1118] [0.1079,0.1094] [0.1055,0.107] [0.1031,0.1046]

τ̂N [0.1204,0.123] [0.118,0.1206] [0.1156,0.1182] [0.1132,0.1158]

AD δ̂N [0.1793,0.1808] [0.1769,0.1784] [0.1745,0.176] [0.1721,0.1736]

ϕ̂N [0.1894,0.192] [0.187,0.1896] [0.1846,0.1872] [0.1822,0.1848]

θ̂N [0.1814,0.1829] [0.179,0.1805] [0.1766,0.1781] [0.1742,0.1757]

τ̂N [0.1915,0.1941] [0.1891,0.1917] [0.1867,0.1893] [0.1843,0.1869]

CVM δ̂N [0.2504,0.2519] [0.248,0.2495] [0.2456,0.2471] [0.2432,0.2447]

ϕ̂N [0.2605,0.2631] [0.2581,0.2607] [0.2557,0.2583] [0.2533,0.2468]

θ̂N [0.2525,0.254] [0.2501,0.2516] [0.2477,0.2492] [0.2453,0.258]

τ̂N [0.2626,0.2652] [0.2602,0.2628] [0.2578,0.2604] [0.2554,0.3158]

WLS δ̂N [0.3215,0.323] [0.3191,0.3206] [0.3167,0.3182] [0.3143,0.327]

ϕ̂N [0.3316,0.3342] [0.3292,0.3318] [0.3268,0.3294] [0.3244,0.3179]

θ̂N [0.3236,0.3251] [0.3212,0.3227] [0.3188,0.3203] [0.3164,0.3291]

τ̂N [0.3337,0.3363] [0.3313,0.3339] [0.3289,0.3315] [0.3265,0.3869]

MPS δ̂N [0.3926,0.3941] [0.3902,0.3917] [0.3878,0.3893] [0.3854,0.3981]

ϕ̂N [0.4027,0.4053] [0.4003,0.4029] [0.3979,0.4005] [0.3955,0.389]

θ̂N [0.3947,0.3962] [0.3923,0.3938] [0.3899,0.3914] [0.3875,0.4002]

τ̂N [0.4048,0.4074] [0.4024,0.405] [0.4,0.4026] [0.3976,0.2559]
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Table 2: Average values of NMSE for case 1

n 30 50 150 250

MLE δ̂N [0.2416,0.2431] [0.2392,0.2407] [0.2368,0.2383] [0.2344,0.2359]

ϕ̂N [0.2517,0.2543] [0.2493,0.2519] [0.2469,0.2495] [0.2445,0.2471]

θ̂N [0.2437,0.2452] [0.2413,0.2428] [0.2389,0.2404] [0.2365,0.238]

τ̂N [0.2538,0.2564] [0.2514,0.254] [0.249,0.2516] [0.2466,0.2492]

AD δ̂N [0.3127,0.3142] [0.3103,0.3118] [0.3079,0.3094] [0.3055,0.307]

ϕ̂N [0.3228,0.3254] [0.3204,0.323] [0.318,0.3206] [0.3156,0.3182]

θ̂N [0.3148,0.3163] [0.3124,0.3139] [0.31,0.3115] [0.3076,0.3091]

τ̂N [0.3249,0.3275] [0.3225,0.3251] [0.3201,0.3227] [0.3177,0.3203]

CVM δ̂N [0.3838,0.3853] [0.3814,0.3829] [0.379,0.3805] [0.3766,0.3781]

ϕ̂N [0.3939,0.3965] [0.3915,0.3941] [0.3891,0.3917] [0.3867,0.3893]

θ̂N [0.2859,0.3874] [0.3835,0.385] [0.3811,0.3826] [0.3787,0.3802]

τ̂N [0.396,0.3986] [0.3936,0.3962] [0.3912,0.3938] [0.3888,0.3914]

WLS δ̂N [0.4549,0.4564] [0.4525,0.454] [0.4501,0.4516] [0.4477,0.4492]

ϕ̂N [0.465,0.4676] [0.4626,0.4652] [0.4602,0.4628] [0.4578,0.4604]

θ̂N [0.457,0.4585] [0.4546,0.4561] [0.2522,0.4537] [0.4498,0.4513]

τ̂N [0.4671,0.4697] [0.4647,0.4673] [0.4623,0.4649] [0.4599,0.4625]

MPS δ̂N [0.256,0.5275] [0.5236,0.5251] [0.5212,0.5227] [0.5188,0.5203]

ϕ̂N [0.5361,0.5387] [0.5337,0.5363] [0.5313,0.5339] [0.5289,0.5315]

θ̂N [0.5281,0.5296] [0.5257,0.5272] [0.5233,0.5248] [0.5209,0.5224]

τ̂N [0.5382,0.5408] [0.5358,0.5384] [0.5334,0.536] [0.531,0.5336]
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Table 3: Average values of NAB for case 2

n 30 50 150 250

MLE δ̂N [0.1035,0.105] [0.1011,0.1026] [0.0987,0.1002] [0.0963,0.0978]

ϕ̂N [0.1136,0.1162] [0.1112,0.1138] [0.1088,0.1114] [0.1064,0.109]

θ̂N [0.1056,0.1071] [0.1032,0.1047] [0.1008,0.1023] [0.0984,0.0999]

τ̂N [0.1157,0.1183] [0.1133,0.1159] [0.1109,0.1135] [0.1085,0.1111]

AD δ̂N [0.1746,0.1761] [0.1722,0.1737] [0.1698,0.1713] [0.1674,0.1689]

ϕ̂N [0.1847,0.1873] [0.1823,0.1849] [0.1799,0.1825] [0.1775,0.1801]

θ̂N [0.1767,0.1782] [0.1743,0.1758] [0.1719,0.1734] [0.1695,0.171]

τ̂N [0.1868,0.1894] [0.1844,0.187] [0.182,0.1846] [0.1796,0.1822]

CVM δ̂N [0.2457,0.2472] [0.2433,0.2448] [0.2409,0.2424] [0.2385,0.24]

ϕ̂N [0.2558,0.2584] [0.2534,0.256] [0.251,0.2536] [0.2486,0.2512]

θ̂N [0.2478,0.2493] [0.2454,0.2469] [0.243,0.2445] [0.2406,0.2421]

τ̂N [0.2579,0.2605] [0.2555,0.2581] [0.2531,0.2557] [0.2507,0.2533]

WLS δ̂N [0.3168,0.3183] [0.3144,0.3159] [0.312,0.3135] [0.3096,0.3111]

ϕ̂N [0.3269,0.3295] [0.3245,0.3271] [0.3221,0.3247] [0.3197,0.3223]

θ̂N [0.3189,0.3204] [0.3165,0.318] [0.3141,0.3156] [0.3117,0.3132]

τ̂N [0.329,0.3316] [0.3266,0.3292] [0.3242,0.3268] [0.3218,0.3244]

MPS δ̂N [0.3879,0.3894] [0.3855,0.387] [0.3831,0.3846] [0.3807,0.3822]

ϕ̂N [0.398,0.4006] [0.3956,0.3982] [0.3932,0.3958] [0.3908,0.3934]

θ̂N [0.39,0.3915] [0.3876,0.3891] [0.3852,0.3867] [0.3828,0.3843]

τ̂N [0.4001,0.4027] [0.3977,0.4003] [0.3953,0.3979] [0.3929,0.3955]
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Table 4: Average values of NMSE for case 2

n 30 50 150 250

MLE δ̂N [0.2354,0.2369] [0.233,0.2345] [0.2306,0.2321] [0.2282,0.2297]

ϕ̂N [0.2455,0.2481] [0.2431,0.2457] [0.2407,0.2433] [0.2383,0.2409]

θ̂N [0.2375,0.239] [0.2351,0.2366] [0.2327,0.2342] [0.2303,0.2318]

τ̂N [0.2476,0.2502] [0.2452,0.2478] [0.2428,0.2454] [0.2404,0.243]

AD δ̂N [0.3065,0.308] [0.3041,0.3056] [0.3017,0.3032] [0.2993,0.3008]

ϕ̂N [0.3166,0.3192] [0.3142,0.3168] [0.3118,0.3144] [0.3094,0.312]

θ̂N [0.3086,0.3101] [0.3062,0.3077] [0.3038,0.3053] [0.3014,0.3029]

τ̂N [0.3187,0.3213] [0.3163,0.3189] [0.3139,0.3165] [0.3115,0.3141]

CVM δ̂N [0.3776,0.3791] [0.3752,0.3767] [0.3728,0.3743] [0.3704,0.3719]

ne ϕ̂N [0.3877,0.3903] [0.3853,0.3879] [0.3829,0.3855] [0.3805,0.3831]

θ̂N [0.3797,0.3812] [0.3773,0.3788] [0.3749,0.3764] [0.3725,0.374]

τ̂N [0.3898,0.3924] [0.3874,0.39] [0.385,0.3876] [0.3826,0.3852]

WLS δ̂N [0.4487,0.4502] [0.4463,0.4478] [0.4439,0.4454] [0.4415,0.443]

ϕ̂N [0.4588,0.4614] [0.4564,0.459] [0.454,0.4566] [0.4516,0.4542]

e θ̂N [0.4508,0.4523] [0.4484,0.4499] [0.446,0.4475] [0.4436,0.4451]

τ̂N [0.4609,0.4635] [0.4585,0.4611] [0.4561,0.4587] [0.4537,0.4563]

MPS δ̂N [0.5198,0.5213] [0.5174,0.5189] [0.515,0.5165] [0.5126,0.5141]

ϕ̂N [0.5299,0.5325] [0.5275,0.5301] [0.5251,0.5277] [0.5227,0.5253]

θ̂N [0.5219,0.5234] [0.5195,0.521] [0.5171,0.5186] [0.5147,0.5162]

τ̂N [0.532,0.5346] [0.5296,0.5322] [0.5272,0.5298] [0.5248,0.5274]
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Table 5: Average values of NAB for case 3

n 30 50 150 250

MLE δ̂N [0.0933,0.0948] [0.0909,0.0924] [0.0885,0.09] [0.0861,0.0876]

ϕ̂N [0.1034,0.106] [0.101,0.1036] [0.0986,0.1012] [0.0962,0.0988]

θ̂N [0.0954,0.0969] [0.093,0.0945] [0.0906,0.0921] [0.0882,0.0897]

τ̂N [0.1055,0.1081] [0.1031,0.1057] [0.1007,0.1033] [0.0983,0.1009]

AD δ̂N [0.1644,0.1659] [0.162,0.1635] [0.1596,0.1611] [0.1572,0.1587]

ϕ̂N [0.1745,0.1771] [0.1721,0.1747] [0.1697,0.1723] [0.1673,0.1699]

θ̂N [0.1665,0.168] [0.1641,0.1656] [0.1617,0.1632] [0.1593,0.1608]

τ̂N [0.1766,0.1792] [0.1742,0.1768] [0.1718,0.1744] [0.1694,0.172]

CVM δ̂N [0.2355,0.237] [0.2331,0.2346] [0.2307,0.2322] [0.2283,0.2298]

ϕ̂N [0.2456,0.2482] [0.2432,0.2458] [0.2408,0.2434] [0.2384,0.241]

θ̂N [0.2376,0.2391] [0.2352,0.2367] [0.2328,0.2343] [0.2304,0.2319]

τ̂N [0.2477,0.2503] [0.2453,0.2479] [0.2429,0.2455] [0.2405,0.2431]

WLS δ̂N [0.3066,0.3081] [0.3042,0.3057] [0.3018,0.3033] [0.2994,0.3009]

ϕ̂N [0.3167,0.3193] [0.3143,0.3169] [0.3119,0.3145] [0.3095,0.3121]

θ̂N [0.3087,0.3102] [0.3063,0.3078] [0.3039,0.3054] [0.3015,0.303]

τ̂N [0.3188,0.3214] [0.3164,0.319] [0.314,0.3166] [0.3116,0.3142]

MPS δ̂N [0.3777,0.3792] [0.3753,0.3768] [0.3729,0.3744] [0.3705,0.372]

ϕ̂N [0.3878,0.3904] [0.3854,0.388] [0.383,0.3856] [0.3806,0.3832]

θ̂N [0.3798,0.3813] [0.3774,0.3789] [0.375,0.3765] [0.3726,0.3741]

τ̂N [0.3899,0.3925] [0.3875,0.3901] [0.3851,0.3877] [0.3827,0.3853]
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Table 6: Average values of NMSE for case 3

n 30 50 150 250

MLE δ̂N [0.2213,0.2228] [0.2189,0.2204] [0.2165,0.218] [0.2141,0.2156]

ϕ̂N [0.2314,0.234] [0.229,0.2316] [0.2266,0.2292] [0.2242,0.2268]

θ̂N [0.2234,0.2249] [0.221,0.2225] [0.2186,0.2201] [0.2162,0.2177]

τ̂N [0.2335,0.2361] [0.2311,0.2337] [0.2287,0.2313] [0.2263,0.2289]

AD δ̂N [0.2924,0.2939] [0.29,0.2915] [0.2876,0.2891] [0.2852,0.2867]

ϕ̂N [0.3025,0.3051] [0.3001,0.3027] [0.2977,0.3003] [0.2953,0.2979]

θ̂N [0.2945,0.296] [0.2921,0.2936] [0.2897,0.2912] [0.2873,0.2888]

τ̂N [0.3046,0.3072] [0.3022,0.3048] [0.2998,0.3024] [0.2974,0.3]

CVM δ̂N [0.3635,0.365] [0.3611,0.3626] [0.3587,0.3602] [0.3563,0.3578]

ϕ̂N [0.3736,0.3762] [0.3712,0.3738] [0.3688,0.3714] [0.3664,0.369]

θ̂N [0.3656,0.3671] [0.3632,0.3647] [0.3608,0.3623] [0.2584,0.3599]

τ̂N [0.3757,0.3783] [0.3733,0.3759] [0.3709,0.3735] [0.3685,0.3711]

WLS δ̂N [0.4346,0.4361] [0.4322,0.4337] [0.4298,0.4313] [0.4274,0.4289]

ϕ̂N [0.4447,0.4473] [0.4423,0.4449] [0.4399,0.4425] [0.4975,0.4401]

θ̂N [0.4367,0.4382] [0.4343,0.4358] [0.4319,0.4334] [0.4295,0.431]

τ̂N [0.4468,0.4494] [0.444,0.447] [0.442,0.4446] [0.4396,0.4422]

MPS δ̂N [0.5057,0.5072] [0.5033,0.5048] [0.5009,0.5024] [0.4685,0.5]

ϕ̂N [0.5158,0.5184] [0.5134,0.516] [0.511,0.5136] [0.5086,0.5112]

θ̂N [0.5078,0.5093] [0.5054,0.5069] [0.503,0.5045] [0.5006,0.5021]

τ̂N [0.5179,0.5205] [0.5155,0.5181] [0.5131,0.5157] [0.5107,0.5133]
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number of days from the birth of a premature infant with alive discharge without having
explicit information is always problematic supervising unpredictable, insufficient, and
incongruent data. The data related to exploratory factor analysis is given in Table 7.

Table 7: The staying time data

0.87,1.54, 1.45, [1.83,2.01], 1.15, 1.81, [1.47,1.62], 1.63, 1.09, [0.86,1.2], 1.00, 1.39, 1.06,
1.08, 0.81,1.19,0.88, 1.65, 0.84, 1.47, 1.59, 0.81, 1.00, 1.30, [1.47,1.70], 1.09, 1.80, 1.08, 1.11,
[1.00,1.14],1.27, 1.23, 0.81,1.42, 0.94, 1.32,1.19, 1.30, 1.28, 1.00, 0.96, 1.21, 2.36, 1.04, 1.03,
[0.81,1.1], 1.20, 1.26, 1.42, 1.87, 1.16,[0.85,1.2], [0.98,1.3], 1.63, 1.58, 1.57, 1.84, 1.32, 1.16,
[0.93,1.4], 1.38, 0.85,1.14,1.80,1.57,[1.39,1.62],0.88,1.26,2.18,1.28,0.99,0.83,0.84,1.63,1.06,
1.84,1.22, 1.18, 1.85,.87,1.53,1.07,1.22, 1.03,0.85,1.47,[0.93,1.3],1.32, 1.12, [0.94,1.21],
2.30,1.13,0,81,1.80, 1.62,1.26,[1.01,1.24], 1.51, 1.87, 1.58

An informal graphical technique has been utilized to show that the EPL distribution is
one of the plausible models for explaining the premature infant staying time data. Figure
2 displays a visual fit of the EPL distribution. Further, the χ2 test for the goodness of
fit shows that the premature infant staying time data follows EPL distribution with p-
value=0.764. A descriptive assessment of the premature infant staying time data using
NEPL is shown in Table 8. Table 8 makes it abundantly evident that uncertainties taken
into account in the observed sample are the cause of discrepancies in a number of the
critical numerical statistics of the failure times data. Further, it is more clearly shown
from Table 8 that there are high varies among the estimation methods in estimating the
NEPL distribution parameters δ̂N , θ̂N , τ̂N , and ϕ̂N .
In terms of survival probability, Figure 3 displays the survival curve for the five es-

timation methods. It can be observed that the neutrosophic survival curve using MLE
methods shows higher probability than the others. This suggests that the neutrosophic
MLE is better than the other four methods. Based on this observation, Figure 4 de-
picts the margin of the survival function between lower and upper the premature infant
staying time data.

6 Conclusions

This paper presents an interesting extension known as the neutrosophic exponentiated
power Lomax distribution. The concepts of neutrosophic calculus serve as the founda-
tion for this new extension. The neutrosophic paradigm has been used to investigate
a number of estimation methods. The study’s numerical examples showed that NEPL
distribution’s theoretical conclusions are flexible and applicable to a wide range of data.
The simulation study’s findings suggest that a large sample size can yield accurate es-
timations. The premature infant staying time data have been employed to explicate
the practical implementation of the suggested NEPL distribution. The application sec-
tion has demonstrated that the NEPL distribution is capable of analyzing both classical
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Histogram of Premature Infant Staying Time Data
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Figure 4: Fitting of EPL distribution of staying time data

Table 8: The estimated parameters of NEPL distribution

Method Estimated
values

δ̂N θ̂N ϕ̂N τ̂N

MLE [0.157,0.164] [1.53,1.58] [5.51,5.93] [2.35,2.41]

AD [0.162,0.169] [1.55,1.61] [5.82,6.34] [2.37,2.44]

CVM [0.171,0.178] [1.58,1.67] [6.52,6.67] [2.42,2.51]

WLS [0.176,0.182] [1.62,1.69] [6.66,6.71] [2.55,2.62]

MPS [0.180,0.188] [1.66,1.74] [6.73,6.78] [2.58,2.67]
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Figure 5: The survival curve plot for the NEPL distribution under several estimation
methods

1.0 1.5 2.0

0.
75

0.
80

0.
85

0.
90

Staying Time Data

S
ur

vi
va

l p
ro

ba
bi

lit
y

Lower Staying Time Data
Upper Staying Time Data

Figure 6: The survival curve plot for the NEPL distribution under MLE method
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datasets and real-world data that contains uncertainties, ambiguity, or imprecision.
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