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MultiClass Classification (MCC) is a foundational task in machine learn-
ing, especially within high-dimensional domains like text classification. While
most studies focus on predictive accuracy, the growing demands of large-scale
models have raised urgent questions about their environmental cost. In line
with the Green AI paradigm, this work examines not only the performance
but also the carbon and energy efficiency of various classifier–strategy com-
binations for MCC. Using two real-world textual datasets we systematically
evaluate strategies such as One-Vs-Rest (OVA), One-Vs-One (OVO), Best-
of-Best (BOB), and Error-Correcting Output Codes (ECOC), across classi-
fiers ranging from simple Näıve Bayes to complex Artificial Neural Networks.
We introduce emissions-per-accuracy metrics to measure the environmental
efficiency of each configuration. Our findings show that while models like
Random Forest incur high computational and ecological costs, simpler clas-
sifiers such as Logistic Regression and Näıve Bayes achieve comparable per-
formance with drastically lower emissions. OVA consistently offers the best
trade-off between speed and accuracy, while OVO and BOB prove more ro-
bust to class imbalance. Notably, Threshold-based Näıve Bayes paired with
OVO demonstrates strong performance and sustainability. By integrating
environmental considerations into MCC evaluation, this study highlights the
importance of choosing classifier–strategy pairs that are not only effective
but also computationally and ecologically responsible.
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1 Introduction

MultiClass Classification (MCC) is a crucial and complex task that has gained increasing
importance due to its widespread application across various domains, particularly in the
context of textual data analysis. Selecting the appropriate classification strategy is
vital, as it requires balancing model complexity, computational time, and environmental
impact. The growing concern about climate change and the computational cost of large-
scale models further underscores the importance of this balance.

MCC involves assigning a single class label to each instance from a set of more than
two possible classes. This task differs from MultiLabel Classification (MLC), where
multiple labels can be assigned to each instance (Sharma and Mehrotra 2018). For
instance, a news article may be tagged with multiple topics like “sports”, “politics”, and
“entertainment” in MLC, whereas MCC would assign a single label to each instance. The
distinction between these two classification paradigms is fundamental to understanding
the scope and challenges of MCC.

One of the primary approaches to handle MCC problems is the binarization technique,
which decomposes the multiclass problem into multiple binary classification tasks. Tech-
niques such as One-Vs-Rest (OVA) and One-Vs-One (OVO) have been widely employed
(Galar et al. 2011). In OVA, a separate binary classifier is trained for each class against
all others, while in OVO, classifiers are trained for every possible pair of classes. While
OVA is computationally efficient, OVO can provide more robust predictions by focusing
on specific class pairs.

Another significant strategy in MCC is the Best-Of-Best (BOB) approach (Conversano
2011). BOB refines the OVO technique by applying the classification in a two-stage
process. Initially, OVO is applied, and subsequently, a final classifier is trained using
only the top predicted class pairs to make the ultimate prediction.

Additionally, Error Correcting Output Codes (ECOC) provide an alternative method
for handling multiclass problems. This strategy encodes classes into binary strings and
employs error correction mechanisms to improve classification robustness (Dietterich
and Bakiri 1994). This technique leverages redundancy in binary codes to mitigate
classification errors, particularly in noisy datasets.

While MCC strategies are primarily assessed for predictive accuracy, recent discus-
sions have shifted attention toward computational efficiency and environmental impact.
The rise of resource-hungry AI models has given birth to the Green AI paradigm, which
promotes sustainable practices in model training and deployment (Schwartz et al. 2020).
Researchers now emphasize the importance of balancing performance with energy con-
sumption to reduce the carbon footprint of large-scale AI systems (Strubell et al. 2019).
To promote transparency, initiatives for standardized reporting of training time and
energy usage have been introduced (Strubell et al. 2019). Furthermore, practical recom-
mendations, such as optimizing hyperparameters, using sustainable cloud services, and
selecting energy-efficient hardware, offer concrete steps towards more environmentally
friendly AI solutions (Lacoste et al. 2019).

This study integrates environmental impact assessment into the comparative analysis
of MCC strategies, evaluating not only predictive performance but also energy consump-



240 Priola, Romano

tion and carbon footprint. This comprehensive evaluation includes statistical classifiers
such as Náıve Bayes and it Threshold-Based variant (Romano et al. 2023), Random For-
est, Logistic Regression, and Artificial Neural Networks, employing two distinct datasets:
the widely recognized 20NewsGroups dataset from sklearn1, and a dataset comprising
unstructured Italian-language health-related news articles. This corpus, compiled from
diverse media sources, offers contextual richness and supports natural language querying
of health-related content, aligning with the study’s broader objective of evaluating MCC
in text data.

This study addresses a critical gap at the intersection of MCC and Green AI by
systematically evaluating how strategy-classifier combinations impact both predictive
performance and environmental efficiency in text data analysis. Using a comprehensive
experimental framework, the study examines the trade-offs between accuracy, training
time, and resource consumption across diverse classifier-strategy pairings. Specifically,
the contributions of this work are threefold: (i) the development of a robust framework
to evaluate multiple MCC strategies applied across heterogeneous text datasets, (ii) the
use of computational efficiency metrics to assess the cost-effectiveness of each approach,
and (iii) the integration of environmental assessment metrics that quantify energy con-
sumption and CO2 emissions using standardized carbon tracking tools. This structured
evaluation not only reveals the computational and environmental costs of various MCC
approaches but also provides actionable insights into optimizing classification workflows
in line with Green AI principles. The study ultimately aims to inform practitioners about
the practical implications of strategy and classifier selection, emphasizing the importance
of balancing accuracy, efficiency, and sustainability in real-world applications.

Results show that classifier choice has a greater impact than strategy on both accuracy
and environmental efficiency. Simpler models offer strong performance with low emis-
sions, while complex models incur higher costs with limited accuracy gains. However,
the combination of classifier and strategy proves crucial, as certain pairings significantly
outperform others. Among strategies, OVA provides the best overall trade-off in most
cases, underscoring the importance of aligning predictive goals with sustainability.

The remainder of the paper is structured as follows. Section 2 outlines the related
works, Section 3 presents the data and its required processing, Section 4 reviews the
methodology, Section 5 provides the results and Section 6 concludes.

2 Related Works

The literature on MCC strategies is extensive, encompassing a wide array of approaches
aimed at enhancing classification accuracy. Despite substantial research, there remains
no consensus on the optimal MCC strategy, as the effectiveness of these methods varies
across datasets and application domains. Concurrently, the growing computational bur-
den associated with large-scale MCC tasks has led to a surge in studies addressing the
environmental impact of model training, aligning with the principles of Green AI. This

1https://scikit-learn.org/stable/
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section reviews key contributions in both MCC strategies and Green AI frameworks,
providing a comprehensive overview of recent advancements in these domains.

2.1 MultiClass Classification Strategies

Base classifiers are employed in MCC tasks, and numerous algorithms exist in the lit-
erature for decomposing the problem into binary classification subproblems, which is a
trend in literature towards the search for techniques to increase classification accuracy.
The literature on the use of MCC strategies is extensive, but there are no studies that
unequivocally demonstrate the superiority of a specific strategy over others. One of the
foundational works in this field is by Galar et al. (2011), who develop a comprehensive
study of several established algorithms, including Support Vector Machines (SVM), De-
cision Trees, and Instance Based Learning with both OVO and OVA. They compare
the performances of these algorithms using nineteen datasets from the widely recognized
UCI repository. Their findings highlight the superiority of OVO over OVA in terms
of prediction accuracy. In contrast, Rifkin and Klautau (2004) conduct a comparative
analysis of MCC schemes, also focusing on OVA and OVO, emphasizing that the choice
of binary classifier plays a more critical role than the choice of strategy. Their results
suggest that once an effective base classifier is selected, the difference in performance
between OVO and OVA diminishes. As such, they recommend the simpler OVA strategy
in most cases, although they acknowledge that OVO can yield better results on smaller
datasets.
MCC challenges are prevalent across a wide range of research domains, and both OVO
and OVA strategies have been widely applied to address them. For example, Student
and Fujarewicz (2012) propose a classification algorithm tailored for multiclass microar-
ray data and evaluated its performance using both OVA and OVO strategies, compar-
ing the results with standard models such as SVM. Their findings suggest that OVA
performs well in high-dimensional settings and scales effectively to large datasets. Sim-
ilarly, Zdrojewska et al. (2019) assess the performance of an OVO-based Multinomial
Näıve Bayes classifier combined with ensemble techniques for classifying the widely used
Reuters-21578 corpus. Their objective is to rank classifiers by accuracy and evaluate the
improvements brought by boosting algorithms relative to traditional models like SVM
and Random Forest. They conclude that ensemble methods consistently outperformed
standalone classifiers. In another application, Delachaux et al. (2013) employ OVA neu-
ral network classifiers to enhance the reliability of indoor human activity recognition by
integrating data from wearable and depth sensors.

Other studies have adapted OVO and OVA strategies to specific classifiers, often
proposing sub-strategies to enhance performance. For example, Hong et al. (2008)
apply the OVA approach to evaluate models such as SVM, Näıve Bayes, and hybrid
combinations for improving fingerprint classification accuracy. Kumar and Gopal (2011)
introduce a Reduced-OVA (ROVA) method for MCC-SVM tasks. Their approach defines
a k-region around each class’s decision boundary, selecting only the most representative
data points for training. By excluding data outside this region, the method reduces
dataset size and significantly improves training efficiency, achieving similar accuracy to
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standard OVA while reducing training time by approximately 50%. Eichelberger and
Sheng (2013) examine OVA and OVO using Näıve Bayes and Logistic Regression across
UCI datasets. While these strategies are commonly assumed to enhance classification,
their findings indicate that OVA often degrades performance, and although OVO per-
forms slightly better, it still falls short compared to ensemble methods like bagging. The
authors argue that for algorithms inherently capable of multiclass classification, OVA
and OVO should be avoided in favor of bagging. Lastly, Sáez et al. (2014) explore the
robustness of MCC strategies in noisy environments. Their results show that OVO tends
to yield more reliable classifiers under noisy conditions, making it a preferable choice
when data quality is a concern.

More specifically, and in line with the objectives of this study, several works have
applied MCC strategies to textual data. A significant number of studies have used
the 20NewsGroups dataset for text mining and classification. For example, Albishre
et al. (2015) evaluate the role of data cleaning, finding that although performance gains
were modest, corpus size was reduced by 60%, improving efficiency and memory usage.
Rennie and Rifkin (2001) compare Näıve Bayes and SVMs for MCC tasks, showing
SVMs achieve substantially lower error rates, especially when used within an ECOC
framework. Similarly, Adi and Çelebi (2014) address numerical instability in Näıve Bayes
with a logarithm-based correction, achieving 86% accuracy—outperforming conventional
techniques like Icsiboost-bigram and the Expected Maximum algorithm.

Beyond 20NewsGroups, other works have explored MCC across various textual do-
mains. Dogan and Uysal (2020) introduce a new weighting scheme that improved classifi-
cation across multiple datasets, while Han et al. (2021) applied meta-learning to few-shot
text classification, improving accuracy notably for 1-shot and 5-shot scenarios. Li et al.
(2006) examine discriminant analysis as an alternative to SVMs for text categorization,
finding it competitive in multiclass contexts. In another practical application, D’Andrea
et al. (2015) use SVMs to classify tweets related to traffic events, achieving a real-time
detection system with 95% accuracy.

Our study directly addresses the open question of how different MCC decomposition
strategies perform when paired with diverse classifiers on real-world text data. We
conduct a systematic comparative analysis of multiple classifier–strategy combinations,
ranging from classical statistical models to neural networks, evaluating not only their
predictive accuracy but also their computational cost with two different datasets. This
approach highlights which pairings offer the best trade-off between performance and
efficiency on heterogeneous corpora.

2.2 Towards Sustainable AI: Energy and Carbon Tracking

Training large-scale MCC models can incur substantial energy consumption and carbon
emissions. Schwartz et al. (2020) were among the first to quantify these environmental
and economic costs, coining the shift from “Red AI” to “Green AI” to promote efficiency
alongside accuracy. Expanding on this, Strubell et al. (2019) advocate for standardized
reporting of training time, hardware use, and hyperparameter sensitivity to facilitate
transparent comparisons. Similarly, Lacoste et al. (2019) introduce a Machine Learning
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Emission Calculator that estimates carbon output based on training duration, hard-
ware type, and data-center location, while also recommending practices such as using
renewable-powered cloud platforms and lightweight hyperparameter searches.

To operationalize Green AI principles, several open-source toolkits have been devel-
oped to directly measure energy use and emissions. For example, Budennyy et al. (2022)
present eco2AI, which tracks power consumption and regional carbon intensity; Anthony
et al. (2020) propose Carbontracker for real-time monitoring and predictive energy use
analysis; and Lottick et al. (2019) develop CodeCarbon, a plug-in for ML frameworks
that estimates training emissions and generates standardized energy usage reports.

Beyond point tools, more comprehensive platforms support full-lifecycle impact assess-
ments. Henderson et al. (2020) introduce Experiment Impact Tracker, offering region-
specific carbon accounting, automated appendices, and a leaderboard for energy-efficient
models. Lannelongue et al. (2021) propose Green Algorithms, an accessible online tool
that contextualizes carbon impact against real-world benchmarks and provides action-
able reduction recommendations.

Recent studies have built on these tools to develop structured evaluation frameworks.
For instance, Hrib et al. (2024) propose a unified approach for collecting CO2 and en-
ergy data using eco2AI and CodeCarbon, enabling comparison across models and hard-
ware. Verma et al. (2024) assess deep learning models using multiple trackers to jointly
evaluate accuracy and emissions. Bouza et al. (2023) provide a comparative review
of CodeCarbon, eco2AI, and Experiment Impact Tracker, validating each tool against
wattmeter data and offering practical usage guidelines.

Despite this growing ecosystem of tools and research, no prior work has systematically
examined how MCC decomposition strategies affect energy consumption and carbon
emissions. This study addresses that gap by evaluating a range of classifier–strategy
combinations across heterogeneous text corpora, measuring not only predictive accu-
racy but also runtime, power draw, and CO2 emissions. In doing so, we expose the
performance–sustainability trade-offs inherent in MCC design choices.

3 Data and Preprocessing

Our study builds on the above-mentioned literature by focusing on two datasets. The the
20NewsGroup Dataset (Lang 1995), widely employed in the field of text classification and
NLP for research purposes, and the Health News on Media Coverage Dataset, specifically
developed for this study. Both datasets have been subjected to the same preprocessing
pipeline to maintain consistency and comparability in analysis.

The 20NewsGroup dataset (20NG)2, a well-known dataset of news articles available
from the Sklearn library, contains 18,846 unique news articles categorized into 20 distinct
topics. This dataset is used for text classification, topic modeling, and other machine
learning tasks due to its diverse topics, which provide a robust testing ground for var-
ious algorithms. In contrast, the Health News Dataset on Media Coverage (HNMC)
comprises 5,000 unique articles categorized into 5 distinct topics. This dataset serves

2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch 20newsgroups.html
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to complement the variability provided by the 20NG by introducing a set of categories
with more structured topical segmentation and a multilingual component, as entirely in
Italian. This aspect introduces unique challenges and opportunities for text processing,
classification, and topic modeling in a non-English context.

Both datasets have been employed with the exclusion of headers, footers, and quotes,
as these segments often contain high-specific or irrelevant information (Sarkar 2019). The
preprocessing pipeline applied to both datasets is based on the text-corpus methodology
outlined by Grün and Hornik (2011). It involves the following steps: removal of numbers,
conversion to lowercase, deletion of extra spaces and punctuations, and elimination of
standard stopwords using the nltk package (Bird et al. 2009). Subsequently, words
occurring in fewer than 10 documents, as well as suffixes and prefixes, have been removed
through lemmatization and stemming techniques. The lemmatization step employs a
dictionary-based morphological analysis, converting words like ”saw” to ”see,” while the
stemming step implements Porter’s algorithm, reducing words like ”caresses” to ”caress”
and ”economies” to ”economi” (Porter 1980).

The final objective of the preprocessing stage is to generate tokens readable by machine
learning models. In both datasets, unigrams (n-grams with a single word) are employed
to construct document-term matrices, where each row represents a document and each
column represents a feature (word) that occurs in at least one document. The matrices
are populated using the term-frequency inverse-document-frequency (tf-idf) scheme, as
defined by Baeza-Yates and Ribeiro-Neto (1999). The tf-idf function is formalized as
follows:

tf-idfi,ω =
ñi,ω
|dω|

· log
(

|D|
|{dω : i ∈ dω}|

)
(1)

where
ñi,ω

|dω | represents the term frequency (tf) of word i in text snippet ω; that is, ñi,ω
is the number of occurrences of term i in snippet ω, and |dω| is the total number of terms

in ω. The component log
(

|D|
|{dω :i∈dω}|

)
corresponds to the inverse document frequency

(idf) of term i in the document collection D, where |D| is the total number of documents
and |{dω : i ∈ dω}| is the number of documents containing term i. The tf-idf score thus
assigns higher weights to terms that are frequent in a specific document but rare across
the entire dataset, helping to identify distinctive features in the corpus.

At the end of data processing, the 20NG ends up containing 18,287 unique news
articles. Each news varies from a minimum of 1 to a maximum of 5761 words, with
an average of 85, a median of 38, and a standard deviation of 242. The vocabulary
size consists of 128,204 tokens. According to Adi and Çelebi (2014), to conduct our
investigation response classes of the 20NewsGroup Dataset are merged into 6 main topics:
Information Technology (27.07%), miscellaneous (5.40%), politics (10.24%), recreation
(22.02%), religion (13.41%) and science (21.87%). A brief summary of this composition
is reported both in Figure 1 and Table 1.

The HNMC dataset exhibits an average document length of 380 words with a median
length of 305 words. The standard deviation is 297, with document lengths ranging
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Figure 1: 20NewsGroups Dataset Topics

Table 1: 20NewsGroups dataset: Topic-Group Mapping

Topic Groups

Information Technology comp.graphics, comp.os.ms-windows.misc,

comp.sys.ibm.pc.hardware, comp.sys.mac.hardware,

comp.windows.x

Miscellaneous misc.forsale

Recreation rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey

Politics talk.politics.guns, talk.politics.mideast, talk.politics.misc

Religion alt.atheism, soc.religion.christian, talk.religion.misc

Science sci.crypt, sci.electronics, sci.med, sci.space

from a minimum of 15 words to a maximum of 3,638 words. The vocabulary size is
80,720 unique words, offering a significant breadth for feature extraction and model train-
ing. In Figure 2 the distribution of the 5 distinct topics: science-and-pharmaceuticals
(20.86%), government-and-parliament (20.56%), work-and-professions (20.38%), letters-
to-the-editors (19.32%), and studies-and-analysis (18.88%).

4 Methodology

4.1 Performance Metrics

We compare the performance of the models employing four MCC performance metrics:
accuracy, sensitivity, precision, and F1-Score (see Taghavinejad et al. (2020)). We con-
sider a classifier f that maps a dataset D of n instances into a set G composed of nj
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Figure 2: Health News on Media Coverage Topics

classes (nj >> 2), that is f : D → G = {g1, . . . , gj , . . . , gnj}.
Accuracy of a classifier f , denoted as Af , is the ratio of correctly predicted instances

to the total instances:

Af =

nj∑
j=1

#(f̂i,gj = fi,gj )

n
(2)

where f̂i,gj denotes the predicted class for the i-th instance and fi,gj denotes the observed
class. For a given class gj , Precision (Pf,gj ) expresses the proportion of instances correctly
classified in class gj with respect to the total number of instances classified in class gj .
Recall (Rf,gj ), also known as sensitivity, expresses the proportion of instances correctly
classified in class gj with respect to the total number of instances in class gj . F1-Score
is computed as the harmonic mean of Pf,gj and Rf,gj . In MCC, Precision and Recall
correspond, respectively, to the average precision and recall computed over the entire
set of G classes (gj ∈ G), namely:

Pf =
1

nj

nj∑
j=1

#(f̂i,gj = fi,gj )

n̂gj
(3)

Rf =
1

nj

nj∑
j=1

#(f̂i,nj = fi,nj )

ngj
(4)

where ngj and n̂gj represent, respectively, the number of instances in class gj and the
number of instances classified in class gj . Notably, F1-Score is the recommended measure
in MCC as it accounts for possible unbalancing among classes (see Opitz and Burst
(2021), among others). It is computed as:
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F1f =
1

nj

nj∑
j=1

2 · Pf,gj ·Rf,gj

Pf,gj +Rf,gj

(5)

4.2 Emissions Tracking

CodeCarbon (Lottick et al. 2019) and eco2AI (Budennyy et al. 2022) estimate the carbon
footprint associated with computational tasks by monitoring the energy consumption of
CPUs, GPUs, and RAM. The calculation of CO2 emissions is based on the carbon
intensity of electricity in the specific geographical location where the computation oc-
curs. Both tools share a foundational approach to emissions estimation, with energy
consumption calculated using the standard formula:

E =

n∑
u=1

PCu · Tu (6)

where E denotes the total energy consumption in kilowatt-hours (kWh), PCu repre-
sents the power consumption of component u in kilowatts (kW), and Tu is the duration
of operation of component u in hours. The index u iterates over the set of monitored
components, specifically CPU, GPU, and RAM. Following the determination of energy
consumption, the regional carbon intensity is applied to estimate CO2 emissions:

CCO2 = E × γ (7)

where CCO2 is the quantity of CO2 emissions in kilograms (kg) and γ is the carbon
intensity factor expressed in kilograms of CO2 per kilowatt-hour (kg CO2/kWh).
Despite the similarity in their core methodology, CodeCarbon and eco2AI differ in their

implementation and parameterization. The former relies primarily on system interfaces
such as Intel’s RAPL3 for CPUs and NVIDIA Management Library4 for GPUs to obtain
real-time power consumption data. When direct measurement tools are unavailable,
it estimates energy consumption based on the hardware’s Thermal Design Power and
system utilization metrics. For RAM, the tool approximates power consumption based
on the number of RAM slots utilized, assigning a default power consumption of 5 Watts
per slot (Lottick et al. 2019).
In contrast, eco2AI employs a more detailed and flexible approach to energy estima-

tion. It leverages the Pynvml5 wrapper for GPU monitoring, utilizes a comprehensive
database of over 3,000 CPU models to estimate CPU power usage, and considers specific
energy consumption rates for DDR-n RAM modules. In the context of RAM, eco2AI
assumes a power consumption of 0.375 W per GB of allocated memory (Budennyy et al.
2022). Additionally, this tool introduces the Power Usage Effectiveness (PUE) parame-
ter, accounting for data center overhead, which is particularly relevant for cloud-based

3https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/running-average-power-limit-energy-reporting.html

4https://developer.nvidia.com/management-library-nvml
5https://pypi.org/project/pynvml/
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computations. The inclusion of the PUE factor modifies the carbon footprint calculation
as follows:

CF = γ × PUE × (ECPU + EGPU + ERAM ) (8)

where CF denotes the total carbon footprint in kilograms of CO2. The parameter
PUE is a dimensionless factor, set to a default value of 1 but adjustable based on
data center efficiency. The energy consumption components ECPU , EGPU , and ERAM

represent the energy consumed by the CPU, GPU, and RAM respectively, measured in
kilowatt-hours.

While both tools provide robust frameworks for emissions tracking, eco2AI’s incorpo-
ration of the PUE factor and more granular component-level monitoring offers a more
comprehensive estimation, particularly when evaluating cloud-based computations.

4.3 Strategies and Classifiers

This study evaluates the performance of multiple statistical classifiers across four MCC
strategies, denoted by the set S: OVA, OVO, BOB, and ECOC. The classifiers considered
form the set F , which includes Artificial Neural Network (ANN), Linear Discriminant
Analysis (LDA), Logistic Regression (LR), Näıve Bayes (NB), Random Forest (RF),
Support Vector Machine (SVM), and Threshold-Based Näıve Bayes (TB-NB). Model
performance is assessed using a 10-fold cross-validation procedure, as detailed in Algo-
rithm 1.

In OVA, the learning set DL is divided into k disjoint folds. Each fold serves as the
test set, while the remaining k − 1 folds are used to train nj − 1 binary classifiers, each
contrasting class j against the other nj − 1 classes. Final predictions are obtained via
majority voting.

In OVO, a classifier is trained for each pair of classes within each fold, resulting in
a total of

(nj

2

)
· k classifiers. The class receiving the highest number of votes across all

pairwise comparisons is selected as the final prediction.

BOB extends the OVO strategy by focusing, for each test instance, on the top two
classes receiving the most votes. A final binary classifier is trained using only the data
points corresponding to these two classes, and its prediction determines the final label.

In ECOC, each class is represented by a unique binary code. Binary classifiers are
trained to predict each bit in the code, and final predictions are made by assigning the
test instance to the class whose code is closest in Hamming distance to the predicted bit
string.

The classifiers used in this study are selected for their diverse modeling assumptions
and methodological foundations. ANN is inspired by biological neural networks and was
introduced as the perceptron by Rosenblatt (1958). It consists of input, hidden, and
output layers, with interconnected units that apply mathematical functions to model
complex patterns. ANNs are capable of learning tasks such as classification and re-
gression without explicit task-specific rules. LDA, introduced by Fisher (1936), is a
statistical method for classification and dimensionality reduction. It identifies a linear
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combination of features that maximizes between-class variance while minimizing within-
class variance, enhancing class separability. Its computational efficiency stems from
solving a generalized eigenvalue problem (Xanthopoulos et al. 2013). LR (Hosmer and
Lemeshow 2000) models the probability of a binary outcome using the logistic func-
tion, which bounds output between 0 and 1. For MCC, LR is extended through OVA
or OVO schemes to handle multiple classes. RF, proposed by Breiman (2001), is an
ensemble-based classifier that constructs a collection of decision trees during training.
It predicts classes by aggregating votes from individual trees, combining robustness and
interpretability. SVM introduced by Cortes and Vapnik (1995), finds the hyperplane
that maximally separates data classes. It supports both linear and nonlinear classi-
fication using kernel functions (e.g., linear, polynomial, RBF). SVMs perform well in
high-dimensional spaces and are valued for their ability to model complex, nonlinear
relationships (Zhang and Wang 2011). NB is a generative probabilistic classifier based
on the assumption of feature independence (Murty and Devi 2011). For a text snippet
ωt of length dωt , the probability of it belonging to class j is given by:

π(j | i) ∝ π(j)

dωt∏
i=1

π (i | j) (9)

where π(i|j) is the conditional probability of word i appearing in class j, and π(j) is
the prior probability of class j. The classification decision is made by selecting the class
with the highest posterior probability under this assumption.

Given this in mind, Romano et al. (2023) introduced the TB-NB classifier tailored
for the binary output case, which has been fruitfully used in sentiment analysis. It
is based on the computation of a scoring function that considers the log-odds ratio of
the probability of a text snippet belonging to one of the two competing classes. Next,
TB-NB utilizes the previously defined computed score while introducing a threshold to
define the final decision rule. This threshold is used to classify a text snippet into one
of the two classes.

The scoring function Λ(·) is computed for all the terms composing each individual
text snippet included in the learning set based on the probability function π(·) and the
Bayes’ rule in order to predict, as accurately as possible, if a text snippet ωt belongs
to the class j or j′. Notationally, for a text snippet ωt and two classes j and j′, the
scoring function Λ(ωt|i) corresponds to the log-odds ratio of the probability that a text
snippet ωt belongs to class j given that it includes a certain word i, that is π(ωj

t |i) over
the probability that ωt belongs to class j′ given that it includes the word i, denoted as

π(ωj′

t |i). Thus, the log-odds ratio Λ for a text snippet ωt that contains a word i is:
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Λ (ωt|i) = log

[
π(ωj

t |i)
π(ωj′

t |i)

]

= log

[
π(i|ωj

t )

π(i|ωj′

t )
· π(̄i|ω

j
t )

π(̄i|ωj′

t )
· π(ω

j
t )

π(ωj′

t )

]
=

[
log π(i|ωj

t )− log π(i|ωj′

t )
]

︸ ︷︷ ︸
L(i)

+
[
log π(̄i|ωj

t )− log π(̄i|ωj′

t )
]

︸ ︷︷ ︸
L(̄i)

+
[
log π(ωj

t )− log π(ωj′

t )
]

≈ L(i) + L(̄i) (10)

In Eq. 10, L(i) measures how likely a specific word i is present in a text snippet, whilst
L(̄i) measures how likely i is not present in the same one. Those two functions derive
from the log-likelihood ratio of the event (i ∈ ωt) and (i /∈ ωt), respectively. The term[
log π(ωj

t )− log π(ωj′

t )
]
is discarded as it is constant for all the words i composing ωt.

It corresponds to the proportions of observed text snippets in class j (j′) in the set of
text snippets included in the collection D.

Therefore, Eq. 10 measures the likelihood of a document ωt to belong to class j or j′

given that it includes a certain word i. Extending Eq. 10 to all the dω words composing
ωt allows us to compute the scoring function Λ(ωt) for the entire text snippet, that is,
for all the dω terms composing it:

Λ (ωt) =

dω∑
r=1

Λ (ωt|ir) =
dω∑
r=1

L(ir) + L(̄ir) (11)

with (ir, . . . , ir, . . . idω) ∈ ωt.

Once the set of scores Λ (ωt) is computed for all the available text snippets in the
learning set, the decision rule D used to classify a test set instance ω∗

t is defined based
on the estimated value of a threshold parameter τ , which is the unique parameter to be
estimated when using TB-NB. It corresponds to a specific value of the log-odds ratio
Λ (ωt) computed on the learning set instances. For the two class case, the decision rule
Dω∗

t
that allows us to classify a text snippet d∗j in class j or j′ is:

Dω∗
t
:

{
Λ (ω∗

t ) > τ̂ → ω∗
t = j

Λ (ω∗
t ) ≤ τ̂ → ω∗

t = j′
(12)

In the implemented horse race τ̂ corresponds to the value of Λ (ωt) minimizing both
Type I and Type II errors and is estimated by k-fold cross-validation.
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4.4 Algorithm for Performance, Time and Emissions Tracking

The framework for implementing MCC strategies is presented in Algorithm 1. The
algorithm accepts a dataset D consisting of n labeled text instances, a set ofM classifiers
F , and a set of H MCC strategies S. Additionally, it incorporates the estimation of
energy consumption and CO2 emissions, as previously defined.
The dataset D is partitioned into a learning set DL of α× n instances and a test set

DT of (1− α)× n instances, such that DL ∩DT = ∅ and 0 < α < 1. For each classifier
fm ∈ F and strategy sh ∈ S, the framework performs training, prediction, performance
metrics, energy tracking, and emissions estimation.

Algorithm 1 Framework for MCC Strategies with Energy and Emissions Tracking

Input:
D - Dataset
F = {f1, . . . , fM} classifiers
S = {s1, . . . , sH} strategies
α = 0.7 train-test split ratio
k = 10 folds used in cross-validation
γ - Carbon intensity (kg CO2/kWh)
PUE - Power Usage Effectiveness (default: 1)

Output:
Am,h, Pm,h, Rm,h, F1m,h - Performance metrics
Cm,h - Energy consumption (kWh)
Em,h - CO2 emissions (kg)

Procedure:

1: Partition D into DL and DT using α
2: for h = 1 to H do
3: for m = 1 to M do
4: Init Cm,h = 0, Em,h = 0, and performance metrics to zero
5: Init ϕ: training, ψ: inference, Vk: k-fold cross-validation
6: ϕ(fm,h(D

L)) = f̂m,h(D
L)

7: Vk(f̂m,h(D
L)) = f̂m,h,k(D

L)

8: ψ(fm,h(D
T )) = f̂m,h(D

T )
9: Compute Am,h, Pm,h, Rm,h, F1m,h on DL and DT

10: Cm,h =
∑

u∈{CPU,GPU,RAM}
∑n

i=1 PCi,u · Ti,u

Em,h =

{
γ · Cm,h, if CodeCarbon

γ · PUE · Cm,h, if eco2AI
(13)

11: end for
12: end for
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5 Results

In this section, we present the results obtained by implementing Algorithm 1. All ex-
periments were conducted on a 12th Gen Intel(R) Core(TM) i7-12700H CPU 2.70 GHz,
with 14 cores, 20 logical processors, and 16GB of DDR4 RAM.

We begin with a classifier–strategy analysis, evaluating the performance of each clas-
sifier across all MCC strategies using the metrics described in Section 4.1. Conversely,
we assess the performance of each MCC strategy across all classifiers to identify which
strategies are best suited to specific tasks. Subsequently, we examine the environmental
and computational efficiency of each classifier, focusing on training time, energy con-
sumption, and estimated CO2 emissions.

5.1 Classifier-Strategy pair Analysis

In terms of classifiers achievements, results of both training and test performance are
reported in Figures 3-4. Rankings for both classifier–strategy and strategy–classifier
pairs are presented in Tables 2–5.

Figure 3: Performance Metrics for Learning Set (both datasets)
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Table 2: Accuracy Classifier-Strategy and Strategy-Classifier Ranking Pairs
Classifier BOB ECOC OVA OVO

HNMC 20NG HNMC 20NG HNMC 20NG HNMC 20NG avg med

ANN 4 (1) 5 (1) 4 (4) 3 (3) 4 (3) 6 (4) 4 (2) 4 (2) 4.38 4

LR 5 (2) 3 (2) 5 (4) 2 (4) 3 (1) 3 (1) 5 (2) 5 (2) 3.75 3.5

NB 6 (2) 2 (2) 6 (4) 4 (4) 6 (1) 4 (1) 6 (2) 6 (2) 4.63 5

RF 2 (3) 6 (3) 3 (4) 5 (2) 1 (1) 5 (1) 2 (2) 2 (2) 3.75 4

TB-NB 1 (2) 1 (2) 1 (4) 7 (4) 5 (3) 1 (3) 1 (1) 1 (1) 2.25 1

LDA 7 (1) 7 (3) 7 (4) 6 (1) 7 (3) 7 (2) 7 (2) 7 (2) 6.88 7

SVM 3 (2) 4 (4) 2 (4) 1 (3) 2 (1) 2 (1) 3 (3) 3 (3) 2.38 2

avg 2.15 3.50 1.90 2.30

med 2 4 1 2

Note: Rankings indicate classifier-strategy pairs (strategy-classifier pairs in parentheses) for each dataset.
‘avg’ and ‘med’ refer to the average and median rankings across datasets, respectively. Best overall
performers are shown in bold.

Table 3: Precision Classifier-Strategy and Strategy-Classifier Ranking Pairs
Classifier BOB ECOC OVA OVO

HNMC 20NG HNMC 20NG HNMC 20NG HNMC 20NG avg med

ANN 4 (1) 5 (2) 5 (4) 4 (4) 5 (3) 6 (3) 4 (2) 4 (2) 4.63 4.5

LR 5 (3) 3 (2) 3 (4) 2 (4) 4 (1) 2 (1) 5 (2) 5 (2) 3.38 3

NB 6 (2) 4 (2) 6 (4) 5 (4) 6 (1) 3 (1) 6 (2) 6 (2) 5.13 5.5

RF 2 (3) 6 (3) 2 (4) 3 (4) 2 (1) 5 (1) 2 (2) 2 (2) 3.50 2.5

TB-NB 1 (1) 1 (2) 1 (4) 6 (4) 1 (3) 1 (1) 1 (2) 1 (2) 1.63 1

LDA 7 (1) 7 (3) 7 (4) 7 (2) 7 (3) 7 (1) 7 (2) 7 (2) 7.00 7

SVM 3 (2) 2 (2) 4 (4) 1 (3) 3 (1) 4 (4) 3 (3) 3 (3) 2.75 3

avg 2.10 3.80 1.80 2.20

med 2 4 1 2

Note: Rankings indicate classifier-strategy pairs (strategy-classifier pairs in parentheses) for each dataset.
‘avg’ and ‘med’ refer to the average and median rankings across datasets, respectively. Best overall
performers are shown in bold.
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Table 4: Recall Classifier-Strategy and Strategy-Classifier Ranking Pairs
Classifier BOB ECOC OVA OVO

HNMC 20NG HNMC 20NG HNMC 20NG HNMC 20NG avg med

ANN 4 (1) 4 (1) 5 (4) 3 (3) 5 (3) 7 (4) 4 (2) 4 (2) 4.50 4

LR 5 (3) 5 (2) 3 (4) 2 (4) 4 (1) 4 (1) 5 (2) 5 (2) 4.13 4.5

NB 6 (2) 3 (1) 6 (4) 5 (4) 6 (1) 3 (3) 6 (2) 6 (2) 4.75 5.5

RF 2 (3) 6 (3) 2 (4) 4 (1) 1 (1) 5 (2) 2 (2) 2 (2) 3.50 3

TB-NB 1 (2) 1 (1) 1 (4) 7 (4) 2 (3) 1 (3) 1 (1) 1 (1) 1.88 1

LDA 7 (1) 7 (3) 7 (4) 6 (1) 7 (3) 6 (2) 7 (2) 7 (2) 6.75 7

SVM 3 (2) 2 (1) 4 (4) 1 (3) 3 (1) 2 (4) 3 (3) 3 (3) 2.50 2.5

avg 1.85 3.45 2.30 2.30

med 2 4 3 2

Note: Rankings indicate classifier-strategy pairs (strategy-classifier pairs in parentheses) for each dataset.
‘avg’ and ‘med’ refer to the average and median rankings across datasets, respectively. Best overall
performers are shown in bold.

Table 5: F1 Classifier-Strategy and Strategy-Classifier Ranking Pairs
Classifier BOB ECOC OVA OVO

HNMC 20NG HNMC 20NG HNMC 20NG HNMC 20NG avg med

ANN 4 (1) 4 (1) 4 (4) 3 (3) 5 (3) 7 (4) 4 (2) 4 (2) 4.38 4

LR 5 (2) 5 (2) 5 (4) 2 (4) 4 (1) 4 (1) 5 (3) 5 (3) 4.38 5

NB 6 (2) 3 (2) 6 (4) 5 (4) 6 (1) 3 (1) 6 (2) 6 (2) 4.75 5.5

RF 2 (3) 6 (2) 2 (4) 4 (4) 2 (1) 5 (1) 2 (2) 2 (2) 3.63 3

TB-NB 1 (2) 1 (1) 1 (4) 7 (4) 1 (3) 1 (2) 1 (1) 1 (1) 1.75 1

LDA 7 (1) 7 (3) 7 (4) 6 (1) 7 (3) 6 (2) 7 (2) 7 (2) 6.75 7

SVM 3 (2) 2 (2) 3 (4) 1 (3) 3 (1) 2 (4) 3 (3) 3 (3) 2.38 2.5

avg 1.90 3.65 2.00 2.35

med 2 4 2 2

Note: Rankings indicate classifier-strategy pairs (strategy-classifier pairs in parentheses) for each dataset.
‘avg’ and ‘med’ refer to the average and median rankings across datasets, respectively. Best overall
performers are shown in bold.
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Figure 4: Performance Metrics for Testing Set (both datasets)

Looking across all classifiers, TB-NB emerges as the top performer, achieving the highest
median and average ranks across evaluation metrics. Its consistent performance across
strategies highlights its robustness and adaptability. SVM ranks second overall, deliver-
ing strong results under most strategies. Notably, it remains relatively stable even in
contexts where ECOC performs poorly. LR also secures a solid overall position, particu-
larly when paired with OVA, offering a dependable balance between accuracy and gen-
eralization. In contrast, LDA consistently underperforms across strategies and datasets,
confirming its limited adaptability and overall weakness as a classifier.

Among the evaluated strategies, OVA proves to be the most effective overall, achieving
the highest average and median rankings in both accuracy and precision. This under-
scores its reliability as a balanced and general-purpose MCC approach. BOB and OVO

achieve the best results in recall and F1-score, making them the most effective options
for recall-sensitive tasks where minimizing false negatives is critical. In contrast, ECOC
ranks lowest overall, exhibiting inconsistent performance across classifiers. As said, a
notable exception is observed when ECOC is paired with SVM, particularly on the 20NG
dataset, where a localized performance improvement is evident. However, this isolated
success does not compensate for ECOC’s broader instability.
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Looking across all classifier–strategy combinations, TB-NB stands out due to its strong
compatibility with both OVA and OVO, which contributes significantly to its leading posi-
tion in the aggregated rankings. Additionally, LR demonstrates strong performance when
combined with OVA, reinforcing its position as the most balanced and dependable strat-
egy overall. In contrast, the combination of ECOC and LDA performs the worst across all
metrics and classifiers, highlighting a clear lack of adaptability and overall effectiveness.

5.2 Environmental Impact and Efficiency

To assess the environmental and computational cost of each classifier-strategy combina-
tion, we analyze the trade-off between generalization performance and training time.

Figure 5: Trade-off between Training Time and Testing Accuracy

In Figure 5, the optimal classifier-strategy combinations appear in the upper-left quad-
rant—indicating high accuracy paired with low training time. This region represents the
best trade-off between performance and computational efficiency.
Accuracy values are used without modification, as they are already normalized be-

tween 0 and 1. Training times, initially recorded in hh:mm:ss.fff format, are converted
to total seconds to ensure consistency in computational comparisons. To allow fair com-
parisons across datasets of different sizes, training times are standardized using z-score
normalization within each dataset. We then aggregate results by averaging the per-
dataset z-scores and the corresponding mean accuracies for each classifier-strategy pair.
This equal-weight approach ensures that neither dataset disproportionately influences
the outcome, enabling balanced and interpretable comparisons.
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Based on this analysis, several trends emerge. NB and LR consistently show the shortest
training times across both datasets. Combined with stable accuracy across strategies,
they stand out as efficient, low-cost classifiers. ANN and RF incur significantly higher
training costs. Although they are capable of strong predictive performance, their com-
putational demands reduce their efficiency in time-constrained or resource-limited envi-
ronments.
LDA offers the weakest trade-off, combining low accuracy with inefficient training per-

formance, confirming its limited suitability for MCC tasks. TB-NB achieves moderate
training times—typically between 7 and 10 minutes—and performs most efficiently un-
der the OVO and BOB strategies. It emerges as the overall best choice when considering
the combined trade-off between training time and accuracy, in line with its strong overall
ranking. Notably, SVM exhibits low variability in both accuracy and training time across
strategies, reinforcing its reliability as the most consistent performer.

Figure 6: CO2 Efficiency by Classifier and Strategy

To assess the environmental impact of the evaluated classifiers, we collect carbon and
energy emission data as explained in Section 4.2. We average the emissions reported by
both tools for each dataset to produce a unified estimate. Since the datasets differ in size,
direct comparison of raw emission values would be misleading. To normalize for dataset
variability and model performance, we compute two efficiency ratios: CO2 per accuracy
unit (in kilograms) and energy per accuracy unit (in kilowatt-hours). These metrics
represent the environmental cost required to achieve a unit of predictive accuracy.
The resulting values are visualized in Figures 6 and 7. The analysis shows that the ANN

and LDA classifiers perform worst in terms of environmental efficiency, with ANN reaching
up to 0.025 kg CO2 and 0.074 kWh per accuracy point under the BOB strategy. Similarly,
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Figure 7: Energy Efficiency by Classifier and Strategy

LDA shows consistently high emission values across strategies, with the highest reaching
0.020 kg CO2 and 0.060 kWh per accuracy point under ECO. In contrast, NB and LR yield
the most favorable emission-to-performance ratios, with values as low as 1.06× 10−5 kg
CO2 and 3.88× 10−5 kWh per accuracy unit for NB under OVA.

TB-NB positions itself close to SVM, forming a cluster of models that balance higher pre-
dictive performance with reasonable environmental efficiency. This confirms that TB-NB
represents a promising trade-off when prioritizing both accuracy and sustainability.

6 Conclusions

In MultiClass Classification, the choice of both classifier and strategy is critical, as it
directly affects not only predictive performance but also training efficiency and environ-
mental impact. The latter is particularly relevant given the growing awareness of machine
learning’s carbon footprint in the context of climate change. Classifiers vary in com-
plexity, interpretability, and suitability for different data distributions, with more com-
plex models often requiring significantly greater computational resources—potentially
increasing the environmental cost of deployment.

Our analysis shows that classifier choice has the greatest influence on overall perfor-
mance and efficiency. TB-NB emerges as the top performer, achieving the best overall
ranking across metrics and maintaining strong compatibility with multiple MCC strate-
gies. SVM ranks second, offering a compelling balance between accuracy, training time,
and emissions, particularly due to its consistent behavior across strategies. While LR
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and NB do not lead in accuracy, they demonstrate exceptional training efficiency and
low emission-to-performance ratios, making them ideal for sustainability-oriented appli-
cations. In contrast, LDA underperforms in both accuracy and environmental efficiency,
and ANN and RF, despite their modeling capacity, incur high computational and energy
costs without commensurate performance gains.

To complement performance evaluations, we assess environmental efficiency by com-
puting CO2 and energy consumption per unit of test accuracy. This metric enables
fairer comparisons by incorporating both predictive effectiveness and resource usage.
LR and NB emerge as the most environmentally efficient classifiers, while ANN and RF

exhibit substantial training times and computational demands. Although these models
can effectively capture complex relationships, their extended training durations do not
correspond to meaningful improvements in accuracy relative to other classifiers. This
discrepancy raises concerns about their environmental viability, particularly in contexts
emphasizing sustainability.

The role of MCC strategies, while secondary to classifier choice, is nonetheless impor-
tant. OVA provides the best overall balance between performance and training efficiency,
particularly when paired with efficient classifiers such as LR, NB, or TB-NB. In contrast,
ECOC ranks lowest overall and proves incompatible with several classifiers. However, it
demonstrates localized success when paired with SVM. BOB and OVO yield the highest
scores in recall and F1-score, making them suitable for recall-sensitive tasks.

From a classifier–strategy pairing perspective, TB-NB combined with OVO offers the
best performance-to-emission ratio, making it the leading choice for sustainable yet high-
performing classification. We also recommend LR and NB paired with OVA for contexts
requiring minimal resource use and dependable accuracy.

Our findings advocate for a more holistic and sustainability-aware approach to clas-
sifier selection. The environmental implications of model and strategy selection should
not be overlooked. As machine learning becomes more integral to real-world systems,
integrating sustainability considerations into model development will be increasingly es-
sential. Researchers and practitioners are encouraged to jointly evaluate classifiers and
strategies, rather than optimizing accuracy in isolation.

Future work should aim to refine environmental impact assessments by incorporating
factors such as hyperparameter tuning and model search, which often involve substantial
computational effort. More comprehensive evaluation frameworks will be critical in
supporting the development of sustainable and responsible AI systems.
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