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In this study, we investigate novel identities involving the incomplete gamma
function through the application of probabilistic techniques. By examining
the distribution of order statistics derived from the gamma distribution, we
establish integral identities that incorporate expressions of the incomplete
gamma function. Incomplete Gamma function identities can be derived by
integrating out order statistic densities. These findings provide deeper in-
sight into the function’s analytical structure and hold practical relevance.
Notably, we leverage these results to construct bivariate gamma distribu-
tions, demonstrating their utility in statistical modeling.
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1 Introduction

The gamma function and its variants play a fundamental role in engineering, physics,
and other disciplines where special functions are applied. They also appear frequently in
discrete mathematics, number theory, and various branches of the sciences. In particular,
the incomplete gamma functions have found wide applications in fields such as physics,
reliability engineering, probability theory, and statistics. For example, in Alahmad and
Abdelhadi (2019) and AlAhmad (2021), the gamma function was used to define the
fractional derivative of analytic functions.
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The study of these functions dates back to 1877, when Prym first examined them; as
a result, the function (a, z) is sometimes referred to as Prym’s function. However, many
assertions concerning these functions are made without supporting evidence in Olver
et al. (2010).

1.1 Incomplete gamma functions

Throughout the 20th century, the incomplete gamma function was instrumental in ad-
vancing the theory of special functions and their applications across physics, engineer-
ing, and finance. Prominent researchers such as Karl Pearson (see Pearson (1900) ) and
Harold Jeffreys (see Jeffreys (1939)) contributed to this development. Pearson applied
the incomplete gamma function to model measurement errors, while Jeffreys used it to
study radioactive decay. Today, the function remains an essential tool across diverse ar-
eas including statistical analysis, quantum mechanics, and image processing and many
other fields. For example, in R. AlAhmad (2022), Al-Ahmad et al. (2018), AlAhmad
et al. (2024), AlAhmad (2025), Alahmad (2023), and Al-Ahmad et al. (2020), the in-
complete gamma function was used to find the derivative and the fractional derivative
of functions of certain forms.

The incomplete gamma function also plays a significant role in modeling complex
phenomena. For example, it has been used in the study of power-law relaxation times in
complex physical systems (Sornette, 1998), logarithmic oscillations in protein relaxation
dynamics (Metzler et al., 1999), and Gaussian and exponential orbitals in quantum
chemistry (Shavitt, 1963; Shavitt and Karplus, 1965).

Moreover, integrals involving products and powers of incomplete gamma functions
are of considerable importance in both scientific research and engineering practice. For
recent studies and extended properties, see Dimov et al. (2021), AlAhmad (2016a), and
AlAhmad (2016b). In this section, will evaluate complex integrals and sums involv-
ing gamma functions and incomplete gamma functions by applying properties of order
Statistics.

For R(a) > 0, the gamma function denoted by I'(«v), is defined by the integral

INa) = /000 22 lem% dz. (1)

Now, for R(a) > 0, the upper incomplete gamma function, denoted by I'(a,t), is
defined for ¢t > 0 as

I(a,t) = /too 22 lem% dz. (2)

In addition, for R(a) > 0, the lower incomplete gamma function, denoted v(a,t), is
defined for ¢ > 0 as

t
~v(a,t) :/ 227 le7% dz. (3)
0
It follows from (1), (2), and (3) that

v(a,t) + T'(ayt) = T'(a). (4)
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If « is a positive integer, then the upper incomplete function is given by:
a—1 sm

T(o,t) =e(a—1)1) — (5)
m=0 ’

The following recurrence relation can be proved by integration by parts
D(a+1,t) = e " + al'(a, t). (6)
For any R(a) > 0,

INGHIN (a + ;) = /w2727 (2a). (7)

This identity is called the Legendre’s duplication formula.

The following result is an interesting relation between gamma function and incomplete
gamma function which will simplify integrals involving products of incomplete gamma
functions.

Lemma 1.1. If n is a positive integer, then

/oo e‘tt"‘_l(l“(a,t))"_l dt = (F(a))n

0 n

Proof. Note that

a(r(a, " =n(—e ) t* N (a,t)" .

Therefore, since

lim (D(a,t))” =0 and (I'(a,0))" = I'(a)",

then
S _ LA oy
/0 e HOT (v, ) dt = n/o 5 (L(a 1)) di
() - o)) -

1.2 Incomplete beta function
For R(a) > 0, R(b) > 0, and 0 < x < 1, the lower incomplete beta function is defined
by

Bla,b;x) = / 271 — )Pt ar.

0
Clearly, 5(a,b;1) = B(a,b) .
The upper incomplete Beta function is defined by
1
B(a,b;x) = / (1 — )Pt at.

Clearly, B(a,b;0) = ((a,b). For more applications of incomplete beta functions,
see Alahmad and Almefleh (2020).
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1.3 The Whittaker function and hypergeometric functions
For R (k — % — m) < 0 and k — % — m is not an integer, The Whittaker function is
defined -
ez s o0 1 t\ztm
Wim(s) = —— [ ¢7h—ztm 14 ) ~tqt. 9
k, (S) F(%—k—km)/o < S € ()

For example, the following integral is need later

1 x z a+b—d 2
d—a—b—1 h—1 —5
1-— —— ) dv=|— 20 W afb—d— — 1. (10
/o ° (=) eXp( uv> ’ <u> ¢ Marhoa s (u) (10

Also, For R(a) > 0,%R(c — a) < 0, the integral representations of the Confluent and
Gauss hypergeometric function are given as:

¢ 1
1Fi(a,c;8) = F(a)?ic)— ) /0 w1 — u) T e du, (11)
and
c 1
oFi(a,b,c;8) = F(a)l;((c)_a)/o w1 — w) 71 — su) TPe*tdu. (12)

respectively. The hypergeometric function o F; satisfies the following proposition.
Proposition 1.1. For positive numbers p,c and a,

I'(a+c

[e.e]
/ e P4 (a, t)dt = )QFl(CL7 ce+1;,—1/p).
0

Proof. Proof. Recall the upper incomplete gamma function:

F(a,t):/ ez da.
¢

Substituting this into the integral gives:

I ::/ e Pl (/ O dm) dt.
0 t

We interchange the order of integration (justified by Fubini’s theorem, since the integrand

is positive for ¢,z > 0):
o xX
I :/ e Tyl (/ e Pt dt) dx.
0 0

J(x) ::/ e Pt dt,
0

We use the substitution t = xy, so dt = xdy and 0 < y < 1:

Let

1
J(x) = xc/ e PPyl qy,
0
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Substituting back into the outer integral:

00 1

I :/ e gt lge (/ e PrYy el dy) dx.
0 0
1 e’}

I :/ ycfl </ e~ 2(1+py) pate—1 dx) dy.
0 0

The inner integral is a standard gamma integral:

o (A
/ e Ay = ¥, R(q) > 0.
0 q

Here, g =1+ py >0and A =a+ ¢ > 0. Thus:

/OO o2 (14py) gate—1 go. _ M'
0 (14 py)ate

Substituting:
c—1

1
Yy
IzFa—{—c/ — dy.
( ) o (1+py)te™

The final integral is known in terms of the hypergeometric function:

1 yc—l 1
7d = — F . 1—1 .
/0 Tt @ =2 1(a,c;c+ 1;—1/p)

Substituting back:

I'(a+c)

I= 2Fi(a,c;e+1;—-1/p).

O
O

In this paper, section 2 will introduce an approve to derive many properties of in-
complete gamma functions using order statistic. Section 3 will be devoted to deploy
properties of the special function mentioned above to derive bivariate probability distri-

butions.

2 Order Statistics probability density functions

Many authors used probabilistic methods to prove identities and inequalities in combi-
natorial, engineering, and analysis, see (Miller and Moskowitz, 1998) and (Paris, 2003),

to name the least.
IBata—leﬂ(—t)

- T(w

[(a,tf)
I'(a)

fx(l') ,t>0

Fx(l'):1— ,t > 0.

(13)

(14)
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In the sequel, we assume that « > 0, 5 >0, ¢ > 0, and v > 0.

The probability density function for the kth order statistic corresponding to a random
sample of size n drawn from the distribution of a continuous random variable X is given
by

n!
t) =
I = =i —w)
where fx(t) and Fx(t) are the probability density function (pdf) and the cumulative
distribution function (cdf) of X, respectively. (Arnold et al., 1992). We now derive the
probability density function of the kth order statistic from a Gamma distribution with
a >and 8 = 1 using substitution into the general formula (15). The result is:

Ex (O = Fx (D] " fx(2). (15)

k—1

Fx g (8) = jZ:jO<—1>’““ (k . 1) (Z)F(a)j”t“etwa,t)"j% (16)

J

where 0 < k < n,t > 0.
The pdf of the (k + 1)st order statistics is

P ) = é(—l)’“—j ("TH (et )

where 0 < k <n —1.

2.1 Applications of order Statistics to derive identities of the
incomplete gamma functions

In this subsection, we deploy properties of order Statistics to derive identities related to
incomplete gamma functions. Incomplete Gamma function identities can be derived by
integrating out order statistic densities. For instance, the following identity proves an
approach to evaluate [ e 't* 1 (I'(a +1,1))? dt.

Identity 2.1.
00 —tra—1 2 o c_9) —
/ e "t o+ 1,1) g — ABa+1)(32F1 (1, —; 20+ 1; —2) — 1) Lo, (18)
0 a?l(a)3 33T (o + 1)3

where o Fy is the hypergeometric function defined by (12).
Proof. Letting k =2 and n = 3 in (16), we obtain
_ 6e 't 1 (a, t)(T(a) — (e, t))

t 19
fX(Q)( ) F(Oé)g ( )
_ 6e 1t 1T (a, t) B 6e 110 (a, t)? (20)
I'(a)? I'(a)?
The first term of (20) integrates to 3, by Lemma 1.1. That is,
> 6e~ 't T (a, t)
- dt = 3. 21
| 2y
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But since o
| rxewi=1 (22)
the second term of (20) should integrate to 2. That is,
> 6e~ 1t T (a, t)?
L dt = 2. 23
[ )

Using (6) and expanding the expression of fx(1)(t), we see that

6e 33l e I (a + 1,1)2

fxay(t) =-
(1) a?T ()3 a2l (a)? (24)
12722071 (e + 1,t)  6e 1t 1T (a, t)
a?T(a)3 I«)?
Integrating with respect to ¢ over (0,00), we see that
/oo 66—3tt3a—1 . 2 31—3ar(3a) (25)
o a2T(a)3 — a?T(a)
® et (o, t)
- dt =3 26
e 2
12721420710 (o + 1, 1) 18T (3a) o F1 (2cr, 3ax + 1; 2 + 15 —2)
5 dt = ;o (@27)
0 a?T(a)3 a?T(a)3
where the last integral follows from (6.455.1) of ((Gradshteyn and Ryzhik, 2007)).
Therefore,
/°° 6e 1t T (a + 1,1)2 gt — 18T (3ar) o F1 (20, 3 + 1; 2 + 1; —2)
0 a?T ()3 B a?T ()3
2 317391 (3a)
_ /131 28
a?T(a)3 * (28)
_2T(Ba+1)(32F1(1, —a;2a +1; -2) — 1) 42
N 33T (a +1)3 ’
O]
The following identity proves an approach to evaluate fooo e T (ay t).
Identity 2.2. For a > 0,
o r 1)2 — 217291 (2
/ T (o 1) dt = @D > ol (2a) (29)
0

Proof. The (n—1)st order statistics from the Gamma distribution with shape parameter
a + 1 has a pdf obtained from (16) as

fxm-n®) = (n—1ne "t°T(a+1)""T(a+1,t)T(a+1) —=T(a+1, )" 72, t > 0. (30)
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Letting n = 2 and expanding, this pdf becomes
_ 2e7HT(a+ 1,1)

t) = 31
Now using (6), we see that
2e7 (et + al(a,t))  2e~ 22 N 20e 71T (e, t) (32)
I(a+1)2 -~ D(a+1)? a+1)2
But since
/OO 2e 22 217200 (2a) (33)
o Dla+1)2"7 T(a+1)2 "
we get
© 9 —t ap 217204 T(2
/ ae 't (a’t)dtzl— a (a)’ (34)
0 Fa+1)? Fla+1)?
from which the identity follows. O
Using Identity (2.2) and (7), we get the following corollary.
Corollary 2.1. For a > 0,
1
(a +1)T(a) <F(a L) — F(jj;g))
F 1,2 1; 2;—1) =
oFi(a+1,2a+ 1,0 +2;-1) 2o 1) (35)
Proof.
1 «
x
F 1,2 1; 2;—-1) = 1 —d
2 1(O‘+ yea+ Lo+ 2 ) (a+ )/0 (1_|_l,)2a+1 z
Now, using the integral tables in Prudnikov et al. (1986), we have
L ge 1 Bla+1,9)
" dr== 1 oA 2
/0 AT =5 (flatla NG
Therefore,
1 Bla+1,%)
oFi(a+ 1,20+ L;a+2;-1)=-(a+1) | Bla+ 1,a) - ————== | . (36)
2 N3

Substituting the beta function relation:

FNa+ 1) ()

flat1,0) = T(2a + 1)

and the gamma function identity

r( 1) _/m2720(2a)

aty (o)
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into the integral result (36) to get:

(a+1)

Tla+1)T(a) 1 Tla+DI (a+

oFi(a+1,2a+ L+ 2;—-1) = 5 ( -—

Factoring common terms, we arrive at:

e
2Fi(a+1,20+ La+2—1) = (a+1)I(a)

which proves the desired identity.

F2a+1) 7 T(2a+1)

2).

2P(2a+1)<r<a+1)_\/7r

The following identity gives a closed-form expression for I'(a+ 3) in terms of I'(a+1)

and I'(2a).
Identity 2.3.

. <a+ 1)  2a/7T(20)

2) " 4°T(a+1)"

Proof. Using Corollary 2.1 and Proposition 1.1 witha=a,p=1landc=a+1

I'2a+1)
a+1
() <F(a +1)— F“}}”)

B 2

T(a+1) <F(a +1)— W}”)

o
/ e T (a, t) dt = oF (a,a+ L+ 25 —1).
0

™

2a
Ma+1)2 T+ (a+1)

2 2/

Therefore,

o0 r 12 T U 1
[ et (a+1)? Tla+ Dl (a+3)
0 20{ 2ﬁa

On the other hand, letting n = 2 and k =1 in (16) and using (6), we get

oo T 1 2
/ e T (o, t) dt = ot 47T (2c)
0 2
T 2
. (20‘) — 47°T(2q)

It follows from (43) and (42) that

- ( 1) 207 (20)

) T T a1

(37)
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For example, when o« = 1, T’ (%) = \/§ = g The following identity finds a summa-
tion involving gamma function.

Identity 2.4. If a is a positive integer then

(m+ ) _
Z —gm =2 (). (47)
m=0
Proof. The proof follows from (5) and the fact that
e T 2
eI (o, t) dt = ﬂand (48)
0 2
0o e—2ttoz+m—1 2—a—m1’\(m+ Oé)
/0 U= R (49)
Indeed, since I'(a,t) = (a — 1)! 3% tmm, , then
T 2 00
( (;)) — / e_tto‘_lf‘(a,t)dt
0
a—1 1 00
_ 1\ - —2tym+a—1
= (« 1).Zm!/0 e "t dt
m=0
a—1 1 )
_ o | m+a—1_—u
= (« 1)'Zm!2m+a/0 u e “du
m=0
= 1
=(a=1! Y o Tm+a)
m=0
Therefore,
o0
L'(m + «a)
a—1 _ |
271D (a)? = (a — 1) ZO o
m=

Now, use I'(a) = (e — 1) ! to get the result.
O

This identity arises from considering the distribution of the maximum of two indepen-
dent Gamma variables with parameters o and .

Identity 2.5.

/00 e P, t) dt + /OO e 't*IN(B,t) dt = T(a)T(B). (50)

0 0
Proof. The pdf of the maximum of X ~ Gamma(a, 1) and Y ~ Gamma(p,1) is given
by
et (D(a)t? —t°T(a,t) + t°T(B) — t°T(B, 1))
tr(e)0(5)
eTHTIN(B, 1) eI (a,t) ettt emtBL

B ¥ T (S VP9 ) N vy M v 1 R

(51)

Ix@)t) =
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Each of the first and second terms of (52) integrates to 1. Therefore,

i N0 Y i NG AP S
/0 T(a)T(8) d”/o Ta)r(g) @=2-1=tL (53)

O]

Identity (2.5) can be generalized in an obvious way by considering the largest order
statistics of a random sample of size m from the independent random variables X;,i =
1,2,...m, where X; ~ Gamma(a;, 1).

Identity 2.6. Assume that a; > 0 fori=1,2,...m, where m > 1. Then

m ) m m
Z/ et 1T (o, ) T[T () dt = [ T (). (54)
j=170 i=1 i=1

Corollary 2.2. If a; = as = -+ = ayy, = «, then, according to Identity 2.6,

oo
/ et 0 (a, )™ dt = T'(a)™/m, (55)
0

which provides another proof of Lemma 1.1.

Identity 2.7.

> "Tkz+2a+1 t) 1
=T D0(a, t) — —al(a, t)? — 47T (2a, 2t).

Proof. Note that
& (_1)kto¢+k

et =y EUET (57)

k=0

By integration by parts, we see that

/ettaf(a, t)dt = 47°T'(2a, 2t) — e T (a, t) — aF(gt)z (58)
By integration by parts, again, we see that
/ (=Dktet D (o, t) g (=R (o t) (=DM (k4 200+ Lt) (50)
k! El(a+k+1) Ko+ k+1)
But .
§ V) b 4 1)r(at) - T(, (0 4 1,). (60)

— E(a+k+1)
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Therefore,

(=) D (k + 2a + 1,¢)

Nk

=I DI'(e,t) = T'(a, t)T 1,t 61
T (61)
—tia ar(a’t)2 -«
+ e "tT(a, t) + —5 47T (20, 2t) (62)
1
=T(a+1)l(a,t) = 5al(a, ) — 47°T (20, 2t). (63)
O
Corollary 2.3. If a =1, then

N (-DFPT(E 43,8 1

kZ_O (i + 2k =€ (4e' — 2t —3). (64)

Corollary 2.4. For any o > 0,
2Fi(a+1,20+ ;a4 2, -1)I(2a+1) = (a+ 1) ([(@)(a+ 1)/2 — 47°T'(2a)) , (65)

where o Fy is the hypergeometric function defined by (12).

3 Application: Bivariate Gamma Distribution

A bivariate gamma distribution is constructed from specified gamma marginals, for ex-
ample, see (AlAhmad, 2016¢). In this section, we introduce some bivariate probability
density functions using special functions such as the hypergeometric function and Whit-
taker function.

Theorem 3.1. Assume that W,V and U are independent random variables such that
W is gamma distributed with shape parameter a and scale parameter %, assume further
that U and V are beta distributed with shape parameters b, c and d, h, respectively, where
c =1, then the joint Probability distribution of X = WV andY = UV is given as:

a—bt+d—1, b—1, b=a-dtl z
x Yl 2 P(h)Wa+b_%_2h+17a+g—d m

P(a)B(b, 1)5(d, h) exp ()

flz,y) =

Proof.
w* Lexp <—%) W11 — w)eL pdl(] — )kl
1T (a) B(b,0) B(d, h)
Wb~ Tpd= (1 — )1 (1 — ) Lexp <Tw)
“T(a)B(b, c)B(d; h)

flw,u,v) =
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Therefore,
2 — 1yb71vlfbvd71 (1 _ %)(C*U (1-— U)hfl exp (ﬁ) 1
T,Y,v) = 2
fa3:0) T (@) B (b, OB, B) 2
Hence,
golyp1 L Yy 1 b1 x
= —asb-t(y_J 1— o)l -
oY) = T )b, B, ) /0 ’ (1-3) a-v"lew (-0

Substitute ¢ = 1 to get

oy 1 d—a—b-1 h—1 x
f(z,y) el (a)B(b, 1)5(d,h)/0 v (1—v) exp< m}) :
Using (10)
xa—lyb—l - at+b—d . )
= z : W a - s |
f(z,y) pel'(a)B(b,1)B(d, h) <M> A <M>
Therefore,
s e LYy

Theorem 3.2. Assume that W,V and U are independent random variables such that
W is gamma distributed with shape parameter a and scale parameter i, assume further
that U and V' are beta distributed with shape parameters b, c and d, h, respectively, where

D(a)8(b. 1)B(d. hyexp ()

¢ =1, then the joint Probability distribution of X = %, Y =UV is given as:

Proof.

Therefore,

21010 (a — B)D(h), Fy (a —ba—b+h ——1)

— e
f(w,y) = T (@(a+b— h)B(b,1)8(d, h)

w? L exp (—%) ub_l(l — u)e vd_l(l _ ,U)h—l
pT(a) B(b,c) B(d, h)
wr b =1yd=1(1 — )e=1(1 — p)h L exp <%)

T (a)B(b, c)5(d; h)

f(w? u?”) =

" %a — 1yP~ Tyl —byd-1 (1 — Q)C_l (1—v)"Texp <_—”) 1

v nx

f(I',yav): 2

el (a)B(b, c)B(d; h) a?
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Plot of fix, y)

Figure 1: f(z,y) fora=2,b=d=h=p=1

Hence,

_ (@bt R yye ! h—1 v
o) = rtog o J, 7 () 4 e (-

Substituting ¢ = 1 to get

_ z eyl b ob h—1 v
10 = o g Jy 0o e (m) w

Now, using the integral representation of the confluent hypergeometric function to
get:

w10y (0 = D0 F (o —ba— b+ h 5

f(x’ y) = Maf(a)r(a +b— h)ﬁ(b, 1)B(d7 h)

O]

Theorem 3.3. Assume that W,V and U are independent random variables such that
W, U and V are beta distributed with shape parameters (a,b), (c,d) and (i,j), respectively,
where d = 1, then: Define X = g,Y = %, to get the joint distribution of X and Y is
given as:

ey M a+c+i—D0(j)Fila+c+i—1,1—bj+a+c+i—1x)

fle.y) = B, 0)Ble, BTG + ateti—1)
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Plot of fix, y)

Figure 2: f(z,y) fora=2,b=c=i=j=1

Proof. , 4
B wa—l(l _ w) -1 uc—l(l _ u) —1 Uz‘—l(l _ v)j—l
A TR 5(ed) E0%)
B w“flucflvifl(l _ w)b71<1 _ u)dil(l _ v)jfl
B(a,b)B(c, d)B(i, j)
Therefore,
_ xa_lva_lyc_lvc_lvi_l(l _ vaj)b_l(l _ yv)d_l(l _ v)j—l
fa-g,v) = B(a, b)B(e, d)Bi-j) !
B xa—lyc—lva+c+z’—2(1 o vflf)b_l(l _ yv)d_l(l _ v)j—l
B B(a,b)B(c, d)B(i, j)
Consequently,
a—1,,c—1 1 ) .
1) = 5 h e 356 ) J A e (e L (R E (R

Substituting d = 1 to get

a0yt b aretio b—1 i—1
flz,y) = ../va(”1 1—vz)” (1 —v)"dv
) = Bla b8, DB D) Jo o=
Now, the integral representation of the Gauss hypergeometric function implies
2y a4+ c+i—)(j)eFi(a+c+i—1,1-bj+a+c+i—1,1)

f(xay) =
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