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Missing data is a problem that often arises in a variety of real-world sys-
tems. The performance of classification algorithms operating on these sys-
tems would suffer as a result. Effective imputation approaches abound to
tackle this issue in case of missing data with low dimensions. In addition,
one of the most common methods for concurrently doing variable selection
and coefficient estimation in high-dimensional data is the penalized regres-
sion technique. However, one of the most significant problems associated
with high-dimensional data is that it often includes an enormous quantity of
missing data, which means that conventional imputation methods may not
adequately address it. This paper proposes the imputation of missing val-
ues with the adaptive elastic net as an extension of penalized techniques to
enhance gene selection and impute missing values in high-dimensional data.
The effectiveness of the proposed method is evaluated by applying it to high-
dimensional datasets that are taken from real-world situations with varying
numbers of features, sample sizes, and percentages of missing datasets. A
comparison is made between the proposed approach and various imputation-
penalized methods that are currently in use for high-dimensional data. The
findings of the comparison experiments reveal that the proposed technique is
superior to its rivals since it achieves a better value for classification accuracy,
sensitivity, and specificity than its competitors.
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1 Introduction

Missing data is a widespread problem that arises in most scientific studies, such as biolog-
ical, epidemiology, and social research. According to diverse sources in the datasets, this
missingness has many causes. These involve a lack of measurements, data unavailability,
survey non-response, inadequate information, missing files, etc. (Jiang et al., 2020; Récz
and Gere, 2025). Therefore, many statistical methods need the use of entire datasets.
Analyses that do not adequately handle missing data might lead to incorrect estimations
and inferences (Deng et al., 2016). Thus, several statistical techniques may be used to
deal with the issue of missing data. Jiang et al. (2020) claimed that disregarding the
observation of missing data is a simple solution to the problem of missing values. Since
a few observations have missing data, there is typically no substantial concern. On the
contrary, removing many observations with missing data leads to a significant reduction
in the amount of data available (Khan and Hoque, 2020; Zhang, 2015). Additionally,
it brings about a detrimental effect on the statistical strength and effectiveness of the
data (Kwak and Kim, 2017). Imputation creates full data without omitting the missing
instances for analysis by filling in the missing data with some suitable values. Therefore,
to impute missing values, ad-hoc techniques such as mean replacement, maximum likeli-
hood methods, single imputation, and multiple imputations (MI) may be utilized (Zahid
and Heumann, 2019). Because of this, effective imputation strategies are necessary in
order to solve the issue of missing data.

The availability of high-dimensional data is an extra issue that often emerges in many
scientific research fields, such as ecological sciences, economics, sociological surveys, ge-
netics, machine learning, and health (Zahid et al., 2020). Variable selection is a crucial
stage in the analysis of high-dimensional data. In the past decade, there has been a
notable increase in the use of gene selection strategies in biological datasets. These
datasets frequently include a higher number of features compared to the amount of sam-
ples, which may lead to overfitting and negatively affect the learning process. Moreover,
from a scientific and epistemological perspective, only a limited set of genes has sig-
nificant implications and are intricately linked to the corresponding disease (Li et al.,
2019). It is possible to think of these issues as a machine learning feature selection
problem; hence, finding informative genes is an effective method for addressing these
challenges. Over the preceding ten years, there has been significant development in the
field of variable selection approaches. Among these approaches are those that are subject
to penalties. It is used for the purpose of selecting features and classifying them. The
logistic regression has recently received considerable attention. Within this framework,
penalized approaches use a particular kind of penalty term to carry out feature selection
and classification concurrently. A wide variety of logistic regression models may be used,
each with its own set of penalties. The ”Least Absolute Shrinkage and Selection Oper-
ator” penalty, which is often referred to as "LASSO” is one of these potential penalties
(Tibshirani, 1996). According to Tibshirani, LASSO is based on the L; — norm. The
so-called ”Smoothly Clipped Absolute Deviation” (SCAD) is yet another disciplinary
approach that Fan and Li (2001) had proposed. approaches such as the elastic net (EN)
(Zou and Hastie, 2005), the adaptive L1 — norm (Zou, 2006), and the adaptive elastic
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net (AEN) approach are also considered to be additional penalties (Ghosh, 2011; Zou
and Zhang, 2009).

It is common practice to use penalized regression to simultaneously carry out variable
selection and coefficient estimations in high-dimensional data. Nevertheless, one of the
most serious challenges of high-dimensional data is that it often contains a large quantity
of missing data. Previous studies have shown that the majority of microarray datasets
are incomplete to varying degrees, with the percentages ranging from fifty percent to
ninety-five percent each (Chen et al., 2016). With major advancements in techniques,
multiple imputation (MI) (Little and Rubin, 2019; Rubin, 1996) and software Su et al.
(2011); van Buuren and Groothuis-Oudshoorn (2011) have gained popularity as a method
for addressing missing data.

On the other hand, it is essential to note that MI approaches may not be as successful
when dealing with high-dimensional data, where the number of variables (p) in the
imputation model is much more than the sample size (n) (Deng et al., 2016; Brini and
van den Heuvel and, 2024). When the number of variables in the imputation model
exceeds the sample size, which is frequently referred to as (p > n or p > n), the problem
becomes more significant, and traditional likelihood estimates are no longer attainable.
The low number of variables poses a constraint on the usage of sequential regression
imputation in this scenario (Zahid and Heumann, 2019; Zhao and Long, 2016).

Furthermore, Chen and Wang (2013) proposed a new multiple imputation LASSO
(MI-LASSO) approach as an extension of the LASSO approach to improving variable
selection on multiply imputed data. In this manner, group penalties are applied to
the estimated regression coefficients of a single variable across all imputed datasets in
the MI-LASSO approach to ensure consistent variable selection across various datasets.
Deng et al. (2016) presented and evaluated the use of penalized regression to handle the
high dimensionality of imputation models. Besides, as an extension of MI-LASSO and to
tackle the issue of variable selection in longitudinal data with missing values, Geronimi
and Saporta (2017) introduced a multiple imputation regularized generalized estimating
equations method in which multiple imputation is used to deal with missing data, and
a group LASSO penalty is used to select variables.

In addition, Zahid and Heumann (2019) proposed a multiple imputation approach,
which is abbreviated by “mispr,” to overcome the issue of many features with missing
data. Therefore, they used sequential regularized regression models, where each variable
with missing data is considered to have a specific distributional form and is imputed
using its own ridge penalty imputation model. In addition, for the selection of each
potential predictor, Zahid et al. (2020) proposed using the magnitude of the parameter
estimates overall imputed datasets. Thus, an absolute value restriction is placed on the
sum of these estimations to help determine whether the predictor should be included
in the model or not. In other words, the heuristic techniques determined whether to
include a predictor in the model based on a threshold established on its frequency in the
parsimonious models derived from the imputed datasets. They prioritized the absolute
magnitudes of the parameter estimations in the M parsimonious models rather than the
frequency of occurrence.

Moreover, Wang et al. (2021) improved a penalized learning-based imputation method
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to enhance the use of the local structure of microarray data. Hence, they introduced
their approach to estimating the missing entries of a target gene with its neighbours, con-
sidering the elastic net penalty’s concurrent variable selection and grouping effect.Zahid
et al. (2021) proposed constructing a robust imputation model by including as many
probable candidate variables as possible to achieve consistent and unbiased results uti-
lizing a semi-compatible imputation model. They used the L; — norm to accommodate
the maximum number of features in the imputation model, and the Lo — norm penalty
was used to fit the resultant model. Recently, there has been growing interest in ap-
plying the imputation methods in high-dimensional data to address missing values and
perform feature selection simultaneously. Such as Lee and Park (2024) proposed a new
technique that estimates the conditional independence structure among variables before
the imputation process, Liang et al. (2024) incorporated a novel multiple imputation
approach based on matrix completion, Zhang and Kim (2024) introduced an algorithm
that used the horseshoe shrinkage prior, and a compositional data imputation method
based on the adaptive group LASSO was presented by (Tian et al., 2025).

In situations when high-dimensional data is present, the methods and software pack-
ages that are now available for MI may perform much less effectively. Therefore, our pro-
posal involves using the adaptive elastic net to impute missing values in high-dimensional
data as an extension of penalized approaches. This approach aims to improve gene se-
lection and imputation of missing values. In order to achieve this, the initial weight
employed is the one-dimensional weighted Mahalanobis distance (1-DWM) inside the
L1 — norm in adaptive elastic net regression. This enables the filling in of missing data
for every feature. The suggested technique, which is called imputation adaptive elastic
net regression (IAENR), is evaluated in comparison to various imputation methods cur-
rently in use for high-dimensional data. As a consequence of reaching higher levels of
sensitivity and specificity as well as classification accuracy, the JAENR is able to sur-
pass its rivals, as shown by the comparative testing findings. The remaining elements
of this article are organized in the way that is described below. Section 2 is devoted
to explaining the technique and the materials that were used. In Section 3, the re-
sults of the experimental study that was conducted to evaluate the effectiveness of the
TAENR method compared to other penalized approaches are provided and discussed.
The conclusion of this study is then presented in Section 4.

2 Methods

2.1 Missing Values Imputation

The missing values are one of the most common phenomena in practical research. Ana-
lyzing a dataset using conventional statistical methods requires that the complete dataset
be analyzed without any missing data. An inappropriate statistical conclusion might be
made if relevant data is removed from a study. However, by substituting probable val-
ues for the omitted ones, the imputation method completes the set of data without
omitting any of the analytically valuable information. According to Little and Rubin
(2019); Rubin (1996), three primary cases of missing data mechanisms exist: In the first
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case, missing completely at random (MCAR). This is a situation in which missingness
does not depend on either observed or missing data. The second case is Missing at
Random (MAR), where missingness only depends on observed data but not on miss-
ing data, i.e., P(missing/complete data) = P(missing/observed data). Missing not at
random (MNAR) is the third case, where missingness depends on unobserved data, i.e.,
P(missing/complete data) # P(missing/observed data).

As far as single imputation techniques are concerned, they provide a defined value for
a dataset’s missing actual value. The computational cost of this approach is cheaper.
Hence, the researchers have developed many other methods of single imputation. The
most crucial process is studying other responses and choosing the most meaningful one.
single imputations may be computed by taking the mean, median, and mode of the
variable’s observed entries to impute missing values (Khan and Hoque, 2020). In a sin-
gle imputation, values that are based on an assumption are considered as real values.
However, uncertainty is not taken into account in single imputation procedures. Fur-
thermore, these values may be subject to standard errors. Consequently, the findings
might be biased Holman and Glas (2005). Other approaches, such as those based on
machine learning, may also be used for single imputation (Pelckmans et al., 2005).

In view of that, many simulation models used by multiple imputation (MI) techniques
generated different results for the imputation of one missing value. In these procedures,
imputed data is used to provide a wide variety of possible outcomes. However, although
MI techniques are more complex than single imputation, they do not suffer from the
problem of bias values. The MI for missing data may be summed up into three main
phases. First, it is necessary to perform imputation in order to produce M-independent
imputed values that match missing data. The second phase is to perform the desired
analysis on each of the M by utilizing standard, complete data methods. In the third
phase, the study’s findings are integrated using Rubin’s guidelines (Rubin, 2004). to
obtain a single set of parameter estimations. Therefore, previous research has introduced
packages in the R programming language to implement MI approaches more effectively.
”Multivariate Imputation via Chained Equations” (commonly known as ”mice”) is one of
the most popular packages (van Buuren and Groothuis-Oudshoorn, 2011). In addition,
the packages "mi” (Su et al., 2011) and “Amelia” (Honaker et al., 2011) are among the
others.

2.2 Regularized Logistic Regression Model

The statistical classification method known as logistic regression is used to make pre-
dictions about the value of a categorical response variable. This method has just two
possible values, which are represented by the numbers 0 and 1. Logistic regression is
an effective approach when dealing with low-dimensional data. However, the logistic re-
gression method may become ineffective when dealing with high-dimensional data, such
as gene expression data sets. This is because the prediction accuracy and computing
efficiency of the technique are poor. The phenomenon known as overfitting, which takes
place when the number of predictors is greater than the number of observed values, is
another problem that hampers the use of logistic regression (Casella et al., 2013). It is
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possible to carry out gene selection and classification concurrently by using logistic re-
gression with a penalty, which is employed in several classification applications. In order
to comply with the regularization technique, this model is penalized, and its coefficients
are reduced (Li et al., 2020). Recently, penalized regression algorithms have become
more popular due to their improved prediction accuracy and more efficient processing
capabilities.

To better understand the concept, we suppose that X = {(z1,y1), (x2,%2), ..., (Tn,Yn)}
is a matrix representing a set of data. In this matrix, each column represents a gene,
and each row represents a sample. In this example, x; = (21, Zi2,. .., Zip) represents
the " input sample, x;j is the expression value of the gt feature in the i** sample,
and y = (y1,...,yn)" is the response vector. Here, y; is the corresponding classification
label, which can take on the values 0 or 1. For logistic regression, the following is the
definition of the class posterior probability:

exp(z? B;)
= 1zy) =m(z) = ——2——, i=12,..., 1
p(yl “rlj) ﬂ-(xl) 1 _|_ exp(xg"ﬂj) ? p ( )
where B = (81,...,8,)T is a vector of the dimension p of the unknown coefficients.

Following this, we may get the estimator B by minimizing the log-likelihood function:

(B, i) ==Y {wilogm(wi) + (1 — ;) log(1 — m(x;)} (2)
i=1

A strong discriminative tool (feature selection) is the classification technique of lo-
gistic regression, which is used to classify data. On the other hand, since the design
matrix is not invertible, the logistic regression method is not an effective classification
strategy when the dataset in question is of a large dimension. The consequence of
this is that it is unable to provide reliable estimates of the regression coefficient. Fur-
thermore, overfitting happens when datasets have a high dimensionality, in which the
number of genes(features) exceeds dramatically the sample size. It is also possible that
multicollinearity will have an effect on its estimators (Algamal, 2017; Manhrawy et al.,
2021).

From a statistical point of view, further variables that are not connected to the clas-
sification may produce noise and diminish the efficacy of the classification. Statistical
analysts often use feature selection strategies that are able to get rid of characteristics
that are unnecessary or redundant in order to improve the accuracy of categorization.
In addition to the logistic regression, there are additional classification techniques that
may be used. One of these ways is the regularized logistic regression (RLR), which is
employed to decrease high dimensionality and improve classification accuracy (El Guide
et al., 2020). Despite the fact that regularization techniques are often used for high-
dimensional data, Doerken et al. (2019) stated that they are equally capable of being
utilized for low-dimensional data.

In the process of regularized logistic regression, the log-likelihood function can be
modified by incorporating a positive penalty component. This modification causes some
coefficients to become zero, which results in the production of a sparse solution. By



270 Alharthi

including a penalty term in the equation, RLR is able to punish a logistic model that
has an excessive number of features. Consequently, when the coefficients are limited, the
coefficients of characteristics that are not as significant either get very close to zero or
exactly zero. Another name for this method is penalization. Following is an explanation
of how the approach is put up.

The regularized log-likelihood equation can be defined as

RLR = —£(8, yi) + Ag(B) (3)

here, ¢(3, y;) represents the log-likelihood defined by Equation (2), g(3) represents the
penalization term, and A > 0 represents a regulatory factor used to adjust the penalty
amount. Following this, the RLR of Equation (3) is minimized with respect to A to
determine the coefficient estimations. According to Friedman et al. (2010), the intention
of the penalty is to reduce the variances of the estimates and to make them biased, which
ultimately leads to an improvement in the accuracy of the forecast. Classification and
feature selection in high-dimensional datasets are two common applications for these
penalizing approaches, which belong to a family of embedded selection methods (Liang
et al., 2013).

Before solving the RLR minimization problem, let the response vector y be cen-
tered, and the columns of X (features) are usually standardized so that > . ;y; =0,
S xiy=0and (n71) > " 22 =1for j € {1,2,...,p}. Standardization sets the inter-
cept term Sy to zero. 3 is estlmated using LASSO (L1-norm penalization) as follows:

Brasso = arg min Z {yilogm(x;) + (1 — yi) log(1 — m(w:))} + A Y |B)] (4)
j=1

here, A represents the tuning parameter. When the value of A\ = 0, Equation (4)
reduces to the standard minimal likelihood estimator. Given that A — oo, penalization
enforces that all features must have a value of zero.

The ALASSO approach was first presented by Zou (2006) with the intention of re-
solving the overestimation issue that was present in the LASSO algorithm. This was
achieved by substituting the L1 penalty with a weighted penalty, as stated by (Biithlmann
and van de Geer, 2011). Through the process of assigning different weights to various
coefficients, Zou made modifications to the L1l-penalty mechanism. Various shrinkage
approaches, including Ridge, LASSO, and others, might be used to determine the allo-
cated weights. Given the above definition, the penalized logistic model that is connected
with ALASSO is as follows:

BLASSO =arg ngn [Z{yl log 71'(.%1) + (1 — yz) 10g(1 — ﬂ(l‘l))}
1=1

i < o )

B'mztzal ‘)
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where, A,y > 0 and B;-"m'“l is an initial estimate for each 3; estimated using the LASSO
technique or other shrinkage techniques. Here we set v = 1 for simplicity.

In the process of gene selection, the EN is an additional significant penalized strategy
that is used. In an effort to compensate for the shortcomings of LASSO, Zou and Hastie
(2005) came up with this solution. It is possible to target genes that have a strong
correlation and choose related genes all at once by using EN, which combines L2 and L1

norms. Using the EN penalty as a basis, the following equation may be used to calculate
RLR:

Bpn =arg mﬁin — Y {yilogm(w) + (1 — ;) log(1 — ()}
i=1

p p
A 1B+ XD B (6)
j=1 =1

Equation (6) shows that the EN estimator relies on two regulatory parameters, A\;
and Ao, which are assumed to have only non-negative values. Equation (6) provides a
solution using the RLR method.

In the same way that the EN technique may create the grouping effect, other penalized
regression methods, such as the AEN methods presented by Ghosh (2011); Zou and
Zhang (2009), which provided two AEN estimators, can also successfully do this. The
adaptive weight was included into the LL1-norm penalty that was contained inside the
EN. The adaptive weights of the two separate AEN techniques are distinct from one
another. Through the use of the EN estimator, Zou and Zhang (2009) managed to
develop the adaptive weight. However, Ghosh (2011) constructed the adaptive weight
by using the least-squares estimator. For Ay fixed, the RLR that is calculated using the
AEN of 3 is as follows:

,BAEN =arg mﬁin — Z {yilog m(x;) + (1 — ;) log(1 — m(z;))}
i=1

p p
MDY wilB+ N Y B (7)
j=1 j=1

where w; = (|B|)_7, j = 1,2,...,p represents the adjusted weight generated by the
initial estimator 8 . Here v denotes a non-negative constant. A procedure known as
coordinate descent is used to solve equations (4)-(7) (Friedman et al., 2010).

2.3 Proposed Improvement

Data analytics performance might be negatively impacted by the presence of missing
data. This might lead to an erroneous forecast if the missing data is not imputed
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correctly. The effective management of missing values is becoming more important in
the present era of big data, which is characterized by the tremendous quantity of data
that is generated every second and the fact that data utilization is a primary issue for
stakeholders. Also, this study is motivated by the notion that the L1 — norm penalty
may be used in RLR to apply the RLR technique to high-dimensional data sets. This
is the driving force behind this. As a consequence of the fact that the L; — norm is not
consistent with feature selection, this method may lead to the selection of genes that are
irrelevant and might be considered redundant (Algamal et al., 2018). That is another
reason why this research is being conducted. When it comes to big coefficients, PLR
estimates that are based on the L1 — norm penalty may be skewed due to the fact that
they are subject to greater penalties.

The ”one-dimensional weighted Mahalanobis distance” (1-DWM) was used by Peng
et al. (2013) as a criterion of gene effectiveness. This was done in order to extend
the influence of individual genes to the combined impact of multigene, which can be
expressed as

_ (@1 —3)°
J(a ) =TT ®)
T
2 _
wj
wyyj - J%j + wy; . agj, indicates the weighted variance of the feature j, a,%j represents
the variance of feature j in class k , wy is the prior probability or weight of class k ,
where k in this paper is 2; i.e., we have exactly two classes and w; = wo = 0.5.

As a result, the purpose of this research is to propose the imputation of missing values
with the adaptive elastic net as an extension of penalized techniques to enhance gene
selection and impute missing values in high-dimensional data. Imputing missing values
for every gene and using the 1-DWM as an initial weight inside the L1-norm is the
approach that is used in order to accomplish this. The strategy that has been described
works to enhance feature selection in high-dimensional data while also addressing missing
values.

The j** component of the p—dimensional vector of features can be expressed as

where z; is a column vector, denoting the feature j across samples, and o

1
wi=———, j=12,..p, (9)

T (@)l

where J(x ;) is the weight for every feature j that is defined as Equation (8).

The "naniar” package in R is used to impute missing values in the technique that
has been presented. Furthermore, the suggested weight in this work offers a compar-
atively big amount of weight to the feature with a low ratio value while providing a
small amount of weight to the feature with a high ratio value. This is done to reduce
inconsistencies in the selection of features. Once the weights of the features have been
assigned appropriately, the TAENR is able to choose related features with a high degree
of reliability. A representation of the implementation method for the TAENR approach
may be seen in Figure 1. In order to guarantee the existence of a global maximum
point for the solution, the TAENR equation is convex, which guarantees its existence.
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Finding the TAENR solution may be accomplished via the use of the coordinate descent
approach.

Brapnr =arg min [— > Avilogm(x;) + (1 — yi) log(1 — m(:))}
=1

p p
Y wilBil 4+ A B (10)
j=1 j=1

| Input the dataset X

|

Any missing
values 10%,
20% or 30%?

Impute missing values

No

v

Split each gene x ; based on the value of y into two classes: x;; and x,;

l

Find the mean of x,; and x,;

|

Find the variance of x;; and x;

y

Calculate 02; = (0.5)(a7;) + (0.5)(0%;)

|

Calculate J(x;) = (%1; — %,;)*/03;

!

Find wj,j=1,2,..,p

J

Define %; = w; x;

Solve the IAENR by Eq. (10).

Figure 1: Flowchart of IAENR
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In a genomic study with missing gene expression values, applying AEN after imputa-
tion might fail to capture the true relationships between genes if the imputation method
does not consider the adaptive penalization of AEN. Combining both steps can guide
the imputation by the feature importance weights from AEN, leading to more accurate
and biologically meaningful results. In summary, combining AEN with missing value
imputation is preferable to sequential application because it ensures better integration
of both tasks, reduces biases, improves model performance, and is more robust in high-
dimensional and sparse data settings.

2.4 Evaluation Metrics

To assess the effectiveness of the proposed technique, IAENR, this subsection makes use
of three criteria that are often employed for evaluating predictive models, notably in
the context of healthcare (Tharwat, 2021). The classification accuracy (CA), sensitivity
(SEN), and specificity (SPE) measures are included in these metrics. These metrics are
defined as

TN + TP
A= 1 11
CA=Ep TP TN FN <100 (11)
TP
SEN = s X 100% (12)
TN
PE—_— - 41 1
S TN+FP 00% (13)

where TP, FP, TN, and FN are True Positive, False Positive, True Negative, and
False Negative, respectively. When the values of the assessment criteria are greater, it
indicates that the classification performance is better.

2.5 Dataset Description

An evaluation of the effectiveness of the suggested approach, known as IAENR, is carried
out by applying it to two gene expression datasets that include varying quantities of
genes and observations. The general public may access these datasets, which have been
extensively used by several academics in the past. In the first place, there is the data
set on colon cancer, which has a total of 6500 genes and 62 people, four of whom have
malignant tumors and twenty-two of whom have noncancerous tissues. The Affymetrix
oligonucleotide array technology plays a role in the acquisition of this information. In
this particular data set, only two thousand gene expressions were used, and they were
arranged according to the greatest minimal intensity across all of the samples (Alon
et al., 1999). Prostate cancer is the subject of the second data collection. It has a total
of 12600 genes. In the sample, 52 individuals have malignant prostate tumors, and 50
additional patients have tumor tissues that are not cancerous (Singh et al., 2002).
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3 Findings and Discussion

In this part, the data mentioned before were taken into consideration to explain the
behavior of various strategies concerning the selection of variables when there is missing
data. In the course of comparison trials with Elastic Net and AElastic Net, it was shown
that the suggested approach, which is known as TAENR, is successful. First, we went
through the process of using these approaches to complete the data without missing
values. To facilitate an objective comparison, we randomly divided each data into two
parts: a training dataset, which included seventy percent of the samples, and a test
dataset, which contained thirty percent of the samples. With the use of the ”glmnet”
package in R, the 10-fold cross-validation (CV) was used to the training dataset one
hundred times in order to determine the ideal value of A . On the other hand, the
procedure that was followed in order to assess the methods that had missing values
is as follows. In this research, we begin by utilizing the ”missForest” package of the
programming language R to seed missing values in our datasets with various rates (10%,
20%, and 30%). This is done under the assumption that there is no missing data in
the response variable. As a second step, we imputed the values that were missing by
utilizing the "naniar” package that is included in the R programming language. In the
third step, we carried out the imputing of data as full data using penalized approaches.
In both the training and testing datasets, the average number of genes that were picked,
as well as the averaged classification accuracy (CA), sensitivity (SEN), and specificity
(SPE), are provided in Tables 1 and 2, respectively. Evaluations of the EN and AEN’s
performance were also carried out with the goal of making comparisons.

As Tables 1 and 2 demonstrate, the suggested approach, TAENR, chose genes that
were higher than those picked by the EN and AEN in both the colon and prostate
datasets, which had various levels of missing values. For instance, in the colon data set
that had 10% of the data missing, the IAENR picked 22 genes, but the EN and AEN
genes selected 17 and 19 genes, respectively. On the other hand, with regard to both
sets of data, we discovered that EN gives the least amount of chosen genes, which means
that IAENR encouraged the grouping effect.

As an additional point, we note in Tables 1 and 2 that the average classification
accuracy, sensitivity, and specificity of the TAENR in both the training and testing sets
are much higher than those of the EN and AEN. This is the case in both of the data sets
that were used in this investigation. When it comes to the Colon data, which contains
20% missing data, for instance, the classification accuracy of IAENR in the training set
is 94.61%, which is higher than the accuracy of EN (89.00%) and AEN (91.75%). In
addition, the sensitivity of the TAENR is 87.50% which is higher than the sensitivity of
the EN and AEN, which are 81.59% and 83.56%, respectively, in the case of prostate
data that is missing thirty percent of the data. Within the testing sets of the colon
and prostate datasets, which include varying percentages of missing values, the same
observation may be drawn to the same conclusion.

To go further into the TAENR’s performance, statistical tests should be run to see
whether the classification accuracy differences shown in Tables 1 and 2 are statistically
significant. The data analysis in this research was done using the paired t-test. The
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Table 1: The 100-times-averaged criterion for the Colon data for the training and testing

sets
Training set Testing set
Missing %  Methods Genes CA% SEN% SPE% CA% SEN% SPE%
No missing EN 17 93.13 92.50 94.64 83.53 85.43 86.50
AEN 19 93.72 93.41 95.64 84.40 86.45 86.41
TAENR 22 97.10 95.14 96.63 88.92 89.50 88.73
10% EN 17 92.22 90.12 93.00 81.14 82.34 86.74
AEN 19 93.34 90.72 95.00 84.11 83.41 87.01
TAENR 22 96.10 95.00 96.00 87.53 89.82 88.83
20% EN 16 89.00 87.00 89.50 81.00 80.10 75.55
AEN 15 91.75 87.01 90.00 80.50 78.92 75.92
TAENR 21 94.61 88.85 92.62 85.48 83.33 81.75
30% EN 17 84.66 81.50 84.56  79.50 77.73 79.88
AEN 18 86.64 84.60 89.44 82.22 79.24 84.82
TAENR 22 91.00 89.25 91.33 88.34 83.23 86.76

results are shown in Tables 3 and 4. The ”improvement” column represents the relative
improvement in mean average accuracy that the suggested approach offers compared to
the other methods. Furthermore, at the 5% level of significance, Tables 3 and 4 show that
our suggested technique, IAENR, differs significantly from all competing approaches.

In order to emphasize the effectiveness of the TAENR, we conducted a comparison
between the results achieved for the Colon dataset in terms of the number of chosen genes
and CA and the results provided by Ref. (Alharthi et al., 2022) for imputations adaptive
penalized logistic regression (IAPLR). Our approach identified a greater number of genes
compared to the IAPLR technique. Specifically, our method identified 76 genes, while
the IAPLR method only identified 12 genes. Significantly, IAENR has the capacity
to identify a greater number of genes compared to the TAPLR technique, suggesting
that the majority of these extra-picked genes were likely to be strongly connected. In
addition, our technique demonstrated a superior classification accuracy (CA) of 97.10%
in comparison to TAPLR’s CA of 96.12%.

Overall, applying the TAENR to gene selection, improving classification accuracy, and
handling missing values in high-dimensional data has been a fruitful endeavor. For
both the training and testing datasets, the suggested technique was shown to have
higher classification performance using metrics such as high CA, SEN, and SPE. If the
suggested technique can meet all three of these criteria at the same time, it is nominated
as a possible gene selection methodology. In addition, our adaptive penalized method,
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Table 2: The 100-times-averaged criterion for the Prostate data for the training and

testing sets

Training set

Testing set

Missing %  Methods Genes CA% SEN% SPE% CA% SEN% SPE%
No missing EN 19 90.00 92.77 92.88  80.50 83.43 86.22
AEN 21 92.15 94.37 94.56 83.45 86.00 86.50
TAENR 27 94.50 95.35 95.95 88.19 89.28 88.25
10% EN 21 90.20 90.10 91.67  79.90 82.80 83.85
AEN 23 91.52 93.30 94.00 82.48 84.75 85.14
TAENR 26 93.75 95.00 94.80 88.49 88.60 90.50
20% EN 19 86.42 87.23 87.72 79.00 79.65 81.53
AEN 19 87.86 88.42 90.50  82.00 83.66 86.69
TAENR 25 90.60 90.20 91.20 85.75 86.52 89.62
30% EN 20 81.60 81.59 81.34 76.58 78.39 78.63
AEN 22 84.44 83.56 83.58  80.77 79.28 80.40
TAENR 24 88.33 87.50 87.25 83.42 83.87 82.97

Table 3: Statistically significant findings using a paired t-test on Colon datasets

Training dataset

Testing dataset

Missing% Methods Improvement  p-value Improvement p-value
No missing EN 2.12% 0.0020 (*) 6.45% 0.0000 (*)
AEN 1.47% 0.0043 (*) 5.36% 0.0002 (*)
10% EN 4.2% 0.0024 (*) 7.88% 0.0000 (*)
AEN 2.96% 0.0018 (*) 4.07% 0.0001 (*)
20% EN 6.3% 0.0003 (*) 5.53% 0.0000 (*)
AEN 3.12% 0.0021 (*) 6.19% 0.0001 (*)
30% EN 7.49% 0.0001 (*) 11.12%  0.0001 (*)
AEN 5.03% 0.0005 (*) 7.44%  0.0001 (*)

(*) significant at o = 0.05

TAENR, outperforms competing methods in terms of classification accuracy. Here we

also see that our method takes the gene weights into consideration.
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Table 4: Statistically significant findings using a paired t-test on Prostate dataset

Training dataset Testing dataset
Missing % Other methods Improvement  p-value Improvement p-value
No missing EN 5.00% 0.0024(*) 9.55% 0.0002 (*)
AEN 2.55% 0.0051(*) 5.68% 0.0001 (*)
10% EN 3.94% 0.0022(*) 10.75% 0.0002 (*)
AEN 2.44% 0.0037(*) 7.28% 0.0001 (*)
20% EN 4.84% 0.0001(*) 8.54% 0.0000 (*)
AEN 3.12% 0.0011(*) 4.57% 0.0002 (*)
30% EN 8.25% 0.0020(*) 8.93% 0.0003 (*)
AEN 4.61% 0.0001(*) 3.28% 0.0006 (*)

(*) significant at « = 0.05

4 Conclusion

Improving data analytics relies mainly on the imputation of missing values. Finding
an approach to missing data imputation that is applicable to every kind of dataset is
challenging. Despite advancements in variable selection techniques and tools, missing
data is common in extensive, complex studies and may make data analysis difficult. Our
primary goals in writing this article were to develop an IAENR approach for dealing with
missing values in high-dimensional data and to enhance the performance of penalized
logistic regression models. We confirm that the proposed TAENR outperforms EN and
AEN as a classification and gene selection process when dealing with missing data when
comparing the results obtained from applying the TAENR method to two datasets (colon
and prostate) with seeding the same datasets at different rates of missing values. This
confirms that our technique is a gene selection and classification strategy with solid
statistical support. On top of that, it works with related datasets.
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