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Data in the form of three-dimensional rotations arise in various fields, yet
statistical techniques for modeling such data receive far less focus in the area
of directional statistics than circular and spherical data. In this paper, the
focus is on comparison of mean or central matrices for multiple groups of
three-dimensional rotations. A permutation test is developed by using the
fundamental ideas behind a traditional Analysis of Variance and a simulation
study is used to investigate the power of the permutation test under various
conditions. The test is then used on a biomechanics data set to compare
movement around the calcaneocuboid joint for a human, chimpanzee, and
baboon.
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1 Introduction

Data in the form of three-dimensional rotations arise in many areas of science. One
of the most classic data sets analyzed in the statistical literature for three-dimensional
rotations is the vectorcardiography data considered by Downs (1972) and Khatri and
Mardia (1977). Many works have considered three-dimensional rotation data sets in
the study of biomechanics (Rancourt et al., 2000; Rivest et al., 2008; Haddou et al.,
2010; Oualkacha and Rivest, 2009). In the area of materials science, crystal orientations
have been considered by Bingham et al. (2009); Du et al. (2015); Arnold et al. (2018),
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while Sei et al. (2013) consider an application in the area of astronomy. Although three-
dimensional rotation data arise in various fields, statistical techniques for modeling such
data receive far less focus in the area of directional statistics than circular and spherical
data (see, for example, Mardia and Jupp, 2000).
The matrix Fisher distribution is the most commonly cited distribution for three-

dimensional rotation data (i.e. on the rotation group SO(3)) in the literature (Khatri
and Mardia, 1977; Jupp and Mardia, 1979; Prentice, 1986; Mardia and Jupp, 2000;
Rancourt et al., 2000; Sei et al., 2013) and many statistical developments for such data
rely on this distributional form. Drawbacks of the continual reliance on the matrix Fisher
distribution, such as complicated expressions that are difficult to evaluate and poor fit
to some data sets, motivated works such as León et al. (2006), Bingham et al. (2009),
and Oualkacha and Rivest (2009) to develop new distributions on SO(3). Although
these works added flexibility in modeling three-dimensional rotations, there still seems
to be a disconnect between methods in the statistical literature for three-dimensional
rotations and the techniques that are actually employed by scientists in the application
areas noted above. This could be due to the fact that development of methodology
on SO(3) is highly mathematical in nature. As Pierrynowski and Ball (2009) point out,
practitioners in the area of biomechanics often incorrectly calculate something as routine
as an average rotation.
The need for statistical techniques that can be easily and correctly applied by scien-

tists who collect three-dimensional rotation data, coupled with the need for flexibility
in modeling that does not rely on the matrix Fisher distribution, has led to more re-
cent works in the area of nonparametric statistics. Permutation tests for directional
data were introduced by Wellner (1979), but with a mathematical focus on Riemannian
manifolds. More recent works use simulations to conduct nonparametric inference for
three-dimensional rotations, making them more easily accessible to scientists. Boot-
strapping for estimating a central/mean rotation in SO(3) for a single data set and
permutation tests for comparison of the central/mean rotations of two data sets have
been explored (Stanfill et al., 2015; Bero and Bingham, 2015). These works do not, how-
ever, allow for comparison of central/mean rotations across multiple three-dimensional
rotation data sets. Figueiredo (2017) and Ley et al. (2017) explore Analysis of Variance
(ANOVA) for directional data, but these works are applicable to points on the surface of
the unit sphere in Rq and not to the rotation group SO(3). Therefore, this paper aims to
expand upon these works by using nonparametric statistics to develop an ANOVA-type
procedure for comparing population central rotations across more than two groups.
In Section 2 a permutation test for comparing measures of center in multiple three-

dimensional rotation data sets will be developed. This test will employ the fundamental
ideas behind the ANOVA by comparing variability within the data sets to variability
between the data sets. In Section 3 a simulation study will be used to investigate
the power of the permutation test under various conditions. Finally, in Section 4, the
permutation test will be used in a brief example to compare movement around the
calcaneocuboid joint for a human, chimpanzee, and baboon. This data set was considered
by Bero and Bingham (2015), but comparison could only be made on two species at a
time.
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2 Permutation Test for Comparing Multiple Population
Mean Rotations

To employ a permutation test for comparing mean rotations across multiple three-
dimensional rotation data sets, a sensible test statistic must be developed. This will
be accomplished by using the underlying concepts of a traditional ANOVA test. A ratio
of a measure of the variability between the data sets and a measure of the variability
within the data sets will be used.

Consider k samples of data drawn from k different populations in SO(3). Denote the
size of sample i as ni, and let Oij ∈ SO(3) denote the jth observation in the ith sample.
For each of the k data sets, the sample mean rotation matrix can be found (Bingham
et al., 2009). Denote these k sample mean matrices as Ō1, Ō2, . . . , Ōk. To measure
variability between these sample mean matrices, the distances from each of the sample
means to the overall or grand mean matrix can be computed. The grand mean matrix,
ŌG, is the mean matrix computed from all n1 + n2 + · · ·+ nk observations.

The distance from each individual sample mean matrix to the grand mean matrix can
then be found as the misorientation angle (Bingham et al., 2009; Randle, 2003) between
the two matrices

mis(Ōi, ŌG) = arccos

(
tr(Ō′

iŌG)− 1

2

)
(1)

where tr is the trace of a matrix and Ō′
i is the transpose of Ōi. The total variability

between the sample mean matrices can then be measured by

VB =
k∑

i=1

(
ni ·mis(Ōi, ŌG)

)
(2)

Next, the variability within the groups is measured. The spread in each of the in-
dividual three-dimensional rotation data sets can be measured by using the average
misorientation angle (Bingham, 2015). For data set i with individual mean Ōi, the
average misorientation angle is AMAi =

1
ni

∑ni
j=1mis(Ōij , Ōi). An overall measure of

spread within all the data sets can then be found as

VW =
k∑

i=1

(
ni ·AMAi

)
(3)

Following the concept of the ANOVA for comparing means in traditional data types,
the variability between the groups and the variability within the groups can be compared
by taking a ratio of measures of the two sources of variability. For testing the hypotheses

H0 : equal population mean rotation matrices for all k populations

Ha : at least two of the population mean rotation matrices differ
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we can use a test statistic of

T =
VB

VW
(4)

where VB and VW are defined in equations (2) and (3), respectively. If the population
mean rotation matrices do in fact differ, we expect a larger VB in comparison to VW ,
giving a larger value of T . By using a nonparametric permutation test, it is not important
what the actual distribution of T is. The steps of the permutation test are as listed below.
(See Pesarin and Salmaso (2010) for a general work on permutation tests).

1. Calculate the statistic in (4) based on the observed data and call it Tobs.

2. Permute the data by combining all n1 + n2 + · · ·+ nk observations and randomly
reassigning n1 observations to group 1, n2 observations to group 2, etc. Calculate
the test statistic in (4) for this permuted data and call it Tperm.

3. Repeat step 2. a large number (say 10,000) of times.

4. Let the p-value be the fraction of times that the permuted test statistic is greater
than the observed test statistic; p-value =

# of times Tperm>Tobs

# of permutations .

If a difference in the population mean matrices exists, then it is expected that Tobs will
be larger than the majority of the permuted test statistics, resulting in a small p-value
and rejection of the null hypothesis of equal means.

To illustrate two cases of the permutation test, consider Figure 1. Here, each three-
dimensional data set is plotted as points on the sphere, where each observation is repre-
sented by three points that would correspond to three orthogonal axes. In Figure 1(a),
there are three simulated data sets (in white, black, red) where the distinction between
centers can be more clearly seen. In Figure 1(b), the three simulated data sets were
produced from the same three population mean matrices as were used in Figure 1(a)
but with much more spread within the data sets. In this instance, the distinction be-
tween the centers is not obvious. After completing the permutation test, the observed
test statistic and p-value for the data in Figure 1(a) were found to be Tobs = 3.48 and
p-value< .001. For Figure 1(b), Tobs = 0.173 and p-value = .115 were obtained. These
plots illustrate the importance of not only comparing the difference between the sample
mean matrices, but also taking into account the spread exhibited in the data as is done
in a traditional ANOVA approach. While this exemplifies the permutation test for just
two individual cases, in the next section the adequacy of the test is examined further by
looking at a more in-depth simulation study under various conditions.

3 Simulations to Investigate Power

To further investigate the adequacy of the permutation test outlined in Section 2 for
determining if multiple three-dimensional rotation data sets come from populations with
differing mean rotation matrices, a simulation study was done to look at the power of
the test under various parameters. Quantities that should play a role in the power of
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(a) (b)

Figure 1: Plot of three simulated three-dimensional rotation data sets (each with n =
50) with mean rotations that (a) are significantly different and (b) are not
significantly different

the test are sample sizes, variability in the individual data sets, and the difference in the
true population means that the data are simulated from.

For the first part of the simulation study, three groups of data were considered. Ob-
servations were simulated from the von Mises version of the Uniform Axis-Random Spin
(vM-UARS) distributions (Bingham et al., 2009), which is characterized by central ro-
tation S ∈ SO(3) and concentration parameter κ ∈ (0,∞). The parameter κ measures
spread in the distribution, with larger values of κ corresponding to rotations that are
more concentrated (less spread) around the central rotation, S. Various sample sizes
ranging from 10 to 50 were used, with some cases having equal samples across the three
groups and some not. Various concentration parameters ranging from κ = 5 (most
spread) to κ = 100 (least spread) were used, with some cases having the same spread
in all three groups and some not. Finally, the population mean rotation matrices for
the three groups were allowed to differ across a spectrum of values of the average mis-
orientation angle (AMA) between the three matrices (see Section 2 for the definition of
the AMA). For each choice of AMA, sample sizes, and concentration parameters, 1000
different simulations were done. For each of the 1000 simulations, the permutation test
was done (with 1000 permutations) and the p-value was recorded. The power of the test
was then calculated as the proportion of times for the 1000 different simulations that
the test was (correctly) found to be significant at a 0.05 level.

Plots of the power against the AMA between the true population mean matrices are
provided in Figure 2 for the various combinations of sample sizes and concentration
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parameters. As expected, power increases as the distance between the population mean
matrices (larger AMA) increases. A power of 1 is approached more quickly for larger
sample sizes in each of the three plots. Additionally, as the spread of the data decreases
due to a larger values of κ, the power approaches 1 more quickly. This is seen as we
move from plot (a) to plot (b) to plot (c). All of these relationships between various
parameters and power match what is expected, confirming that the permutation test is
performing as desired in terms of power for three samples.

(a) (b)

(c)

Figure 2: Plots of power versus the average misorientation angle between the three popu-
lation central rotations for (a) κ1 = κ2 = κ3 = 5, (b) κ1 = 5, κ2 = 20, κ3 = 100,
and (c) κ1 = κ2 = κ3 = 100

For the three sample case, the observed significance level of the test was also explored.
Here, the three population central matrices were set to be the same matrix. The same
combinations of sample sizes and spreads as used for power were explored. For each
combination of sample sizes and κ values, 1000 different simulations were done. For
each of the 1000 simulations, the permutation test was done (with 1000 permutations)
and the p-value was recorded. In this case, the observed significance level was calculated
as the proportion of times out of 1000 that the test incorrectly rejected a null of equal
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population means based on a p-value below 0.05. Table 1 shows that the observed
significance level bounces around 0.05 as expected for all three sample cases considered.

Table 1: Observed significance level for various choices of sample size and spread for 3
groups (missing cases are identical to the entry to the left of them in the table)

κ1 = 5 κ1 = 5 κ1 = 100 κ1 = 100

κ2 = 5 κ2 = 20 κ2 = 20 κ2 = 100

κ3 = 5 κ3 = 100 κ3 = 5 κ3 = 100

n1 = n2 = n3 = 10 .057 .052 - .046

n1 = n2 = n3 = 50 .054 .049 - .045

n1 = 10, n2 = 20, n3 = 50 .053 .048 .050 .045

Next, the case of 4 samples/populations was considered, both for exploring power
and the observed significance level. Plots of the power against the AMA between the
true population mean matrices are provided in Figure 3 for the various combinations
of sample sizes and concentration parameters. The same trends are seen in these plots
that were seen earlier in the three sample cases. Larger AMA, larger samples sizes, and
less spread all result in larger power as expected. The observed significance levels for
the four sample case are given in Table 2 and again all bounce around 0.05. Although a
full-scale simulation study was not done for more than 4 groups, preliminary simulations
for 5 and 6 groups show the same trends seen for 3 and 4 groups taking place.

Table 2: Observed significance level for various choices of sample size and spread for 4
groups (missing cases are identical to the entry to the left of them in the table)

κ1 = 5 κ1 = 5 κ1 = 100 κ1 = 100

κ2 = 5 κ2 = 20 κ2 = 50 κ2 = 100

κ3 = 5 κ3 = 50 κ3 = 20 κ3 = 100

κ4 = 5 κ4 = 100 κ4 = 5 κ4 = 100

n1 = n2 = n3 = n4 = 10 .050 .046 - .052

n1 = n2 = n3 = n4 = 50 .048 .051 - .048

n1 = n2 = 10, n3 = n4 = 50 .047 .052 .049 .053

The permutation test developed here was also compared to the F-test for equality of
several modal rotations presented by Rancourt et al. (2000). For all the cases explored
in the simulation study, the permutation test had comparable or slightly higher power
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(a) (b)

(c)

Figure 3: Plots of power versus the average misorientation angle between the four pop-
ulation central rotations for (a) κ1 = κ2 = κ3 = κ4 = 5, (b) κ1 = 5, κ2 =
20, κ3 = 50, κ4 = 100, and (c) κ1 = κ2 = κ3 = κ4 = 100

than the F-test. Selected plots of power against the AMA between the true population
mean matrices are provided in Figure 4 for both the permutation test and the F-test.
These plots show that the permutation test has slightly higher power than the F-test
for data that is more spread (all κ = 5), with similar powers for data that is less spread
(all κ = 10). This was the general trend seen across all cases explored earlier in the
simulation study.

4 Application to Joint Rotation Data

We now apply the permutation test to joint rotation data as considered in Bero and Bing-
ham (2015). The data provided by Dr. Thomas Greiner (Health Professions-Physical
Therapy, University of Wisconsin-La Crosse) was collected during circumduction from
a human, chimpanzee, and baboon. The foot was placed flat on the floor with the leg
rotating around it in a circular motion, and movement was tracked by infra-red emit-
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(a) (b)

Figure 4: Plots of power versus the average misorientation angle between the three pop-
ulation central rotations for both the permutation test and the F-test for (a)
κ1 = κ2 = κ3 = 5 and (b) κ1 = κ2 = κ3 = 100

ting diodes attached to the bones on each side of a joint. Diodes may not have been
placed identically on all subjects, so the rotations of all joints under consideration were
measured with the Tibia-Talus joint as the reference to allow for comparison of species.
Information was collected on four different joints, Cuboid-Calcaneous, Navicular-Cuboid,
Navicular-Talus, and Talus-Calcaneous, using six human subjects, four chimpanzees, and
seven baboons.

When considering this data, Bero and Bingham (2015) compared the species two at a
time doing human/chimpanzee, human/baboon, and chimpanzee/baboon comparisons.
However, we can now do comparison of all three species at once using the permutation
test for comparison of multiple mean matrices. For each of the four joints in considera-
tion, a permutation test was done with 10000 permutations. Significant differences across
species were found for the Navicular-Talus joint (p-value< .001) and Talus-Calcaneus
joint (p-value< .001). There were not significant differences found for Cuboid-Calcaneus
(p-value = 0.0942) or Navicular-Cuboid (p-value = 0.2148). These results coincide with
the work of Bero and Bingham (2015) where it was found that humans differed from
both baboons and chimpanzees when it came to rotation of the Navicular-Talus and
Talus-Calcaneus joints. While the data set considered here was small in nature, this
illustrates just one instance of where the permutation test for comparing multiple mean
rotations could be useful in practice.

5 Conclusion

The three-dimensional permutation test developed in this paper complements recent
works that aim to provide statistical techniques that can be easily applied by scientists
who collect three-dimensional rotation data. Because the permutation test is not tied to
any particular distribution on SO(3) it also allows for flexibility in modeling. The test
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is shown to behave as expected both in terms of observed significance and power under
various conditions. While the test is illustrated on a small data set in biomechanics,
it’s ease of implementation makes it a useful tool not only for statisticians but also for
practitioners in the various fields who collect three-dimensional rotation data.
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