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This note is concerned with the construction, development and applications
of a new class of distributions referred to as the Generalized Topp-Leone-G
Power Series class of distributions. More importantly, this new generalized
class of distributions can be expressed as an infinite linear combination of
exponentiated-G distributions, which allows us to develop and obtain the
important statistical and mathematical properties. Monte Carlo simulations
are conducted to established the consistency of the estimation process. Ap-
plications in several areas are presented to illustrate the importance and
usefulness of this new class of distributions.

keywords: Generalized Topp-Leone-G, power series distribution, maxi-
mum likelihood estimation.

1 Introduction

In the context of survival analysis, modeling lifetime data has become popular. Studies
in survival analysis involve examining the lifetimes of both biological and mechanical
systems. To model these types of data, several distributions have been introduced in
recent years. The fundamental idea behind these distributions is that the lifetime of a
system with N components and a continuous random variable, Xi, which denotes the
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lifespan of the ith component, can be represented by a non-negative random variable
Z=min(X1, X2, . . . , XN ) if the components are in a series or Z=max(X1, X2, . . . , XN )
if the components are parallel. The power series class of distributions was proposed and
studied by Noack (1950). This class of distributions includes binomial, geometric, loga-
rithmic and Poisson distributions as special cases. These distributions may not be useful,
however, when a random variable has a high probability of taking the value zero. As a re-
sult, a truncated distribution is more appropriate in such situations. These distributions
are described in more detail in Johnson et al. (2005) in the context of univariate discrete
distributions. Authors have developed new distributions using the power series class of
distributions in recent years. Many of the new distributions have been constructed from
a mixture of well-known distributions and power series distributions. Some of the power
series distributions include the Weibull power series class of distributions by Morais and
Barreto-Souza (2011), the generalized exponential power series class of distributions by
Mahmoudi and Jafari (2012), the Kumaraswamy power series class of distributions by
Bidram and Nekoukhou (2013), the exponentiated generalized power series class of dis-
tributions by Oluyede et al. (2020), the Topp-Leone-G power series class of distributions
by Makubate et al. (2021), and the odd Weibull Topp–Leone–G power series class of
distributions by Oluyede et al. (2021).
The Generalized Topp-Leone-G Power Series (GTL-GPS) class of distributions is mo-

tivated by three factors, which can be applied in a variety of real-world situations:

(1) The GTL-GPS class of distributions can arise in many industrial applications and
biological organisms from the stochastic representation Z=min(X1, X2, . . . , XN ).

(2) It is possible to use the GTL-GPS distribution class to model appropriately the
time to the first failure of a system of identical components.

(3) There are some interesting behaviors observed when looking at the GTL-GPS
class of distributions, such as bathtub failure rates, upside bathtub failure rates
and decreasing-decreasing-increasing failure rates, all of which are more likely to
be encountered in practice.

The Topp-Leone generated family of distributions was introduced by Al-Shomrani
et al. (2016). The cumulative distribution function (cdf) and probability density function
(pdf) of the Generalized Topp-Leone-G (GTL-G) family of distributions is given by

FGTL−G(x; b, β, ξ) = 1−
[
1− (1− Ḡ2(x; ξ))b

]β
(1)

and

fGTL−G(x; b, β, ξ) = 2bβ
[
1− (1− Ḡ2(x; ξ))b

]β−1
(1− Ḡ2(x; ξ))b−1

× Ḡ(x; ξ)g(x; ξ), (2)

respectively, for x > 0, b, β > 0 and parameter vector ξ, where Ḡ(x; ξ) = 1−G(x; ξ).
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Suppose N is a discrete random variable following a power series distribution and
assumed to be truncated at zero with the probability mass function (pmf) given by

P (N = n) =
anθ

n

C(θ)
, n = 1, 2, ..., (3)

where C(θ) =
∑∞

n=1 anθ
n is finite, θ > 0 and {an}n≥1 a sequence of positive real num-

bers. The power series family of distributions includes Poisson, binomial, geometric and
logarithmic distributions.

2 The Model

In this section, we present the generalized Topp-Leone-G power series distribution and
its sub-models. Let X be a random variable such that Xi, for i = 1, 2, ..., N denote
the time to failure of a device due to the ith defect with the assumption that the
Xi’s are independent and identically distributed (iid) GTL-G random variables and
X(1) =min(X1, X2, ....XN ), with the distribution of N given by equation (3). The GTL-
GPS class of distributions is defined by the marginal cdf, say Fθ(x), and is given by

Fθ(x) = 1−
C
(
θ
[
1− (1− Ḡ2(x; ξ))b

]β)
C(θ)

, (4)

with the corresponding pdf and hazard rate function (hrf) given as

fθ(x) = 2bβθ
[
1− (1− Ḡ2(x; ξ))b

]β−1
(1− Ḡ2(x; ξ))b−1Ḡ(x; ξ)g(x; ξ)

×
C ′
(
θ
[
1− (1− Ḡ2(x; ξ))b

]β)
C(θ)

(5)

and

hθ(x) = 2bβθ
[
1− (1− Ḡ2(x; ξ))b

]β−1
(1− Ḡ2(x; ξ))b−1Ḡ(x; ξ)g(x; ξ)

×
C ′
(
θ
[
1− (1− Ḡ2(x; ξ))b

]β)
C
(
θ
[
1− (1− Ḡ2(x; ξ))b

]β) , (6)

respectively, for b, β, θ > 0 and parameter vector ξ. Sub-classes of the GTL-GPS class
of distributions are given in Table 1.

3 Some Model Properties

In this section, we present some statistical properties of the proposed model. The sta-
tistical properties considered include the quantile function, linear representation of the
density function, moments, generating function, probability weighted moments, distri-
bution of order statistics and Rényi entropy of the GTL-GPS class of distributions.
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Table 1: Sub-classes of the GTL-GPS class of distributions

Distribution an C(θ) cdf

GTL-G Poisson (n!)−1 eθ − 1 1− e

(
θ

(
[1−(1−Ḡ2(x;ξ))b]

β
))

−1
eθ−1

GTL-G Geometric 1 θ(1− θ)−1 1−
(1−θ)

(
[1−(1−Ḡ2(x;ξ))b]

β
)

(
1−θ

(
[1−(1−Ḡ2(x;ξ))b]

β
))

GTL-G Logarithmic n−1 − log(1− θ) 1−
log

(
1−θ

(
[1−(1−Ḡ2(x;ξ))b]

β
))

log(1−θ)

GTL-G Binomial
(
m
n

)
(1 + θ)m − 1 1−

(
1+θ

(
[1−(1−Ḡ2(x;ξ))b]

β
))m

−1

(1+θ)m−1

3.1 Quantile Function

The quantile function of the GTL-GPS class of distributions can be computed by invert-
ing the non-linear equation Fθ(x) = u, 0 ⩽ u ⩽ 1, such that

1−
C
(
θ
[
1− (1− Ḡ2(x; ξ))b

]β)
C(θ)

= u.

By following the detailed derivations in the Appendix section, the quantile function
of GTL-GPS class of distributions is given by

Qθ(u) = G−1

1−
1−

(
1−

[
C−1 (C(θ)(1− u))

θ

] 1
β

) 1
b


1
2

 , (7)

where G−1 and C−1 represent the inverse functions of G and C, respectively.

3.2 Linear Representation of the Density Function

In this subsection, we present a series expansion of the density function. The GTL-
GPS density can be expressed as an infinite linear combination of the exponentiated-G
(Exp-G) densities. See Appendix section for derivations. The series representation of
the GTL-GPS pdf is given by

f
θ
(x) = 2bβθ

∞∑
n=1

nanθ
n

C(θ)

∞∑
i,j,k=0

(−1)i+j+k

(
βn− 1

i

)(
b(i+ 1)− 1

i

)(
2j + 1

k

)

× (k + 1)

(k + 1)
g(x; ξ)Gk(x; ξ)

=
∞∑
k=0

Dk+1g
∗
k+1(x; ξ),
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where

Dk+1 = 2bβθ
∞∑
n=1

nanθ
n

C(θ)

∞∑
i,j=0

(−1)i+j+k

(k + 1)

(
βn− 1

i

)(
b(i+ 1)− 1

i

)(
2j + 1

k

)
(8)

and g∗k+1(x; ξ) = (k+1)g(x; ξ)Gk(x; ξ) is the Exp-G density with power parameter (k+1).
Hence, the pdf of the GTL-GPS class of distributions can be expressed as an infinite
linear combination of Exp-G densities. The series expansion of the density function as
well as other functions are meant to obtain the mathematical and statistical properties
of the GTL-GPS class of distributions from those of the well known Exp-G distribution.
Computations of the moments, skewness and kurtosis and other measures are done via
numerical software packages such as R, SAS or MATLAB for specified baseline cdf G
and function C(θ).

3.3 Moments and Generating Function

The rth moment for the GTL-GPS class of distributions is given by

E(X
r
) =

∫ ∞

0
xrfθ(x)dx =

∞∑
k=0

Dk+1E(Y
r

k+1),

where E(Y
r

k+1) is the rth moment of Yk+1 which follows an Exp-G distribution with
power parameter k + 1 and Dk+1 is given in equation (8). The moment generating
function for the GTL-GPS class of distributions is given as

MX(t) = E
(
etX
)
=

∞∑
k=0

Dk+1E
(
etYk+1

)
,

where E
(
etYk+1

)
is the moment generating function of the Exp-G family of distributions

with power parameter (k + 1) and Dk+1 is given in equation (8).

3.4 Probability Weighted Moments (PWMs)

In this subsection, we present the probability weighted moments of the GTL-GPS class
of distributions. The PWMs for a random variable X from the GTL-GPS class of dis-
tributions is given by

ηa,r = E(Xa[F (X)]r) =

∫ ∞

0
xafθ(x)[Fθ(x)]

rdx.
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After following the detailed derivations in the Appendix section, we can write:

fθ(x)[Fθ(x)]
r = 2bβθ

∞∑
n,z=1

∞∑
s,i,j,k=0

nanθ
ndz,s

(C(θ))s+1
(−1)s+i+j+k

(
r

s

)(
β(z + n)− 1

i

)

×
(
b(i+ 1)− 1

i

)(
2j + 1

k

)
(k + 1)

(k + 1)
g(x; ξ)Gk(x; ξ)

=
∞∑
k=0

Wk+1g
∗
k+1(x; ξ),

where

Wk+1 = 2bβθ
∞∑

n,z=1

∞∑
s,i,j=0

nanθ
ndz,s

(C(θ))s+1

(−1)s+i+j+k

(k + 1)

(
r

s

)(
β(z + n)− 1

i

)

×
(
b(i+ 1)− 1

i

)(
2j + 1

k

)
and g∗k+1(x; ξ) = (k+1)g(x; ξ)Gk(x; ξ) is the Exp-G density with power parameter (k+1).
Consequently, the PWMs of the GTL-GPS class of distributions by interchanging the
integration and summation signs is given by

ηa,r =
∞∑
k=0

Wk+1

∫ ∞

0
xag∗k+1(x; ξ)dx. (9)

3.5 Distribution of Order Statistics

The pdf of the ith order statistics for the GTL-GPS class of distributions is presented in
this subsection. Let X1, X2, ......Xn be a random sample of size n from the GTL-GPS
class of distributions, then the pdf of the ith order statistic is given by

fi:n(x) =
n!

(i− 1)!(n− 1)!

n−i∑
r=0

(−1)r
(
n− i

r

)
fθ(x)[Fθ(x)]

i+r−1.

Based on the detailed derivation given in the Appendix section, we can obtain the pdf
of the ith order statistics from GTL-GPS class of distributions as follows:

fi:n(x) =
n!

(i− 1)!(n− 1)!

n−i∑
r=0

∞∑
k=0

(−1)r
(
n− i

r

)
Vk+1g

∗
k+1(x; ξ), (10)

where

Vk+1 = 2bβθ

∞∑
n,z=1

∞∑
s,i,j=0

nanθ
ndz,s

(C(θ))s+1

(−1)s+i+j+k

(k + 1)

(
i+ r − 1

s

)(
β(z + n)− 1

i

)

×
(
b(i+ 1)− 1

i

)(
2j + 1

k

)
and g∗k+1(x; ξ) = (k+1)g(x; ξ)Gk(x; ξ) is the Exp-G density with power parameter (k+1).
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4 Rényi Entropy

In this subsection, we present Rényi entropy of the GTL-GPS class of distributions.
Rényi entropy (Rényi et al., 1961) of a random variable X following GTL-GPS class of
distributions is defined by

IR(ν) = (1− ν)−1 log

[∫ ∞

0
fν
θ (x)dx

]
for ν > 0 and ν ̸= 1,

where fθ(x) is given in equation (5). By following the detailed derivations in the Ap-
pendix section, the Rényi entropy of the GTL-GPS class of distributions is given by

IR(ν) = (1− ν)−1 log

[ ∞∑
n=1

∞∑
i,j,k=0

ndν,n(2bβθ)
νθn−1

(C(θ))ν
(−1)i+j+k

(
βν(n− 1)

i

)(
b(i+ ν)− 1

j

)

×
(
2j + ν

k

)
1(

k
ν + 1

)ν ∫ ∞

0

((
k

ν
+ 1

)
g(x; ξ)G

k
ν (x; ξ)

)ν

dx

]

= (1− ν)−1 log

[ ∞∑
k=0

R∗
k exp(1− ν)IREG

]
,

where IREG =
∫∞
0

((
k
ν + 1

)
g(x; ξ)G

k
ν (x; ξ)

)ν
dx is Rényi entropy of Exp-G densities

with power parameter k
ν + 1 and

R∗
k =

∞∑
n=1

∞∑
i,j=0

ndν,n(2bβθ)
νθn−1

(C(θ))ν
(−1)i+j+k

(
βν(n− 1)

i

)(
b(i+ ν)− 1

j

)

×
(
2j + ν

k

)
1(

k
ν + 1

)ν .
5 Maximum Likelihood Estimation

Let X ∼ GTL−GPS(b, β, θ, ξ) and ∆ = (b, β, θ, ξ)T be an unknown parameter vector,
then the log-likelihood function (ℓn) of a random sample of size n from the GTL −
GPS(b, β, θ, ξ) class of distributions is given by

ℓn(∆) = n log(2bβθ) + (β − 1)
n∑

i=1

log
[
1− (1− Ḡ2(xi; ξ))

b
]

+ (b− 1)
n∑

i=1

log[1− Ḡ2(xi; ξ)] +

n∑
i=1

log[Ḡ(xi; ξ)] +
n∑

i=1

log[g(xi; ξ)]

+
n∑

i=1

log

[
C ′
(
θ
[
1− (1− Ḡ2(xi; ξ))

b
]β)]

−
n∑

i=1

log[C(θ)].



Electronic Journal of Applied Statistical Analysis 571

The maximum likelihood estimates (mle’s) of the parameters can be obtained by solv-

ing a system of non-linear equations
(
∂ℓn
∂b ,

∂ℓn
∂β , ∂ℓn∂θ ,

∂ℓn
∂ξk

)T
= 0 by numerical methods.

Elements of the score vector ∆ = (b, β, θ, ξ) are presented in the appendix.

6 Some Special Cases of GTL-GPS Class of Distributions

In this section, by specifying the baseline cdf G(x; ξ) and pdf g(x; ξ) in equations (4)
and (5), some special cases of GTL-GPS class of distributions are introduced.

6.1 Generalized Topp-Leone-Log-logistic Power Series (GTL-LLoGPS)
Class of Distributions

If the baseline distribution is the log-logistic distribution with cdf and pdf given by
G(x; c) = 1 − (1 + xc)−1 and g(x; c) = cxc−1(1 + xc)−2, respectively, for c, x > 0, then
the pdf and hrf of the GTL-LLoGPS class of distributions are defined as

fθ(x) = 2bcβθxc−1 (1 + xc)−3
(
1− (1 + xc)−2

)b−1
[
1−

(
1− (1 + xc)−2

)b]β−1

×
C ′

(
θ

[
1−

(
1− (1 + xc)−2

)b]β)
C(θ)

, (11)

and

hθ(x) = 2bcβθxc−1 (1 + xc)−3
(
1− (1 + xc)−2

)b−1
[
1−

(
1− (1 + xc)−2

)b]β−1

×
C ′

(
θ

[
1−

(
1− (1 + xc)−2

)b]β)

C

(
θ

[
1−

(
1− (1 + xc)−2

)b]β) , (12)

respectively, for b > 0, β > 0, c > 0, θ > 0 and x > 0.

Generalized Topp-Leone-Log-logistic Poisson (GTL-LLoGP) Distribution

The pdf and hrf of the GTL-LLoGP class of distribution are defined as

fθ(x) = 2bcβθxc−1 (1 + xc)−3
(
1− (1 + xc)−2

)b−1
[
1−

(
1− (1 + xc)−2

)b]β−1

×
exp

(
θ

[
1−

(
1− (1 + xc)−2

)b]β)
exp(θ)− 1

,
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and

hθ(x) = 2bcβθxc−1 (1 + xc)−3
(
1− (1 + xc)−2

)b−1
[
1−

(
1− (1 + xc)−2

)b]β−1

×
exp

(
θ

[
1−

(
1− (1 + xc)−2

)b]β)

exp

(
θ

[
1−

(
1− (1 + xc)−2

)b]β)
− 1

,

respectively, for b > 0, β > 0, c > 0, θ > 0 and x > 0.

Figure 1: Plots of the pdf and hrf for the GTL-LLoGP distribution

6.2 Generalized Topp-Leone-Weibull Power Series (GTL-WPS) Class
of Distributions

If the baseline distribution is the Weibull distribution with cdf and pdf given by G(x; c) =

1− e−xλ
and g(x; c) = λxλ−1e−xλ

, respectively, for λ, x > 0, then the pdf and hrf of the
GTL-WPS class of distributions are defined as

fθ(x) = 2bβθλxλ−1e−2xλ
(
1− e−2xλ

)b−1
[
1−

(
1− e−2xλ

)b]β−1

×
C ′

(
θ

[
1−

(
1− e−2xλ

)b]β)
C(θ)

, (13)
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GTL-LLoGP(b, 0.1, c, 1.5) GTL-LLoGP(b, 0.1, c, 1.5)

GTL-LLoGP(4, β, 0.1, θ) GTL-LLoGP(4, β, 0.1, θ)

Figure 2: 3D plots of the skewness and kurtosis of the GTL-LLoGP distribution for some
selected parameter values

and

hθ(x) = 2bβθλxλ−1e−2xλ
(
1− e−2xλ

)b−1
[
1−

(
1− e−2xλ

)b]β−1

×
C ′

(
θ

[
1−

(
1− e−2xλ

)b]β)

C

(
θ
[
1−

(
1− e−2xλ

)b]β) , (14)
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respectively, for b > 0, β > 0, λ > 0, θ > 0 and x > 0.

Generalized Topp-Leone-Weibull Poisson (GTL-WP) Distribution

The pdf and hrf of the GTL-WP class of distributions are defined as

fθ(x) = 2bβθλxλ−1e−2xλ
(
1− e−2xλ

)b−1
[
1−

(
1− e−2xλ

)b]β−1

×
exp

(
θ

[
1−

(
1− e−2xλ

)b]β)
exp(θ)− 1

,

and

hθ(x) = 2bβθλxλ−1e−2xλ
(
1− e−2xλ

)b−1
[
1−

(
1− e−2xλ

)b]β−1

×
exp

(
θ

[
1−

(
1− e−2xλ

)b]β)

exp

(
θ
[
1−

(
1− e−2xλ

)b]β)− 1

,

respecivey, for b > 0, β > 0, λ > 0, θ > 0 and x > 0.

Figure 3: Plots of the pdf and hrf for the GTL-WP distribution

Figures 1 and 3 represent the plots of pdf and hrf of the GTL-LLoGP distribution and
GTL-WP distribution, respectively. The pdfs of both distributions can take on right-
skewed, reverse-J, unimodal, and almost symmetric shapes, while the hrfs can take on
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GTL-WP(b, 0.1, c, 3.0) GTL-WP(b, 0.1, c, 3.0)

GTL-WP(5.0, β, 0.1, θ) GTL-WP(5.0, β, 0.1, θ)

Figure 4: 3D plots of the skewness and kurtosis of the GTL-WP distribution for some
selected parameter values

decreasing, upside down bathtub, bathtub, and upside down bathtub followed by bathtub
shapes. Figures 2 and 4, the GTL-LLoGP distribution and GTL-WP distribution can
model data sets with a variety of levels of skewness and kurtosis.



576 Warahena-Liyanage,Gabanakgosi,Oluyede

7 Simulation Results

The performance of the GTL-WP is examined by conducting various simulations for
different sizes (n=25, 50, 100, 200, 400, 800, 1000) via the R package. We simulate
N = 1000 samples for the true parameters values of (b, β, λ, θ) given in Table 2. The
tables list the mean MLEs of the model parameters along with the respective average
bias (ABIAS) and root mean squared errors (RMSEs). The ABIAS and RMSE for the
estimated parameter, say, θ̂, say, are given by:

ABIAS(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
,

respectively. As we can see from the results, RMSE decreases as the sample size n
increases, so the mean estimates of parameter values are closer to the true parameter
values. The simulation results suggest that the MLE method is suitable for estimating
the parameters of the GTL-WP distribution.

8 Applications

In this section, we provide illustrations of the flexible nature and usefulness of the GTL-
LLoGP distributions in data modeling. We fit the GTL-LLoGP distribution to the data
set in subsections 7.1 and 7.2. These fits are contrasted with several competing non-
nested distributions with the same number of parameters. GTL-LLoGP distribution
is compared with Weibull log-logistic logarithmic (WLLoGL) (Mashabe et al., 2019),
exponentiated Weibull Poisson (EWP) (Mahmoudi and Sepahdar, 2013), Burr XII Pois-
son (BXIIP) (da Silva et al., 2015), Type II Topp Leone Power Lomax (TIITLPL)
(Al-Marzouki et al., 2019), Transmuted Topp-Leone Weibull (TTLW) (Ibrahim and
Yousof, 2020), Topp-Leone-Marshall-Olkin-Weibull (TLMO-W) (Chipepa et al., 2020),
Kumaraswamy-Weibull (KwW) (Cordeiro et al., 2010) and exponentiated power gen-
eralized Weibull (EPGW) (Peña-Ramı́rez et al., 2018) distributions. The pdfs of the
WLLoGL, EWP, BXIIP, TIITLPL, TTLW, KwW, TLMOW and EPGW distributions
are given in the Appendix section.
Our model parameters were estimated using NLmixed in SAS and our goodness-

of-fit test was conducted using the package AdequacyModel in R software. The esti-
mated values of the parameters (standard error in parenthesis), -2log-likelihood statis-
tic (−2 ln(L)), Akaike Information Criterion (AIC = 2p − 2 ln(L)), Bayesian Informa-
tion Criterion (BIC = p ln(n) − 2 ln(L)) and Consistent Akaike Information Criterion(
AICC = AIC + 2 p(p+1)

n−p−1

)
, where L = L(∆̂) is the value of the likelihood function eval-

uated at the parameter estimates, n is the number of observations, and p is the number
of estimated parameters are presented.
We also obtain the following goodness-of-fit statistics: Crameŕ-von Mises (W ∗) and

Anderson-Darling Statistics (A∗) described by Chen and Balakrishnan (1995), as well
as Kolmogorov-Smirnov (K-S) statistic and its P-value. Note that for the value of the
log-likelihood function at its maximum (ℓn), larger value is good and preferred, and for
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Table 2: Monte Carlo simulation results for GTL-WP distribution: mean, average bias
and RMSE

(0.5, 0.2, 0.5, 0.3) (0.2, 0.5, 0.1, 0.8) (0.2, 1.0, 1.5, 0.5)

Parameter n Mean Average Bias RMSE Mean Average Bias RMSE Mean Average Bias RMSE

b 25 0.7761 0.2761 0.7063 0.3865 0.1865 1.3234 1.0638 0.8638 3.4476

50 0.6397 0.1397 0.3425 0.2382 0.0382 0.1138 0.2672 0.0672 0.2227

100 0.5735 0.0735 0.1852 0.2196 0.0196 0.0542 0.2243 0.0243 0.0693

200 0.5366 0.0366 0.1302 0.2179 0.0179 0.0426 0.2104 0.0104 0.0361

400 0.5160 0.0160 0.0820 0.2165 0.0165 0.0317 0.2047 0.0047 0.0159

800 0.5103 0.0103 0.0815 0.2068 0.0068 0.0392 0.2014 0.0014 0.0075

1000 0.5074 0.0074 0.0698 0.2061 0.0061 0.0208 0.2008 0.0008 0.0049

β 25 0.3899 0.1899 0.3339 0.6896 0.1896 3.3937 2.4664 1.4664 9.5286

50 0.3656 0.1656 0.3190 0.4673 -0.0327 0.1300 0.9415 -0.0585 0.2980

100 0.3579 0.1579 0.3221 0.4722 -0.0278 0.1118 0.9687 -0.0313 0.1862

200 0.3023 0.1023 0.2641 0.4889 -0.0111 0.0781 0.9909 -0.0091 0.1110

400 0.2359 0.0359 0.1561 0.5029 0.0029 0.0549 0.9958 -0.0042 0.0586

800 0.2084 0.0084 0.0670 0.5045 0.0045 0.0451 1.0008 0.0008 0.0317

1000 0.2042 0.0042 0.0437 0.5033 0.0033 0.0259 1.0007 0.0007 0.0256

λ 25 0.7430 0.2430 0.4693 0.3076 0.2076 0.4288 1.4714 -0.0286 0.7834

50 0.6905 0.1905 0.3946 0.1789 0.0789 0.2243 1.5234 0.0234 0.5265

100 0.6763 0.1763 0.3586 0.1428 0.0428 0.0697 1.4808 -0.0192 0.3137

200 0.6066 0.1066 0.2567 0.1410 0.0410 0.0614 1.4802 -0.0198 0.1749

400 0.5423 0.0423 0.1420 0.1313 0.0313 0.0534 1.4833 -0.0167 0.0560

800 0.5112 0.0112 0.0610 0.1079 0.0079 0.0261 1.4947 -0.0053 0.0242

1000 0.5050 0.0050 0.0376 0.1045 0.0045 0.0190 1.4966 -0.0034 0.0170

θ 25 0.4605 0.1605 0.4903 1.3896 0.5896 1.4661 1.5703 1.0703 1.5885

50 0.4187 0.1187 0.3816 1.3532 0.5532 0.9013 1.2140 0.7140 1.2721

100 0.3987 0.0987 0.4388 1.1716 0.3716 0.7807 0.8316 0.3316 0.8732

200 0.3315 0.0315 0.1756 0.9500 0.1500 0.5464 0.6365 0.1365 0.5423

400 0.3092 0.0092 0.1366 0.8339 0.0339 0.3422 0.5452 0.0452 0.2458

800 0.2961 -0.0039 0.0671 0.7856 -0.0144 0.1790 0.5071 0.0071 0.1303

1000 0.2953 -0.0047 0.0489 0.7903 -0.0097 0.1214 0.5021 0.0021 0.1021

AIC, AICC, BIC, and the goodness-of-fit statistics W ∗, A∗ and K − S, smaller values
are preferred. The results are shown in Tables 3 and 4.

8.1 Chemotherapy Treatment Data

As the first example, survival times in years of cancer patients receiving chemotherapy
treatment alone. The data set is reported in Aalen (1988). The observations are as
follows:
0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458,
0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219,
1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830,
3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

The estimated variance-covariance matrix for GTL-LLoGP model on chemotherapy
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treatment data set is given by
2.7194 −0.0009 0.0127 2.1518

−0.0009 2.68× 10−7 −3.98× 10−6 −0.0007

0.0127 −3.98× 10−6 0.0002 0.0098

2.1518 −0.0007 0.0098 1.9723


and the 95% two-sided asymptotic confidence intervals for b, β, c and θ are given by
33.931± 3.2322, 11348± 0.001, 0.097± 0.0251 and 0.441± 2.7526, respectively.

Table 3: Parameter estimates and goodness-of-fit statistics for various models fitted for
chemotherapy treatment data

Estimates Statistics

Model b̂ β̂ ĉ θ̂ −2 log (L) AIC AICC BIC W ∗ A∗ K − S p-value

GTLLLoGP 33.9310 11348.0 0.0970 0.4410 115.8 123.8 124.8 131.0 0.0653 0.4475 0.0975 0.7489

(1.6491) (0.0005) (0.0128) (1.4044)

α̂ β̂ ĉ p̂

WLLoGL 0.7178 1.6267 0.6474 1.24 ×10−8 116.2 124.2 125.2 131.5 0.0813 0.5436 0.1094 0.6149

(0.12450) (12.8080) (5.0974) (0.0191)

α̂ β̂ θ̂ ω̂

EWP 0.8073 1.1555 1.14 ×10−7 1.6125 116.1 124.1 125.1 131.3 0.0691 0.4706 0.1004 0.7173

(0.5277) (1.5315) (0.0072) (1.9800)

ĉ k̂ ŝ λ̂

BXIIP 1.1326 1610.2 1137.9 0.7906 115.9 123.9 124.9 131.2 0.0744 0.5015 0.1037 0.6804

(0.0627) (0.0005) (0.0008) (1.3081)

θ̂ α̂ β̂ λ̂

TIITLPL 25.2760 44700.0 0.5720 241140.0 116.3 124.3 125.3 131.5 0.0760 0.5115 0.1060 0.6537

(4.3286) (0.0045) (0.0682) (0.6036)

â b̂ α̂ λ̂

TTLW 0.4255 0.8883 1.3940 0.1166 116.0 124.0 125.0 131.3 0.0706 0.4790 0.1013 0.7070

(0.4183) (0.7586) (2.0105) (0.5849)

â b̂ α̂ β̂

KwW 10.5121 157.1692 0.5989 0.1637 116.1 124.1 125.1 131.3 0.0688 0.4686 0.1021 0.6979

(4.9910) (0.0679) (1.3695) (0.0464)

b̂ δ̂ λ̂ γ̂

TLMOW 1.5664 0.8611 0.4921 0.8424 116.1 1124.1 125.1 131.3 0.0688 0.4686 0.1021 0.6979

(1.9295) (1.0623) (0.7341) (0.6036)

α̂ β̂ θ̂ ω̂

EPGW 0.3587 9.6936 3.7253 0.1142 115.9 123.9 124.9 131.1 0.0689 0.4687 0.1005 0.7161

(0.6288) (142.8500) (7.5563) (1.7184)

Based on Table 3, GTL-LLoGP distribution has the highest p-value for the K-S statis-
tic and the lowest goodness-of-fit statistics compared to other non-nested models. Thus,
we conclude that the GTL-LLoGP model performs better with chemotherapy treatment
data than the non-nested WLLoGL, EWP, BXIIP, TIITLPL, TTLW, KwW, TLMOW
and EPGW models. Moreover, Figure 5 shows that our model outperforms the compet-
ing non-nested models on chemotherapy treatment data.
In Figure 6, we see that the cdf line for the GTL-LLoGP distribution indicated by the

blue line is closer to the empirical cdf while the survival function in blue is also close to
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Figure 5: Histogram, fitted density and probability plots for chemotherapy treatment
data

the Kaplan-Meier(K-M) curve which indicate that our model is the best in explaining
the chemotherapy treatment data. The TTT plot for chemotherapy treatment data
indicates a uni-modal hazard rate function, hence the chemotherapy treatment data can
be fitted to our model.

Figure 6: Estimated cdf, Kaplan-Meier survival and scaled TTT-Transform plots for the
GTL-LLoGP distribution for chemotherapy treatment data

8.2 Fatigue Life Data

The second data set represent the fatigue life (to the nearest thousand cycles) of 67
specimens of Alloy T7987 that failed before having accumulated 300 thousand cycles of
testing obtained from William and Escobar (1998). The observations are as follows:
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94, 96, 99, 99, 104, 108, 112, 114, 117, 117, 118, 121, 121, 123, 129, 131, 133, 135, 136,
139, 139, 140, 141, 141, 143, 144, 149, 149, 152, 153, 159, 159, 159, 159, 162, 168, 168,
169, 170, 170, 171, 172, 173, 176, 177, 180, 180, 184, 187, 188, 189, 190, 196, 197, 203,
205, 211, 213, 224, 226, 227, 256, 257, 269, 271, 274, 291.

The estimated variance-covariance matrix for GTL-LLoGP model on fatigue life data
set is given by 

6.16× 10−5 0.0360 −9.23× 10−5 0.0002

0.0360 21.1111 −0.0515 −0.1566

−9.23× 10−5 −0.0515 0.0005 −0.0310

0.0002 −0.1566 −0.0310 2.9812


and the 95% two-sided asymptotic confidence intervals for b, β, c and θ are given by
4601.9± 0.0153, 12.92± 9.006, 0.7111± 0.0429 and 0.7547± 3.3841, respectively.

Table 4: Parameter estimates and goodness-of-fit statistics for various models fitted for
fatigue life data

Estimates Statistics

Model b̂ β̂ ĉ θ̂ −2 log (L) AIC AICC BIC W ∗ A∗ K − S p-value

GTLLLoGP 4601.9 12.9200 0.7111 0.7547 695.78 703.78 704.4 712.6 0.0216 0.1874 0.0571 0.9810

(0.0078) (4.5947) (0.0219) (1.7266)

α̂ β̂ ĉ p̂

WLLoGL 0.0120 10.5028 0.1143 0.9999 748.2 756.2 756.9 765.1 0.2760 1.8643 0.3043 8.15 ×10−6

(0.0826) (0.0164) (0.3118) (0.0010)

α̂ β̂ θ̂ ω̂

EWP 0.7316 0.0732 13.7400 20.4800 696.2 704.2 704.9 713.0 0.0303 0.2215 0.0707 0.8913

(0.2029) (0.0706) (15.6512) (1.9072)

ĉ k̂ ŝ λ̂

BXIIP 6.4489 0.9552 157.7100 1.38 ×10−8 698.4 706.4 707.0 715.2 0.0277 0.2378 0.0614 0.9625

(1.3579) (0.4904) (20.0350) (0.0238)

θ̂ α̂ β̂ λ̂

TIITLPL 353.31 0.1247 1.2660 1226.5 739.9 747.9 748.6 756.8 0.0418 0.3652 0.2469 0.0006

(8.12 ×10−6) (0.0441) (0.0840) (1.02 ×10−5)

â b̂ α̂ λ̂

TTLW 0.0117 1.0794 33.8639 0.1256 696.0 704.0 704.6 712.8 0.0250 0.1956 0.0913 0.6312

(0.0012) (0.0988) (0.0047) (0.6828)

â b̂ α̂ β̂

KwW 37.0441 0.7188 0.0220 1.2000 695.8 703.8 704.5 712.7 0.0275 0.2050 0.0941 0.5934

(0.2467) (2.2727) (0.0148) (1.4152)

b̂ δ̂ λ̂ γ̂

TLMOW 25.3420 4.0042 0.0571 0.7863 695.9 703.9 704.5 712.7 0.0240 0.1926 0.0646 0.9423

(0.0006) (0.0040) (0.0200) (0.0700)

α̂ β̂ δ̂ λ̂

EPGW 0.3747 114.21 127.85 0.0024 695.80 703.8 704.5 712.7 0.0231 0.1878 0.0600 0.9695

(0.032) (9.85 ×10−7) (2.32 ×10−5) (0.0004)

Based on Table 4, GTL-LLoGP distribution has the highest p-value for the K-S statis-
tic and the lowest goodness-of-fit statistics compared to other non-nested models. Thus,
we conclude that the GTL-LLoGP model performs better with fatigue life data than non-
nested WLLoGL, EWP, BXIIP, TIITLPL, TTLW, KwW, TLMOW and EPGW models.
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Moreover, Figure 7 shows that our model outperforms the competing non-nested models
on fatigue life data.

Figure 7: Histogram, fitted density and probability plots for fatigue life data

In Figure 8 again, we see that the cdf line for the GTL-LLoGP distribution indicated
by the blue line is closer to the empirical cdf while the survival function in blue is also
close to the Kaplan-Meier(K-M) curve which indicate that our model is the best in
explaining the fatigue life data. The TTT plot for fatigue life data indicates a increasing
hazard rate function, which confirms that indeed GTL-LLoGP distribution is good for
fitting fatigue life data.

Figure 8: Estimated cdf, Kaplan-Meier survival and scaled TTT-Transform plots for the
GTL-LLoGP distribution for fatigue life data
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9 Concluding Remarks

In this paper, we presented a new generalized class of distributions called the Generalized
Topp-Leone-G power series (GTL-GPS) distribution. The statistical properties and
maximum likelihood estimates of the proposed model were derived. Special cases of
the new class of distributions were also examined. A simulation study to assess the
performance of the maximum likelihood estimates was conducted. As a demonstration
of the usefulness of the proposed family of distributions, we examined two real data
examples. The new distribution performs better than several non-nested models.
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