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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 14, Issue 02, November 2021, 373-388
DOI: 10.1285/i20705948v14n2p373

The extended
Farlie-Gumbel-Morgenstern bivariate
Lindley distribution: Concomitants of

order statistics and estimation

M.R. Irshad*a, R. Mayab, Amer Ibrahim Al-Omaric, S.P. Arund,
and Ghadah A. Alomanie

aDepartment of Statistics,, CUSAT, Kerala.
aDepartment of Statistics,, Govt. College for Women,, Trivandrum-695 014.

cDepartment of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan
dKerala University Library, Research Centre, University of Kerala,, Trivandrum-695 034

eDepartment of Mathematical Sciences, College of Science,, Princess Nourah bint Abdulrahman
University,, P.O. Box 84428, Riyadh 11671, Saudia Arabia

Published: 20 November 2021
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1 Introduction

The study of COS open is the key for analysis of data withdrawn from bivariate model in
a theoretical as well as applied perspective. Suppose (X1, Y1), (X2, Y2), · · · is a sequence
of random variables (rvs) which are independent and identically distributed (iid) with a
joint cumulative distribution function (cdf) F (x, y), x, y ∈ R. Also, let F (x) and F (y) are
the cdf’s (marginal) X and Y , respectively. If the sample values on the marginal random
variable X are ordered as X1:m, X2:m, · · · , Xm:m, then the related Y rv in an ordered
pair with X equals to Xj:m symbolised by Y[j:m] and is known as the concomitant of the

jth order statistic Y[j:m]. Based on a random sample of size m coming from a bivariate
distribution, the COS are Y[1:m], Y[2:m], · · · , Y[m:m]. Most of the theoretical developments
in the COS till 2003 are available in David and Nagaraja (2003).

The main applications of COS varies over biological selection problems, engineering,
and development of structural methods and so on. The COS ascending from the Farlie-
Gumbel-Morgenstern (FGM) family are elucidated by Scaria and Nair (1999). Beg and
Ahsanullah (2008) investigated concomitants for generalized order statistics selected
from FGM distributions. Recently, Maya et al. (2021) thoroughly studied certain infer-
ential aspects of FGM bivariate Bilal distribution using COS.
One of the main applications of COS is in the RSS. The RSS technique was first de-

veloped by McIntyre (1952) in order to estimate the population mean of pasture yields.
McIntyre’s idea of ranking is possible whenever it can be done easily by some inexpensive
method.

For recent developments in RSS, one can refer to some references as Al-Omari and Al-
manjahie (2021), Al-Omari (2021) for maximum likelihood estimation in location-scale
families using varied L RSS, Hassan et al. (2021) for stress-strength reliability for the
generalized inverted exponential distribution using median RSS, Al-Omari and Abdal-
lah (2021), Jemain et al. (2007), Benchiha and Al-Omari (2021) for generalized quasi
Lindley distribution, Al-Omari and Haq (2019), Mahdizadeh and Zamanzade (2021),
Mahdizadeh and Zamanzade (2021), Terpstra and Miller (2006), Haq et al. (2016a),
Koyuncu and Al-Omari (2021) for generalized robust-regression-type estimators under
different RSS methods, and Haq et al. (2016b). In some practical problems, the study
variable say Y , is intricate or cost to measure, while an auxiliary variable X related
with Y can be easily measure or ordered exactly. In this case, Stokes (1977) developed
another scheme of RSS, which is as follows: randomly select m independent bivariate
sets, each of size m. From the first set of m units, select the variate Y associated with
minimum ordered X for actual measure. From the m units in the second set, the Y vari-
ate associated with the second minimum X is selected. This process is continued until
the Y associated with the largest X from the last set is measured. The measurements
on the Y variate of the new set of m units chosen by the above method gives a RSS as
suggested by Stokes (1977). Let X(j:m)j be the measured observation on the variable X

from the chosen unit from the jth set, then Y[j:m]j denotes to the via measurement based
on Y , the study variable on this unit and hence Y[j:m]j , for j = 1, 2, · · · ,m are the RSS

units. Here, Y[j:m]j is the concomitant of the jth order statistic OS obtained via the jth
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sample. Takahasi and Wakimoto (1968) offered that for the degenerate distribution the
efficiency (Eff) of the RSS with respect to the SRS is

1 ≤ Eff
(
X̄RSS , X̄SRS

)
=

Var
(
X̄SRS

)
Var

(
X̄RSS

) ≤ m+ 1

2
,

where

X̄RSS =
1

m

m∑
i=1

Xi(i:m)

and

Var
(
X̄RSS

)
=

σ2

m
− 1

m2

m∑
i=1

(
µ(i:m) − µ

)2
.

The ith order statistics, has the cdf and pdf, respectively, defined by

F(i:m)(x) =

(
m

i

) F (x)∫
0

τ i−1(1− τ)m−idτ

and

f(i:m)(x) =

(
m

i

)
[1− F (x)]m−if(x)[F (x)]i−1.

Irshad et al. (2019) discussed the problem of estimating the parameter of FGM bi-
variate Lindley distribution (FGMBLD) by the RSS.
Morgenstern (1956) suggested a family of new bivariate distribution functions F (x, y),

its representation is

F (x, y) = {1 + θ[1− F (x)][1− F (y)]}F (x)F (y), (1)

where the dependence parameter θ is constrained to be in the closed interval [−1, 1].
The family of bivariate distributions with distribution function F (x, y) as given in (1) is
also called in the literature as FGM family of bivariate distributions.
Johnson and Kotz (1977) introduced another generalization of family, so-called ex-

tended FGM (EFGM) family, with dependence parameters ρ and θ. The EFGM distri-
bution has a bivariate cdf is

H(x, y) = {1 + θF (y)F (x) + ρF (x)F (y)F (y)F (x)}F (x)F (y),

|θ| ≤ 1,−θ − 1 ≤ ρ ≤ 1
2 [3− θ +

(
9− 6θ − 3θ2

)1/2], (2)

where F = 1− F.
The corresponding bivariate pdf is given by

h(x, y) = f(x)f(y) {1 + θ[1− 2F (x)][1− 2F (y)]+

+ρ[2− 3F (x)][2− 3F (y)]F (x)F (y)} , (3)
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where f(x) and f(y) are the pdf’s, respectively of X and Y . Let ρ = 0 in (2), to
get the joint cdf of the model given in (1). The maximum value of the correlation
coefficient between X and Y having the cdf given in (2) is 0.5072, that is greater than
the maximum value corresponding to the distribution related to the FGM family which
is equal to 0.3333.

Hence, the EFGM distribution is commonly used with maximal values of the correla-
tion coefficient between the component rvs related to higher dimension parameter space.
Due to the flexibility of EFGM distribution compared to the FGM distribution, in this
paper we consider an important member of EFGM family, which is known as EFGM
bivariate Lindley distribution (EFGMBLD).

The distribution theory of COS obtained from the EFGMBLD is modified and dis-
cussed in Section 2.1. In Section 3, we provide an unbiased estimator of the parameter
of the study variate contained in the EFGMBLD via Stoke’s RSS. The BLUE of this
parameter based on the observations of Stoke’s RSS are derived and given in Section
4. Also, the efficiency values of the BLUE with respect to the unbiased estimator are
presented. Section 5 is devoted for concluding remarks.

2 EFGM bivariate Lindley distribution

An EFGM bivariate distribution with univariate Lindley distribution as marginal are
known as the EFGMBLD. The EFGMBLD has the joint pdf h(x, y) given in (4) by

substituting the pdf’s f(x) = 1
2σ1

(
1 + x

σ1

)
e
− x

σ1 , f(y) = 1
2σ2

(
1 + y

σ2

)
e
− y

σ2 and cdf’s

F (x) = 1−
(
1 + x

2σ1

)
e
− x

σ1 , F (y) = 1−
(
1 + y

2σ2

)
e
− y

σ2 of two univariate Lindley distri-

butions in (3) as

h(x, y) =
0.5

σ1

(
1 +

x

σ1

)
e
− x

σ1
0.5

σ2

(
1 +

y

σ2

)
e
− y

σ2 {1+

θ

[
2

(
1 +

0.5x

σ1

)
e
− x

σ1 − 1

] [
2

(
1 +

0.5y

σ2

)
e
− y

σ2 − 1

]
+

ρ

[
3

(
1 +

x

2σ1

)
e
− x

σ1 − 1

] [
3

(
1 +

0.5y

σ2

)
e
− y

σ2 − 1

]
×
[
1−

(
1 +

0.5x

σ1

)
e
− x

σ1

] [
1−

(
1 +

y

2σ2

)
e
− y

σ2

]}
,

(4)

where x, y > 0;σ1, σ2 > 0; |θ| ≤ 1;−θ−1 ≤ ρ ≤ 1
2 [3−θ+(9−6θ−3θ2)

1
2 ] and is zero, elsewhere.
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The matching cdf is

H(x, y) =

[
1−

(
1 +

0.5x

σ1

)
e
− x

σ1

] [
1−

(
1 +

0.5y

σ2

)
e
− y

σ2

]
{1 + θ

×
[
1 +

0.5x

σ1

]
e
− x

σ1

[
1 +

0.5y

σ2

]
e
− y

σ2

+ρ

[
1−

(
1 +

0.5x

σ1

)
e
− x

σ1

] [
1−

(
1 +

0.5y

σ2

)
e
− y

σ2

]
×
[(

1 +
0.5x

σ1

)
e
− x

σ1

(
1 +

0.5y

σ2

)
e−0.5y

]}
. (5)

For ρ = 0, the EFGMBLD leads to the FGMBLD (see, Maya et al. , 2018 and Irshad et
al., 2019).

Clearly,

E(X) = 1.5σ1, V ar(X) =
7

9
σ2
1,

E(Y ) = 1.5σ2, V ar(Y ) =
7

9
σ2
2.

If we make the transformation,

W =
X

σ1
and Z =

Y

σ2
, (6)

the standard EFGMBLD has the joint pdf as

h∗(w, z) = 0.25e−w−z(1 + z)(1 + w) {1+
θ
[
2e−w (1 + 0.5w)− 1

] [
2e−z (1 + 0.5z)− 1

]
+

ρ
[
3e−w (1 + 0.5w)− 1

] [
3e−z (1 + 0.5z)− 1

]
×
[
1− e−w (1 + 0.5w)

] [
1− e−z (1 + 0.5z)

]}
.

(7)

It is clear that the variablesW and Z have the standard univariate Lindley distribution
as a marginal functions with pdf’s are given by, respectively:

fW (w) =

{
0.5 (1 + w) e−w, if w > 0,

0, otherwise.

and

fZ(z) =

{
0.5 (1 + z) e−z, if z > 0.

0, otherwise.
(8)
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2.1 Distribution theory of COS from EFGMBLD

The general theory of COS arising from the EFGM family are derived by Philip (2011).
This section introduces the distribution theory of COS obtained from the EFGMBLD
given in (4).
Let (Xi, Yi) and (Wi, Zi), be random samples of size m each arising from the EFGMBLD
and standard EFGMBLD with pdfs given by (4) and (7), respectively. Let Z[j:m] denotes

the concomitant to the jth order statistic Wj:m arising from (7). Then, the joint pdf
h∗[j,s:m](z1, z2) of Z[j:m] and Z[s:m] and the pdf h∗[j:m](z) of Z[j:m] and are given by (see

Philip (2011).
For 1 ≤ j ≤ m,

h∗[j:m](z) = hZ(z)

{
1 + θ

(m− 2j + 1)

2(m+ 1)
[h1:2(z)− h2:2(z)] +

+ρ
(2m− 3j + 1)j

3(m+ 1)(m+ 2)
[h2:3(z)− h3:3(z)]

}
. (9)

For 1 ≤ j < s ≤ m,

h∗
[j,s:m](z1, z2) = hZ(z1)hZ(z2) + θ

(m− 2j + 1)

2(m+ 1)
[h1:2(z1)− h2:2(z1)]hZ(z2)

+ θ
(m− 2s+ 1)

2(m+ 1)
[h1:2(z2)− h2:2(z2)]hZ(z1)

+ ρ
(2m− 3j + 1)j

3(m+ 1)(m+ 2)
[h2:3(z1)− h3:3(z1)]hZ(z2)

+ ρ
(2m− 3s+ 1)s

3(m+ 1)(m+ 2)
[h2:3(z2)− h3:3(z2)]hZ(z1)

+
θ2

4

{
m− 2s+ 1

m+ 1
− 2j(m− 2s)

(m+ 1)(m+ 2)

}
× [h1:2(z1)− h2:2(z1)] [h1:2(z2)− h2:2(z2)]

+
θρ

6

{
− 2j

m+ 1
+

[3j(j + 1) + 4j(m− s+ 1)]

(m+ 1)(m+ 2)
− 6j(j + 1)(m− s+ 1)

(m+ 1)(m+ 2)(m+ 3)

}
× [h2:3(z1)− h3:3(z1)] [h1:2(z2)− h2:2(z2)]

+
θρ

6

{
− s

m+ 1
+

[2j(s+ 1) + 3s(m− s+ 1)]

(m+ 1)(m+ 2)
− 6j(s+ 1)(m− s+ 1)

(m+ 1)(m+ 2)(m+ 3)

}
× [h1:2(z1)− h2:2(z1)] [h2:3(z2)− h3:3(z2)]

+
ρ2

9

{
− 2j(s+ 1)

(m+ 1)(m+ 2)
+

[3j(j + 1)(s+ 2) + 6j(s+ 1)(m− s+ 1)]

(m+ 1)(m+ 2)(m+ 3)

− 9j(j + 1)(s+ 2)(m− s+ 1)

(m+ 1)(m+ 2)(m+ 3)(m+ 4)

}
× [h2:3(z1)− h3:3(z1)] [h2:3(z2)− h3:3(z2)] ,

(10)

where h1:2(.), h2:2(.), h2:3(.) and h3:3(.) in (9) and (10) are the pdf’s of OSW1:2,W2:2,W2:3 andW3:3,
respectively. Computing the values h1:2(.), h2:2(.), h2:3(.) and h3:3(.) and substituting
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these values in equations (9) and (10), we obtain h∗[j:m](z) and h∗[j,s:m](z1, z2) as

h∗[j:m](z) = 0.5(1 + z)e−z + θ
(m− 2j + 1)

2(m+ 1)
(1 + z)e−z

[
2 (1 + 0.5z) e−z − 1

]
+ ρ

(2m− 3j + 1)j

2(m+ 1)(m+ 2)
(1 + z)e−z

[
1− (1 + 0.5z) e−z

] [
3 (1 + 0.5z) e−z − 1

]
,

where z > 0; |θ| ≤ 1;−θ − 1 ≤ ρ ≤ 0.5[3− θ + (9− 6θ − 3θ2)0.5].

(11)

and

h∗
[j,s:m](z1, z2) = 0.5(1 + z1)e

−z10.5(1 + z2)e
−z2

+ θ
(m− 2j + 1)

2(m+ 1)
(1 + z1)e

−z1
[
2 (1 + 0.5z1) e

−z1 − 1
]
0.5(1 + z2)e

−z2

+ θ
(m− 2s+ 1)

2(m+ 1)
(1 + z2)e

−z2
[
2 (1 + 0.5z2) e

−z2 − 1
]
0.5(1 + z1)e

−z1

+ ρ
(2m− 3j + 1)j

4(m+ 1)(m+ 2)
(1 + z1)(1 + z2)e

−z1−z2

×
[
1− (1 + 0.5z1) e

−z1
] [
3 (1 + 0.5z1) e

−z1 − 1
]

+ ρ
(2m− 3s+ 1)s

4(m+ 1)(m+ 2)
(1 + z1)(1 + z2)e

−z1−z2

×
[
1− (1 + 0.5z2) e

−z2
] [
3 (1 + 0.5z2) e

−z2 − 1
]

+
θ2

4

{
m− 2s+ 1

m+ 1
− 2j(m− 2s)

(m+ 2)(m+ 1)

}
× (1 + z1)(1 + z2)e

−z1−z2
[
2 (1 + 0.5z1) e

−z1 − 1
] [
2 (1 + 0.5z2) e

−z2 − 1
]

+
θρ

4

{
− 2j

m+ 1
+

[3j(j + 1) + 4j(m− s+ 1)]

(m+ 1)(m+ 2)
− 6j(j + 1)(m− s+ 1)

(m+ 3)(m+ 2)(m+ 1)

}
× (1 + z1)(1 + z2)e

−z1−z2
[
1− (1 + 0.5z1) e

−z1
] [
3 (1 + 0.5z1) e

−z1 − 1
]

×
[
2 (1 + 0.5z2) e

−z2 − 1
]

+
θρ

4

{
− s

m+ 1
+

[2j(s+ 1) + 3s(m− s+ 1)]

(m+ 2)(m+ 1)
− 6j(s+ 1)(m− s+ 1)

(m+ 3)(m+ 2)(m+ 1)

}
× (1 + z1)(1 + z2)e

−z1−z2
[
2
(
1 +

z1
2

)
e−z1 − 1

]
×
[
1− (1 + 0.5z2) e

−z2
] [
3 (1 + 0.5z2) e

−z2 − 1
]

+
ρ2

9

{
− 2j(s+ 1)

(m+ 1)(m+ 2)
+

[3j(j + 1)(s+ 2) + 6j(s+ 1)(m− s+ 1)]

(m+ 3)(m+ 2)(m+ 1)

− 9j(j + 1)(s+ 2)(m− s+ 1)

(m+ 2)(m+ 1)(m+ 3)(m+ 4)

}
× 9

4
(1 + z1)(1 + z2)e

−z1−z2
[
1− (1 + 0.5z1) e

−z1
] [

3 (1 + 0.5z1) e
−z1 − 1

]
×
[
1− (1 + 0.5z2) e

−z2
] [
3 (1 + 0.5z2) e

−z2 − 1
]
,

w, z > 0.

(12)

Some basic properties of the standard univariate Lindley distribution given in (8), are
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given below.
The kth moment of the standard univariate Lindley given in (8)is obtained as

µ(k) = E(Zk) = 1
2

(∣∣k + 1 +
∣∣k + 2

)
. (13)

The kth moment of the jth order statistics of Z when m = 2 is given by

E(Z
k

j:2) =
2k+1

(2− j)!(j − 1)!
∞∫
0

tk(1 + 2t)
(
1−(t+1)e−2t

t+1

)j (t+ 1)2e−2t(3−j)

1− (t+ 1)e−2t
dt.

For k = 1, 2 and j = 1, 2 we have

E(Z1:2) = z1:2 =
13
16 ,

E(Z2:2) = z2:2 =
35
16 ,

E(Z
2

1:2) = z
(2)
1:2 = 19

16 ,

and

E(Z
2

2:2) = z
(2)
2:2 = 109

16 .

The kth moment of the jth order statistics of Z when m = 3 is given by,

E(Z
k

j:3) =
3
(
2k+1

)
(3− j)!(j − 1)!
∞∫
0

tk(1 + 2t)
(
1−(t+1)e−2t

t+1

)j (t+ 1)3e−2t(4−j)

1− (t+ 1)e−2t
dt.

For k = 1, 2 and j = 2, 3 we have

E(Z2:3) = z2:3 =
565
432 ,

E(Z3:3) = z3:3 =
1135
432 ,

E(Z
2

2:3) = z
(2)
2:3 = 3113

1296 ,

and

E(Z
2

3:3) = z
(2)
3:3 = 11687

1296 .

Then, based on (11), we have

E(Z[j:m]) =z[j:m]

=
3

2
− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
95

216

)
,

(14)
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E(Z2
[j:m]) =z

(2)
[j:m]

=4− θ

[
m− 2j + 1

m+ 1

](
45

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
1429

648

)

and by (12), we compute the product moment of Z[j:m] and Z[s:m] as,
for 1 ≤ j ≤ s ≤ m,

E
(
Z[j:m]Z[s:m]

)
= zj,s:m

=
9

4
− θ

[
m− (j + s) + 1

m+ 1

]
33

16
− ρ

[
(2m+ 1)(j + s)− 3(j2 + s2)

3(m+ 1)(m+ 2)

]
95

48

+
θ2

4

[
m− 2s+ 1

m+ 1
− 2j(m− 2s)

(m+ 2)(m+ 1)

](
11

8

)2

+
θρ

6

[
−(2j + s)

m+ 1
+

(3j + 2s+ 5)j + (4j + 3s)(m− s+ 1)

(m+ 2)(m+ 1)

]
1045

576

− θρ

6

[
6j(j + s+ 2)(m− s+ 1)

(m+ 1)(m+ 2)(m+ 3)

]
1045

576

+
ρ2

9

[
−2j(s+ 1)

(m+ 2)(m+ 1)
+

3j(j + 1)(s+ 2) + 6j(s+ 1)(m− s+ 1)

(m+ 3)(m+ 2)(m+ 1)

− 9j(j + 1)(s+ 2)(m− s+ 1)

(m+ 2)(m+ 1)(m+ 3)(m+ 4)

](
95

72

)2

.

For 1 ≤ j ≤ m, the variance of Z[j:m], is obtained as

V ar(Z[j:m]) =4− θ

[
m− 2j + 1

m+ 1

](
45

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
1429

648

)
−
{
3

2
− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
95

216

)}2

.

(15)
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For 1 ≤ j ≤ s ≤ m, the covariance between Z[j:m] and Z[s:m] is obtained as ,

Cov
(
Z[j:m], Z[s:m]

)
=

=
9

4
− θ

[
m− (j + s) + 1

m+ 1

]
33

16
− ρ

[
(2m+ 1)(j + s)− 3(j2 + s2)

3(m+ 1)(m+ 2)

]
95

48

+
θ2

4

[
m− 2s+ 1

m+ 1
− 2j(m− 2s)

(m+ 2)(m+ 1)

](
11

8

)2

+
θρ

6

[
−(2j + s)

m+ 1
+

(3j + 2s+ 5)j + (4j + 3s)(m− s+ 1)

(m+ 1)(m+ 2)

]
1045

576

− θρ

6

[
6j(j + s+ 2)(m− s+ 1)

(m+ 1)(m+ 2)(m+ 3)

]
1045

576

+
ρ2

9

[
−2j(s+ 1)

(m+ 2)(m+ 1)
+

3j(j + 1)(s+ 2) + 6j(s+ 1)(m− s+ 1)

(m+ 3)(m+ 2)(m+ 1)

− 9j(j + 1)(s+ 2)(m− s+ 1)

(m+ 2)(m+ 1)(m+ 3)(m+ 4)

](
95

72

)2

.

−
{
1.5− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
95

216

)}
×
{
1.5− θ

[
m− 2s+ 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3s+ 1)j

(m+ 2)(m+ 1)

](
95

216

)}
.

(16)

If we define the constants φj:m, ηj,j:m and ηj,s:m by the terms on the right side of
equations (14), (15) and (16), then Equations (14)-(16) can be

E(Z[j:m]) = φj:m, V ar(Z[j:m]) = ηj,j:m, 1 ≤ j ≤ m

and
Cov(Z[j:m], Z[s:m]) = ηj,s:m, 1 ≤ j < s ≤ m,

respectively. From the substitution given in equation (6), we have

Xi = σ1Wi and Yi = σ2Zi, for i = 1, 2, · · · ,m.

Thus, to the jth order statistics Y[j:m], j = 1, 2, · · · ,m follows the EFGMBLD, the
means and variances of the COS are

E(Y[j:m]) =σ2E(Z[j:m])

= σ2φj:m

(17)

and

V ar(Y[j:m]) =σ2
2V ar(Z[j:m])

= σ2
2ηj,j:m.

(18)

The COS Y[j:m] and Y[s:m], for 1 ≤ j < s ≤ m, have a covariance as

Cov(Y[j:m], Y[s:m]) =σ2
2Cov(Z[j:m], Z[s:m])

= σ2
2ηj,s:m.

(19)

It is clear that the constants included in φj:m, ηj,j:m and ηj,s:m are known for known
values of θ and ρ.
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3 Unbiased estimator of the parameter σ2 using RSS

The observations based on COS are correlated, which leads one to evaluate the variance
and covariance of COS to use them for inference problems. However, in case of Stoke’s
RSS scheme, the number of units to be selected is definite and there exists no corre-
lation between one observation to another as they are drawn from different samples so
that handling the observations in RSS for inferential problem will be very easy. Also,
estimation using Stoke’s RSS can be effectively applied when it is difficult to quantified
the study variate Y but the auxiliary variable is correlated with X which can be quanti-
fied easily. Hence, the problem of estimating the parameter of the study variable of the
suggested distribution is considered here using the observations based on Stoke’s RSS
scheme.

Let (X,Y ) be a bivariate rv which follows the EFGMBLD with pdf given in (4).
Assume that m sets each of size m are drawn from the distribution defined in (4).
By ranking the X measured observations from the jth set, considering X(j:m)j as the

jth in the set, then Y[j:m]j , where j = 1, 2, · · · ,m is the actual measurement to the Y
characteristic of the observation whose X value is X(j:m)j .

It is of interest to note here that Y[j:m]j has the same distribution of the concomitant

of the jth OS of a sample of size m selected from the distribution given in (4).

Using the means and variances of COS obtained from the EFGMBLD, then Y[j:m]j for
1 ≤ j ≤ m has the means and variances given by

E(Y[j:m]j) = σ2

{
1.5− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
95

216

)}
(20)

and

V ar(Y[j:m]j) =σ2
2

{
4− θ

[
m− 2j + 1

m+ 1

](
45

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
1429

648

)
−
{
1.5− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 1)(m+ 2)

](
95

216

)}2
}
.

(21)

Since the two measurements Y[j:m]j and Y[s:m]s (j ̸= s) of Y are based on two different
groups, then we obtain

Cov(Y[j:m]j , Y[s:m]s) = 0, j ̸= s. (22)

The next theorem proposes an unbiased estimator of σ2 contained in (4).

Suppose (X,Y ) has a EFGMBLD. Let Y[j:m]j for , j = 1, 2, ...,m be the RSS units
based on Y and the ranking is on X. Then, the estimator

σ∗
2 =

2

3m

m∑
j=1

Y[j:m]j (23)
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is an unbiased estimator of σ2 and with variance

V ar (σ∗
2) =

σ2
2

m

{
16

9
− 4

9m

m∑
j=1

{
3

2
− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
95

216

)}2
 .

(24)

Proof. Taking expectations on equation (23), we get

E(σ∗
2) =

2

3m

m∑
j=1

E
(
Y[j:m]j

)
(25)

Substituting (20) in (25), we get

E(σ∗
2) =

2σ2
3m

m∑
j=1

{
3

2
− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
95

216

)}
.

Since
m∑
j=1

(m− 2j + 1) = 0 and
m∑
j=1

(2m− 3j + 1)j = 0, (26)

we get

E(σ∗
2) = σ2.

Hence, the variance of σ∗
2 is

V ar(σ∗
2) =

4

9m2

m∑
j=1

V ar(Y[j:m]j). (27)

Applying (21) and (26) in (27) and simplifying, we get

V ar (σ∗
2) =

σ2
2

m

{
16

9
− 4

9m

m∑
j=1

{
3

2
− θ

[
m− 2j + 1

m+ 1

](
11

16

)
− ρ

[
(2m− 3j + 1)j

(m+ 2)(m+ 1)

](
95

216

)}2
 .

Thus, the theorem is proved.

4 BLUE of the parameter σ2 of EFGMBLD using RSS

Here, a good estimator σ̃2 of σ2 is developed by finding the BLUE assuming that the
parameters θ and ρ are known.
Assume thatm sets of sizem each are follow the EFGMBLD andY[m] = (Y[1:m]1, Y[2:m]2, · · · , Y[m:m])

′
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is the column vector of COS taken from (4). It is obvious that Y[j:m]j has the same distri-

bution as that of Y[j:m], the concomitant of the jth OS. Hence, with reference to Equation
(17), the mean vector of Y[m] is

E(Y[m]) = σ2φ, (28)

where φ=(φ1:m, φ2:m, · · · , φm:m)′. From equations (18) and (19), the dispersion matrix
of Y[m] can be given as

D[Y[m]] = σ2
2H, (29)

where H = diag(η1,1:m, η2,2:m, · · · , ηm,m:m).
For known values of θ and ρ, then based on (28) and (29) a generalized Gauss-Markov

setup can be defined and then the BLUE of σ2 is given by

σ̃2 = (φ′H−1φ)−1φ′H−1Y[m]

with variance given by

V ar(σ̃2) =
σ2
2

φ′H−1φ
.

On simplifying, we get

σ̃2 =

m∑
j=1

φj:m

ηj,j:m

m∑
j=1

φ2
j:m

ηj,j:m

Y[j:m]j (30)

and

V ar(σ̃2) =
σ2
2

m∑
j=1

φ2
j:m

ηj,j:m

. (31)

From (30), we have σ̃2 is a linear functions of the ranked set sample observations Y[j:m]j ,

for j = 1, 2, · · · ,m and hence σ̃2 can be formed as σ̃2 =
m∑
j=1

ajY[j:m]j , where

aj =

φj:m

ηj,j:m
m∑
j=1

φ2
j:m

ηj,j:m

.

Next, we have evaluated the efficiency e(σ̃2/σ
∗
2) =

V ar(σ∗
2)

V ar(σ̃2)
with m = 2, 3, ..., 10;

θ = −1,−0.75,−0.50, 0.25; ρ = 0.5, 1. The results are given in Table 1. Based on

Table 1, it is observed that the numerical values of e(σ̃2/σ
∗
2) =

V ar(σ∗
2)

V ar(σ̃2)
are greater than

unity for all values of θ, ρ and m and increases with increasing the sample size m. Also, it
is observed that for any negative value of θ, with fixed value of ρ, the e(σ̃2/σ

∗
2) increases

as m increases.
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Table 1: The e(σ̃2/σ
∗
2) for some selected ρ, m, and θ

m ρ θ

-1 -0.75 -0.50 0.25

2 1.00066 1.00062 1.00052 1.00026

3 1.00124 1.00102 1.00082 1.00031

4 1.00171 1.00126 1.00109 1.00036

5 1.00202 1.00145 1.00123 1.00045

6 0.5 1.00219 1.00166 1.00132 1.00039

7 1.00237 1.00176 1.00145 1.00046

8 1.00261 1.00190 1.00156 1.00052

9 1.00269 1.00190 1.00164 1.00047

10 1.00286 1.00198 1.00169 1.00052

2 1.00199 1.00184 1.00165 1.00120

3 1.00348 1.00312 1.00271 1.00153

4 1.00451 1.00402 1.00347 1.00168

5 1.00533 1.00464 1.00395 1.00177

6 1.0 1.00593 1.00519 1.00436 1.00190

7 1.00637 1.00560 1.00463 1.00194

8 1.00914 1.00589 1.00488 1.00201

9 1.00726 1.00615 1.00503 1.00212

10 1.00740 1.00632 1.00533 1.00232

5 Concluding remarks

The distribution theory of COS selected from EFGMBLD is developed. This develop-
ment further provides necessary statistical foundation to formulate RSS strategies for a
population random variable following a EFGMBLD. Finally, according to Stoke’s RSS
scheme, we have derived some estimators of the parameter related with the variable of
primary interest. As a future work, the authors recommend to estimate the EFGM-
BLD parameters using other variations of RSS, see Al-Omari (2011), Zamanzade and
Al-Omari (2016), and Haq et al. (2015).
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