Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index
e-ISSN: 2070-5948

DOLI: 10.1285/i20705948v14n2p359

Variable scale Kernel density estimation for
simple linear degradation model
By Al-Momani, Al-Haj Ebrahem, Eidous

Published: 20 November 2021

This work is copyrighted by Universita del Salento, and is licensed un-
der a Creative Commons Attribuzione - Non commerciale - Non opere derivate
3.0 Italia License.

For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/




Electronic Journal of Applied Statistical Analysis
Vol. 14, Issue 02, November 2021, 359-372
DOLI: 10.1285/i20705948v14n2p359

Variable scale Kernel density estimation
for simple linear degradation model

Noor Al-Momani, Mohammed Al-Haj Ebrahem} and Omar Eidous

Department of Statistics, Yarmouk University
Irbid, Jordan

Published: 20 November 2021

In this study, we proposed the variable scale kernel estimator for analyzing
the degradation data. The properties of the proposed method are investi-
gated and compared with the classical method such as; maximum likelihood
and ordinary least square methods via simulation technique. The criteria
bias and MSE are used for comparison. Simulation results showed that the
performance of the variable scale kernel estimator is acceptable as a gen-
eral estimator. It is nearly the best estimator when the assumption of the
distribution is invalid. Application to real data set is also given.

keywords: Bandwidth selection; Classical kernel; Degradation; Failure time;
Maximum likelihood; Ordinary least square; Variable scale kernel estimation.

1 Introduction

The reliability of the product will depend on the reliability of its units. The reliability of
a unit is defined as the probability that a unit will perform its intended function until a
specified point of time under encountered used conditions (Meeker and Escobar, 2014).
Lu and Meeker (1993) proposed the two-stage method to estimate the nonlinear mixed
effect degradation model parameters, hence to estimate the time-to-failure distribution.
Meeker et al. (1998) used the maximum likelihood approach to estimate the nonlinear
mixed effect degradation. Robinson and Crowder (2000) described a Bayesian approach
to estimate the unknown parameters of time-to-failure distribution of nonlinear degrada-
tion model. Alodat and Al-Haj Ebrahem (2009) used the maximum likelihood method
to estimate the parameters of time-to-failure distribution of a linear degradation model
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based on the ranked set sampling technique. Al-Haj Ebrahem et al. (2009a) proposed the
Bayesian approach based on the idea of grouped and non-grouped data to estimate the
parameters of time-to-failure distribution and its percentile for a simple linear degrada-
tion model. Al-Haj Ebrahem et al. (2009b) introduced the nonparametric classical kernel
density method to estimate the time-to-failure distribution and its percentiles for sim-
ple linear degradation model. Naji Ba Dakhn et al. (2017) introduced semi-parametric
method to estimate the time-to-failure distribution and its percentiles for simple linear
degradation model. Eidous et al. (2017) estimated the time-to-failure distribution and
its percentile using double kernel method.

In this paper, estimating the random effect distribution hence estimating the time-to-
failure distribution and its percentiles by using an adaptation nonparametric method of
the classical kernel estimator is considered, namely, the variable scale kernel estimator.
The new estimator beside the classical kernel estimator are introduced and described in
this paper. The performance of the proposed method will be compared with the existing
parametric methods (OLS, MLE).

2 Time-To-Failure Distribution and its Percentiles

Degradation analysis is a useful tool when it is not possible to observe a significant
number of failures (Lu and Meeker, 1993). To perform the analysis, we assume that
the failure time is occurred at time t, if the actual degradation path, D(t) crosses the
critical degradation level Dy. In general, the time-to-failure distribution of ¢,Fr(t) in
degradation models cannot posses in a closed form and therefore numerical methods are
used to obtained it. In this paper, we consider the simple linear degradation model:

vij = Bitj +ej, i=1,....n; j=1,...,m (1)

where,y;; is the observed degradation measurement of unit 7 at time t;, D;; is the actual
degradation path of the unit 7 at time t;, 3, is the i-th a random effect parameter assumed
to be distributed as g(3), where g (3) may be lognormal(u,o?), hal fnormal(c?); n is
the number of the tested units, m is the total number of inspections on the i-th unit,
€;j is the measurement error of unit 7 at time ¢;, which is assumed to have zero mean
and constant variance, €;; and 3; are assumed to be independent and ¢; is the time of

4" measurement.

The failure time T is obtained by solving Dy = D (t), then
Dy = BT.

The distribution function of the time-to-failure is

mw=pr<n =p(Zet)=p(s22) <16 (). @

whereGpg (.) is the distribution function of the random effect parameter.
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To derive t,, we need to solve p = Fr (t,) with respect to t,. Therefore,
D
p=1-— Gﬁ ( f)
tp

3 Estimating the Time-To-Failure Distribution using
kernel methods

Let f1, B2, ..., Bn be a random sample from unknown probability density function gg(b),
we will describe in this section how we can use the two kernel methods to estimate the
time-to-failure distribution and its percentiles, then compare them by the most impor-
tant parametric methods; Ordinary Least Squares (OLS) method and the Maximum
Likelihood (ML) method by using simulation technique.

3.1 Classical kernel Method

The classical kernel density estimator of gg(b) is,

gﬁ classzcal b h TLh Z < ) (3)

where K (u) is the kernel function and h is the smoothing parameter. In this paper, we
assume that the kernel function is Gaussian kernel, which is given by

K (u) = ! e /2

then,

1
5 classzcal b h h Z \/761']? |:_2h2(b - /82)2:| (4)

Silverman (1986) gave the following optimal rule for h, as follows,

Ring = 1.587 on~1/3 (5)

n 2
where o = 1/ @ is the ML estimator for o when the distribution of the random
effect data is assumed to be N(0,0?).

Thus, the time-to-failure distribution, Frr(t) can be estimated based on the estimator (4).
By using formula (2) we have,

by

t

FT,classical (t) =1- / gb’,classical (b, h)db

—0o0
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:1—/:%2@@@[ 2h2(b ﬁz)]db_l—Zp<B<lzf>.

i=1

Where B is a random variable distributed as N(8;, h%). Let U; = B%&' then B; has
standard normal distribution, i.e U; ~ N(0, 1). Therefore,

1" Dr g
. i
FT,classical (t) =1- ; i:E 1 d ( t h >

Where ®(u) is the standard normal cumulative distribution function. To estimate the
100pth percentile ¢, we need to solve Fr_qjgssical (t},fclassiml) = p with respect to t},fclassiml
. This can be achieved by solving the following equation numerically with respect to

tp,classical

- BZ
=1—== Z P tpclasszcal . (6)

3.2 Variable Scale Kernel Method

While the smoothing parameter h in the classical kernel estimator (formula 3) is taken
to be constant for a random sample (1, 39,...,[5,, the variable scale estimator for
gs(b) allows h to be vary for each value of X; (i=1,2,...,n). For a random sample
Xi1,Xo,...,X,, the variable scale kernel estimator for gg(b)is: (Abramson, 1982)

1 b— 05
(b, h)
96 VS h)\ < )

By using the Gaussian kernel function, we obtain

@

Therefore, from (2) we have

Frovs®=1- [ " govsbh)a
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where B is a random variable with distribution N (8;, (hA;)?). Now, let U; = Bh;/\?i, then
U; has standard normal distribution, i.e U; ~ N(0,1). Thus,

R — Bi
Fr_ygs(t _1_72@ “’L

To estimate the 100pt"percentile tp, we need to solve Fr_ys (fp_vg) = p with respect
to fp_vs numerically to obtain the estimator value fp_vg . That is, solve the following
equation numerically with respect to fp_vg

o b

—1—f2<1> 7@7 vs (7)

w\»—t

where )\; is computed by using the formula: A\; = (exp( T ) , where

f(z;) is the classical kernel estimator given by f (x;) = L Zl 1K (%;% ) By using
2

(zi—z;)

the Gaussian Kernel function, we obtain f (z;) = LS i1 fexp ( S ) .

3.3 Estimating the Time-To-Failure Distribution and its Percentiles
by Ordinary Least Square (OLS) Method

Suppose that 1, f2,. .., By is a random sample from a distribution with pdf gg(b, ) and
distribution function Gg(b, ). The OLS estimator Jiors of p is obtained by minimizing

ZZ Yij — yz] 2

=1 j=1

n m

=3 (yij — t;EB:)’

i=1 j=1

with respect to u. Therefore, the OLS estimator for time-to-failure distribution is

Dy
Fors(t)=1-Gjg (5 OfLS,MOLs> ,
p-

and the OLS estimator tApfo Ls of t, is obtained by solving

Dy
pzl_Gﬁ<A ! 7MOLS>7
tp.oLs
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with respect to fpfo 5. In the rest of this subsection, we derive the OLS estimator for
t, when the distribution of the random effect 3 is assumed to be hal fnormal(c?) or
loglosistic(a, 2).

Casel: if B ~ halfnormal(c?) The OLS estimator of o2 is the value of 2 that

minimizes Q (o%), where Q (¢%) = >, > (yij — E(yw)) Since E (y;;) = \/ 20%t;,
hence )
s ™ <Z?=1 >ty l/z'jtj)

ooLs — ™ 3
2 n Zj:l tj

D ~92 . ~
ﬁ, O'OLS> with respect to t,—oLs

To obtain fp_Onge need to solve p = 1—@5_0LS ( -
o

numerically. That is, we want to solve

D¢/tp_oLs 1 2 b2
pzl—/ ’ \/7ewp[ ]db (8)
0 ooLs QUOLS

with respect to fp_OLS.

Case I1 : if 8 ~ loglogistic(a,2) By considering the same procedures in case I, we can
derive the OLS estimator of v by minimizing @ (o) = > 21" 377" (vij — E(yij))? , whereE (y;;) =

W Therefore

aorLs =

2sin (7r/2) (E?zl > yz‘ﬂj)

nm E}”ﬂ t;?

Then to obtain fp,OLS we need to solve p = 1 — Gg ( D ,&OLS) with respect to
P

tp—oLs
tp—orLs , which gives,

Df/i —OLS 2b 1
p p— 1 —_— / ! Zdb = 1 — — — —
- aprs |1+ (b/doLs) } + (Dy/doLstyors)

Therefore, the OLS estimator of ¢, is,

tp—oLs = ADf <p> 9)

aors \1—p

N

3.4 Estimating the Time-To-Failure Distribution and its Percentiles
by Maximum Likelihood (ML) Method

Consider the simple linear degradation model (1) and recall that our main aim is to
estimate the time-to-failure distribution and then to estimate ¢,. we will find the MLE
of t, for the following cases:
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Case L: if B ~ hal fnormal(c?), then the time-to-failure distribution by using formula

(2) is given by:
F =1 i \/5 i db 1

So, by using Leibnit’s Rule and by differentiate both sides of (10) with respect to ¢, then
we obtain the probability density function of T which is,

Dy [2 D3
fT(t,UQ)ZO_TJ; eavp[ ! ]

T 21242
Now, let t1,ts,...,t, be a random sample from fp (t, 02) then the likelihood function

of 02 is
2\ 2 LS D} &1
L(0%) = DY} = ~INT S
=) (fL3) (-5

Therefore,
n s i D]% "1
InL(0?) = —"ln <—02> +anD; =Y t? — L3
2 2 P 20 Pl
. 2 . . . dinL(s?) _
The ML estimator of o“ is obtained by solving =5~ =0
dh’lL(O’Q) B n1+ 1 DJQc - 1_0
do? 202 (02)2 2 pot t2 e
The ML estimator 53,; pof o?is,
D2 n 1
~2 f
OMLE = —_~ 2

Therefore, the ML estimator fp, MLE of t, is obtained by solving

Dyftp-mre  q 2 b2
p=1 —/ = —exp [—AQ } db (11)
0 OMLE V T 200 1B

with respect to fp_MLE.

Case II: if 8 ~ loglogistic(a,2), then the time-to-failure distribution by using formula
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(2) is given by:

Dy/t 2 1
E%ﬂ_l_/;>cﬂﬁ+(wwﬂf%_l_1+U%M®ﬂ 12

So, the probability density function of T is
D\ ?
()
o\ 2
ey

Let t1,t2,...,t, be a random sample from fr (¢, ) then the likelihood function of ais ,

fT (t,Oé) :%

L(a)= H;nlt?Cy)Qn n (1+1<Df)2)2

Hiil at;

2
n D 2
InL (o) = —2nln(a) — Zln (1 + <tf> ) + constant
at;
i=1

The ML estimator ayspg of « is now obtained by solving the following equation numer-
ically with respect to Ay g,
dinL 2 n ML EDQt2
if® =—="" 44 =0 (13)
. AMLE i=1 <DJ2C + aMLEtZZ>

Now, substitute the value ajrr that obtained from (13) back into (12) to obtain the
ML estimator for time-to-failure distribution. To find the ML estimatorfp_ MLEOE T, we
need to solve the following equation with respect to fp, MLE,

1
1+ (Dy/amrety-mLEe) -

p=1-

which gives the ML estimator of t,,

1
- Dy p \?2
tp— = — 14
e = =2 () (1)

4 Simulation Study and Results

In this section a simulation study is conducted to compare the performances of the classi-
cal kernel, variable scale kernel, OLS and ML estimators of the 100p** percentile of time-
to-failure distribution, ¢,. The performances of the different estimators are studied by
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computing the bias and the MSE of classical estimatorfpdassical , variable scale estimator tApyg,
OLS estimator fpfo s and ML estimator fpr LE-
The smoothing parameter h is then computed by using formula (5), the kernel estima-
tors of ¢, are then computed by solving equations (6) and (7) numerically, this given
fp,dassical and fp_vg for classical kernel, variable scale kernel estimators respectively.
Using equations (8) and (11) to find the OLS estimator fpfo s and ML estimator fpr LE
when 8 ~ hal f normal (5) and equations (9) and (14) when 3 ~ loglogistic(2,5). Note
that Dy =20 and p = {0.5, 0.3 and 0.5}
From tables 1-6 we conclude that:

1. The method of ML is the most efficient method to estimate ¢, when the distribution
of random effect parameter 3 is assumed to be known. The MLE has the smallest
MSE with most accurate.

2. The biases (B) of the classical kernel and variable scale kernel methods are negative
in most cases which indicates that the different kernels method are under estimate
the true value of .

3. The exact t, increases as p increases and also the MSE of #, (for all estimators)
increases as p increases for the same sample size.

4. For the same value of p, the MSE of fp decreases as n (sample size) increases for
all estimators.

Table (1) B and MSE of the different estimaters when the sample is taken from halfnormal(5), n=20

Classical kemel estimator v anablelscale kemel oLs MLE
estmator
P Exact &, Belass MSEclass Bvs MSEvs Bows MSE,,. | Bmle MSEy; -
" 24318 0265 0.1991 0216 0.18522 0.051 0.1935 0.096 0.18636
o 3.8503 0395 0.5443 0224 0.5166 0122 05353 0.151 04411
0 5.9304 0391 125 02025 13432 0.181 11239 0.225 11511

Table (2) B and MSE of the different estimators when the sample is taken from halfnormal(5), n=40

C1a551lca.1 kemel \-’a.rla.blelsca.le kemel OLS MLE
estimator estimator
p Exact ¢,
Belass MSEclas Bvs MSEvs Boss MSEoLs Bmle MSEsz
o1 24318 -0.1834 0.1043 -0.127 0.0547 0.0387 0.0528 0.0416 0.08137
03 38593 -0.2987 02927 -0.102 02578 0.0606 0.2443 0.0651 0.20265
0.5 5.9304 -0.3738 0.7544 -0.1753 0.7746 0.0703 0.5365 0.088% 0.47814
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Table (3) B and MSE of the different estimaters when the sample is taken from halfnormal(5), n=60

Al-Momani, Al-Haj Ebrahem, Fidous

Clasm;al kernel \-a.na.blelscale kemel OLS MLE
estimator estimator
P Exact £,
Bclaa MSEclass Bvs MSEvs Bos MS5Eo,s Bmle M5Bz
o1 24318 -0.145 0.070036 -0.091 0.062117 0.034 0.060242 0.032 0.05224
03 3.8594 -0.237 0.19398 -0.043 0.1703%0 0.045 0.151175 0.059 0.13389%
0.5 5.9304 -0.328 0.5430 -0.137 0.544529 0.049 0.360412 0.091 0.33079%

Table (4) B and MSE of the different estimatoers when the sample is taken from loglogistic(2,5), n=20

Class@a.l kemnel \-a.nablelsca.le kemel OLS MLE
P esumator estumator
Exact £,
Bclass | MSEclass Bvs MSEvs Bows M3Eous Bmle MSErie
o1 1.3333 -0.200 0.18606 -0.139 0.167 0.134 0.17345 0.023 0.085604
03 2.6186 -0.647 0.71297 -0.505 0.57 0.289 0.72891 0.061 033949
0.5 4.00 -0.665 0.97786 -0.512 0.802 0426 1.63325 0.067 0.78178

Table (5) B and MSE of the different estimators when the sample is taken from loglogistic(2,5), n=40

C1a551Fal kemel \-a.nablelscale kemel OLS MLE
esamator estimator
P Exact t,
Bclass MSEclass Bvs MSEvs Bous MSEo.s Bmle M55z
o1 13333 -0.200 0.12624 -0.134 0.10827 0.064 0.09389 0.011 0.03353
0.3 26186 -0.550 0.52425% -0.425 0.37481 0.162 0.37384 0.024 0.16164
0.5 4.00 -0.630 0.66096 -0.44 0.47972 0.244 0.843 0.054 0.3123

Table (6) B and MSE of the different estimators when the sample is taken from loglogistic(2,5), n=60

Class1;a.1 kemel \-a.nablelscale kemel OLS MLE
estimator estimator
P Exact £,
Bclass MSEclass Bvs MSEvs Bous MSEo, 5 Bmle MSEyz.2
01 1.3333 -0.167 0.09662 -0.099 0.0808 0.055 0.07038 0.013 0.02291
03 2.6186 -0.538 04111 -0.359 0.2671 0.123 0.24414 0.024 0.08835
05 4.00 -0.597 0.53747 -0.401 0.3535 0.169 0.59375 0.031 0.2025
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5 Real Data Application

The analysis of the real data for estimating the time-to-failure distribution and its per-
centile by parametric and nonparametric methods is demonstrated in this section. We
will use the Laser data from Meeker and Escobar (2014), Table C.17 page 742. The
analysis of the real data is divided into two subsections. In the first section we will use
the real data to estimate the time-to-failure distribution; Fclassical(t), Fvg(t), Fors (t)
and FMLE(t). In the second subsection we will use the real data to estimate ¢, using
the different estimation methods then make a comparison between these methods.

5.1 Data Description

Meeker and Escobar (2014) presented the percent increase in laser operating current for
GaAs laser test at 80° C, as a real data of degradation. In our analysis we will assume
that the degradation level is Dy = 5. The data contains fifteen units and sixteen times
(fifteen units, each unit of size sixteen), the times ranges from 250-4000 hours with step
equal to 250 hours. Under the case when there is no assumption on the distribution of the
random effect parameter 3, the classical kernel method and variable scale kernel method
are used to obtain Fdassical(t) and Fyg(t). Then under the case of the random effect
parameter [ has a known distribution function (e.g hal fnormal (02) or loglogistic(a, 2),
the OLS and MLE methods are used to estimate the time-to-failure distribution; Fo Ls(t)
and Fy;pp(t). Table (7) presents the estimate of the time-to-failure distribution. For the
propose of comparison, we calculate FT,emp (t) the empirical distribution of the failure
times.

5.2 Estimating the 50" percentile of time-to-failure distribution

The 50" percentile of time-to-failure distribution is also estimated by two cases. First
case we estimate it with no assumption on the random effect parameter by kernel esti-
mator’s; fpfclassiml or tApfscale, then the B and MSE are computed.

Table (8) represents the B and MSE of the estimate of 50" percentiles of time-to-failure
distribution by classical and variable scale kernel methods.

Second case, we assume that the random effect parameter 8 has known distribution,
then we estimate the 50! percentile of time-to-failure distribution by OLS and ML
estimator. Finally, we evaluate the B and MSE. Table (9) represents the B and MSE
of the estimate of 50" percentile of the time-to-failure by OLS and MLE methods.

5.3 Conclusions for Real Data

1. Table (7) shows that the time-to-failure distribution which was estimated by the
classical kernel method and the variable scale kernel method are approximately

correspondence (in real data) and they are closed to the empirical distribution
function rather than the OLS and MLE.
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Table (7) The estimate of time-to-failure distribution

N haifnormai(crz] loglogistic(a, 2)

t; Fomp(t) | Fagssicat®)  Fys(ty) _ . _ . _ . _ .
Fors(t7) | Fape(ti) | Fors(t) | Fape(t)

6.6667 0.06667 | 0.250306 0.247999 0.0682 0.00716 0.0682 0.00716
7.1479 0.13333 | 0.297225 0.294535 0.0889 0.01207 0.0889 0.01207
7.5732 0.20000 | 0.336397 | 0.333469 0.1084 0.01783 0.1084 0.01783
80192 026667 | 0374722 0.371693 0.1295 0.02326 0.1295 0.02326
89730 0.33333 | 0.446989 0.444029 0.1754 0.04354 0.1734 0.04554
04884 0.40000 | 0480798 0477973 0.2000 0.05862 0.2000 0.05862
10.2093 0.46667 0.52257 0.519991 0.2337 0.07884 0.2337 0.07884
10.5000 0.53333 | 0.5377e7 0.335297 0.2469 0.08748 0.2469 0.08748
10.6066 0.60000 0.54312 0.540691 0.2516 0.09071 0.2516 0.09071
11.2931 0.66667 0.574995 0.572832 0.2816 0.11210 02816 0.11210
11.6707 0.73333 0.590771 0588753 0.2975 0.1242 0.2975 0.1242
12.0667 0.80000 0.606121 0.604251 03136 0.13703 03136 0.13703
12.4933 0.86667 062141 0.61965 0.3304 0.15096 0.3304 0.15096
12.5926 093333 | 0.624796 0.623117 0.3343 0.15420 0.3343 0.15420
12.600 1.0000 0.625046 0.623369 0.3345 0.15445 0.3345 0.15445

2. The distribution function of time-to-failure estimated by the variable scale kernel
method is the closet distribution to the empirical comparing with the distribution

function estimated by ML and OLS methods.

3. Tables (8) and (9) show that the bias and MSE for the estimate of 50" percentile
of time-to-failure by parametric and nonparametric. In the most cases, the variable
scale kernel estimator records the smallest MSE and closet bias to zero while the

ML estimator has the largest MSE and the farthermost bias to zero.

Table (8) B and MSE of the fp_f!assicub fp_bmmﬂ and fp_smlg

Estimators B MSE
tp_flassiral -0.646416 0.738476
t) ccale -0.606964 0.699004
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Table (9) The B and MSE of the estimate of 50p®" percentile of the
time-to-failure by OLS and MLE methods

halfnormal(o?) loglogistic(a,2)
Estimators B MSE B MSE
fp_ﬂm 1.10716 | 1.66081 -0.568 0.621998

€, MLE 3.60531 | 13.6942 | 4.874 24.5268

6 Conclusions

When the assumption on the distribution of random effect parameter § is invalid then
the performances of the MLE and OLS estimators are very poor and the performances
of the variable scale kernel estimator is nearly the best one.
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