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In the analysis of financial market data, random variations in price move-
ments can share non-trivial statistical properties as observed for the distri-
butions of returns, with possibility of absence of autocorrelations in asset
returns, volatility in blocks and presence of asymmetry between rises and
falls of stock values. Asset price fluctuations are usually investigated using
time series models to obtain inferences about interest rates and future fore-
casts. In this study we consider the use of existing probability distributions
to model run lengths and absolute historical price run returns as an alterna-
tive to the use of usual time series models with applications for time series
obtained from the NYSE stock exchange for three private banks located in
the Brazil in the period from July 19, 2013, to July 19, 2018. We assume
discrete Weibull distributions as an alternative to the exponential law com-
monly used in this type of analysis. Under this modeling approach it is
possible to obtain information about the structure of the market such as the
probability of the stock market rising and falling daily and the magnitude of
the returns.
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1 Introduction

In the financial market analysis, fluctuations in asset prices produce a financial time
series where these series have been deeply investigated to get inferences and forecasting.
In fact, if it is examined these series from a statistical point of view, according to Sensoy
(2012), the random variations in price movements share non-trivial statistical properties.
Most financial data researchers call those properties as stylized empirical facts where
some are related to heavy tails in asset return distributions, absence of autocorrelations
in asset returns, volatility clustering and asymmetry between rises and falls. In addition,
as Ohira et al. (2002) and Li and Gao (2006) point out, the studies on the returns of
stock exchange focus mainly on the analysis performed in a fixed established period of
time such as hour, day or week. Moreover, another indicator for the movement of the
financial market stock price is the sign of the return, that is, the rise or fall of stock
prices.

In the last decades, empirical studies and the probabilistic structure of financial mar-
ket stock price movements have attracted the interest of many researchers as observed
in the literature. In this way, Safi and White (2017) used artificial neural networks
for stock prices in Palestine considering short and long-term forecasting. Al Bargh-
outhi et al. (2016) used unit root and Box-Jenkins models in the statistical analysis of
the Amman Stock Exchange. Ramzan et al. (2012) considered the modeling and fore-
casting exchange rate dynamics in Pakistan using a ARCH (autoregressive conditional
heteroscedasticity) family of models. Lau et al. (2018) studied exchange rate volatility
in Cambodia, Laos, Myanmar and Vietnam (CLMYV) using different approaches. Irfan
et al. (2010) investigated the weak form efficiency of an emerging market by using para-
metric tests considering data from the Karachi stock market of Pakistan. Ismail and
Awajan (2017) introduced a new hybrid approach EMD-EXP for short-term forecasting
of daily stock market time series data. Chung and Zhang (2017) studied the volatility
estimation using support vector machine with applications to major foreign exchange
rates. De la Torre et al. (2018) used Markov-Switching models in Italian, British, U.S.
and Mexican equity portfolios and presented a performance test. See also, Sensoy (2012),
Adrian and Rosenberg (2008), Stockbridge (2008), Li and Gao (2006), Andersen et al.
(2001), Cont (2001), Longin (1996), Tucker and Pond (1988), Akgiray and Booth (1987),
among many others. For Akgiray and Booth (1987), empirical evidence indicates that
the empirical distribution of stock returns shows severe deviations from normality which
implies for the use of different long tail probability distributions to get good fit to the
data which are implicit in reasonable economic scenarios. Two competing hypotheses
stand out: the first, as Mandelbrot (1997) and Fama (1965) state that stock prices follow
stable laws with characteristic exponents between one and two; and the second sees the
empirical distributions of stock returns as long tail distributions with finite variances.

According to Sensoy (2012), the term used to measure the movement of prices referring
to the return of market shares is “run”. A run is a consecutive series of price movements
without a sign reversal, hence a positive (negative) run is an uninterrupted sequence
of positive (negative) returns and this run continues until a negative (positive) return
comes out. As a special case, let us consider the daily closing historical prices of the



194 Oliveira et al.

Oracle company in the period from February 2, 2015 to February 10, 2015 (excluding
Saturdays and Sundays) given by 42.68, 43.04, 42.42, 43.16, 42.98, 43.40 and 43.99 with
daily returns given by 0.019, 0.008, -0.014, 0.017, -0.004, 0.010, 0.014. The signs of
those returns generate the sequence “+ + - + - + 4”7 which contains three positive runs
and two negative runs with lengths given by 2, 1 and 2 for positive runs and 1 and
1 for negative runs. The runs construction is relatively simple, but to the best of our
knowledge, little research has been done on them in finance. In addition, for the analysis
thereof, it is assumed that the lengths of the sequences of days on which the runs were
positive (negative) for a certain company are independent and identically distributed.
This assumption is necessary to estimate the parameters of chosen distribution using,
for example, a Bayesian approach. Fama (1965) investigated the runs of several stocks,
and found little evidence of efficiency violations based on series dependence on returns.
Grafton (1981) conducted a similar survey to test the market efficiency hypothesis.
Easley et al. (1997) used runs to examine dependence on intraday data.

The main goal of this paper is to explore the performance of discrete Weibull mod-
els (Nakagawa and Osaki, 1975) and continuous Weibull models, in the estimation of
the distribution of run lengths and the distribution of the absolute returns under a
Bayesian approach for three private banks located in Brazil from July, 19 2013 to July,
19 2018. The NYSE stock exchange was used to get the dataset. The Weibull distri-
bution (Weibull, 1951) is one of the most popular distributions used to analyze positive
observations, in particular considering lifetime data. Among the great advantages of the
Weibull distribution, we can highlight its versatility and facility of use. The distribu-
tion provides a good fit for a wide range / variety of data sets (Lawless, 1982; Nelson,
2005). Discrete or continuous Weibull or generalized forms of the univariate or multi-
variate Weibull distribution have been extensively used in data analysis in many areas
of interest as medicine, economy or engineering studies (see for example, Oliveira and
Achcar, 2018; Freitas et al., 2018; Mdlongwa et al., 2017). Under a Bayesian approach
assuming the Weibull distribution for the data, the posterior summaries of interest are
obtained using standard MCMC (Markov Chain Monte Carlo) methods as the popular
Gibbs Sampling algorithm (Gelfand and Smith, 1990) or the Metropolis-Hastings algo-
rithm (Chib and Greenberg, 1995). The paper is organized as follows: in Section 2, it
is presented some characteristics of the daily runs and the dataset. The both assumed
Weibull distributions as well the estimation procedures using the Bayesian approach are
also introduced in Section 2. In Section 3, it is presented the analysis and discussion
of the distribution of run lengths and the distribution of absolute returns for the three
private banks considered from July, 19 2013 to July, 19 2018, to illustrate the proposed
methodology. Finally, Section 4 closes the paper with some concluding remarks.

2 Material and Methods

2.1 Runs of Daily Returns

For our analysis, it is considered daily closing values of three private banks from Brazil:
Bradesco S.A. bank (BBD), Santander bank (BSBR) and Itau bank (ITUB). Our in-
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terest is to describe the distributions of run lengths and absolute run returns using a
parametric model. The dataset was obtained from the historical price stated in NYSE
stock exchange from July, 19 2013 to July, 19 2018.

2.2 Distribution of the Run Length and Absolute Returns

Before proceeding with the analysis, one concept should be well defined: daily return.
According to Sensoy (2012), a daily return of an index is defined by,

St — St—1
Tt S1_1 (1)
where s; is the index’ closing value of day ¢t. From those definitions, it could be obtained
several informations from the empirical data. In this way, in Tables 1 and 2, it is
presented the longest positive and negative runs with their corresponding date periods
and their returns as well the total of positive and negative runs; and the frequencies of
all runs with different lengths for each bank, respectively.
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Figure 1: Run length distribution of historical price stated in NYSE stock exchange from
19 of July of 2013 until 19 of July of 2018 (BBD — BSBR — ITUB).
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Table 1: The longest positive (negative) runs of BBD, BSBR and ITUB in the period

considered.
Longest Positive Run Total of Positive
Bank (mm/dd /yyyy) Run Return Runs
12/29/20185(1-a8i/11/2016 0.1695
BBD 07/24/2015 - 07/14/2015 316
0.1621
8 days
BSBR 12/28/2015 - 01/13/2016 0.2055 395
11 days
ITUB 04/27/2018 - 05/(]9/2(]18 0.1186 317
8 days
Bank Longest Negative Run Run Return Total of Negative Runs
(mm/dd/yyyy)
BBD 08/28/2013 - 09/11/2013 -0.1423 316
9 days
BSBR 09/28/2015 - 10/09/2015 ~0.2809 395
9 days
ITUB 09/28/2015 - 10/09/2015 -0.2031 317
9 days

Table 2: Frequencies of runs with different lengths of BBD, BSBR and ITUB in the
period considered.

Length (Positive Runs)

Bank

1 2 3 4 5 6 7 8 9 10 11 Total
BBD 158 81 41 17 8 6 3 2 - - - 316
BSBR 158 88 43 22 7 2 2 2 - - 1 325
ITUB 154 85 40 19 10 7 1 1 - - - 317
Bank Length (Negative Runs)

1 2 3 4 5 6 7 8 9 10 11 Total
BBD 155 88 30 19 13 7 1 2 1 - - 316
BSBR 170 79 34 28 10 1 2 - 1 - - 325
ITUB 161 74 40 21 12 5 3 - 1 - - 317

From Tables 1 and 2, it could be seen that the negative runs has the longest run equals
to nine and there is only one run for all banks. Most of negative runs are concentrated
at one, two and three lengths. For the positive runs, except for BSBR, the longest
run has length equal to eight for BBD and ITUB and, again, most of positive runs
are concentrated at one, two and three lengths. Moreover, for all banks, there is the
same number of positive and negative runs in the considered period. Finally, in Figures
1 and 2, it is presented the frequency plot of the distribution of run lengths as well
the histogram of the absolute returns for each bank. From those plots, it could be
seen that the run lengths and the absolute returns behaviors have form close to the
Weibull distribution. That is, the Weibull (discrete and continuous) distribution could
be suitable for the data analysis. Moreover, it is also observed one of the stylized facts
of financial markets: the distribution of the daily returns and the distribution of the
absolute run returns display heavy tails and sharp peaks.
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Figure 2: Histogram of absolute returns of historical price stated in NYSE stock exchange
from 19 of July of 2013 until 19 of July of 2018 (BBD — ITUB).

2.3 Zero-Truncated Discrete Weibull Distribution for Run Length

In this subsection, it is assumed that the distribution of the run lengths follows a discrete
Weibull (DW) distribution introduced by Nakagawa and Osaki (1975) which can be
considered as a discrete analogue of the continuous Weibull distribution. The probability
mass function (p.m.f.) of a DW distribution is defined by,

Pr(T=t|¢,8) =¢" —o™D  teNy=1{0,1,2,...} 2)

and its corresponding cumulative distribution function (c.d.f.) is given by,

F(t|¢,8) =Pr(T<t|¢,pB) =1-¢" (3)

where § > 0 and 0 < ¢ < 1. Note that, when 5 = 1, the DW distribution reduces to
the geometric distribution and when § = 2, it reduces to the discrete Rayleigh distribu-
tion introduced by Roy (2004). This model has been applied to many areas, including
competing risks, extreme values, failure times, regional analyses of precipitation, and re-
liability (see, for example, Khan et al., 1989; Kulasekera, 1994; Roy, 2002; Murthy et al.,
2004; Englehardt and Li, 2011; Almalki and Nadarajah, 2014; Brunello and Nakano,
2015). However, the DW cannot be applied directly to the run lengths since the min-
imum value of a run is one. In this case, a zero-truncation transformation of DW is
more appropriate for the data. Thus, let T be a discrete random variable such that
T ~ DW (¢, ). The pmf of the zero-truncated discrete Weibull (ZTDW) distribution is
defined by,
d)tﬁ _ ¢(t+1)f3
¢ )

and its corresponding cumulative distribution function (c.d.f.) is given by,

Pr(T=t|¢p) = teN={12..1 (4)

1 — g+’

F(t|¢,B)=Pr(T<t|¢,p)= 3

where >0 and 0 < ¢ < 1.
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Now, considering ¢t = (z1,t2,...,t,) as a random sample of size n from the ZTDW
distribution, the log-likelihood can be written as,

exar Zlog[ 6 0"] — nlog(g) (6)

Observe that the log-likelihood expressed in (6) has no compact form which implies
that the MLEs and the observed information Fisher’s matrix should be obtained using
standard numeric optimization algorithms such the Newton-Raphson or the Nelder-Mead
methods. However, in this study, inferences for the parameters are based on Bayesian
methods obtained using MCMC (Markov Chain Monte Carlo) methods (see Gelfand
and Smith, 1990; Chib and Greenberg, 1995). In this way, under a Bayesian approach
based on the squared error loss function, L(n,a) = (n — a)?, it is assumed beta prior
distribution for the parameter ¢ since it is restricted to the interval (0, 1) and a uniform
prior distribution for the parameter 3. The prior distributions are given, respectively,
by,

m(B) o 1 (7)

The Bayes estimate of any function of (¢, ), say w(¢, §) assuming the squared error
loss function is given by,

iy — [ofw ¢ ﬂ) (¢)(B) dodp
fofo (¢)m(B) depd3

Since it is not possible to compute Equation (8) analytically, it is used MCMC meth-
ods to get the posterior summaries of interest. In this way, without loss of generality,
it is considered the Gibbs sampling algorithm to generate samples from the posterior
distribution and then compute the Monte Carlo Bayes estimators under the squared
error loss function. The Gibbs sampling algorithm steps are given by,

(8)

e Step 1: Choose initial values, ¢(0) and 5(0) for ¢ and 8. Denote the values of ¢
and f at the i*" step by ¢, g0

e Step 2: Generate ¢, S0FD from the conditional posterior distributions needed
for the Gibbs sampling algorithm obtained directly from the joint posterior distri-
bution.

e Step 3: Repeat step 2, N times.

e Step 4: Calculate the Monte Carlo Bayes estimate of w(¢, #) using the expression

given by,
1 N L
E (1) gG)
N-B i:B+1w(¢ A7)

where B = 5,000 is the burn-in period.
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The posterior summaries of interest are computed using the package R2jags (Su and
Yajima, 2012) from R software (R Core Team, 2015) considering a “burn-in sample”
of size 5,000 to eliminate the effect of the initial values and a final Gibbs sample of
size 2,000 taking every 100th sample from 200,000 simulated Gibbs samples. Further-
more, the convergence of the Gibbs Sampling algorithm was monitored using standard
graphical methods, as the trace plots of the simulated samples. Since we are using the
statistical package R2jags in the R software we only need the likelihood function and
the prior distributions for each parameter of the model and we do not need to specify
all conditional posterior distributions required for the Gibbs-Metropolis-Hastings algo-
rithms (the computer codes are available under request to the authors).

2.4 Weibull Distribution for Absolute Returns

In the previous subsection, it was considered the ZTDW distribution as the distribution
of the run lengths by the fact that the data was discrete and zero-truncated. However,
considering the absolute returns, the ZTDW model is not suitable since the data now is
continuous and positive. In this case, it is assumed that the distribution of the absolute
returns follows a Weibull (W) distribution. The probability density function (p.d.f.) of
a W distribution is defined by,

f(fvlaﬁ,ﬁ):i(z)B_lexp{— (‘;)B} z € Ry (9)

and its corresponding cumulative distribution function (c.d.f.) is given by,

F(x\aﬁ,ﬁ):l—exp{—(;)B} (10)

where § > 0 and 0 < ¢ < 1. For this distribution, when 8 = 1, the W distribution
reduces to the exponential distribution and when § = 2, it reduces to the Rayleigh
distribution. Different to the ZTDW model, for the W model, it is considered a Clas-
sical approach, that is, the parameters here were estimated by the maximum likelihood
method and the model fit was assessed by the empiric versus estimated plots of the
absolute returns. The log-likelihood for a random sample, = (1,2, ..., z,), of size n
of the Weibull can be written as,

z</3,¢|x):n10g<§>+<5_1>i§";10g(z>_5;”:1; (11)

where * = (x1,22,...,2,). Observe that the log-likelihood expressed in (11) as the
ZTDW model has no compact form which implies that the MLEs and the observed
information Fisher’s matrix should be also obtained using standard numeric optimization
algorithms such the Newton-Raphson or the Nelder-Mead methods. In this paper, the
estimation was done by the fitdistplus library of the R software.
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3 Results and Discussion

In this section, it is presented the analysis of the distributions of run lengths and abso-
lute run returns using the Weibull models presented in Section 2 for each bank in the
period from July, 19 2013 to July, 19 2018. Naturally, before fitting Weibull models, the
hypothesis that the length of run lengths are independent and identically distributed
must be verified. Those assumptions are evaluated from the statistical value of Bartels
(Bartels, 1982) and Mann-Kendall tests (Mann, 1945).

According to the Bartels test, in all banks, the i.i.d length hypothesis was not rejected
at a significance level of 5%. The hypothesis also passed in the Mann-Kendall test. The
p-values associated with the statistics values of both tests were calculated from B =
100,000 permutations (Good, 2006) of the original lengths. The libraries lawstat and
Kendall of the R software were used in the Bartels and Mann-Kendall tests, respectively.

Table 3: Posterior summaries of interest for the positive (negative) runs of BBD, BSBR
and ITUB in the period considered assuming the ZTDW model.

Positive Runs

Bank Parameters Posterior Std. Dev. 95% Cred. Int.
Mean

BBD 10) 0.438 0.051 (0.318, 0.513)

B 0.915 0.069 (0.754, 0.997)

10) 0.445 0.045 (0.334, 0.511)

BSBR B8 0.928 0.060 (0.772, 0.997)

) 0.449 0.045 (0.344, 0.517)

ITuB B8 0.929 0.059 (0.786, 0.998)

Negative Runs

Bank Parameters Po§ter10r Std. Dev. 95% Cred. Int.
Mean

BBD 0] 0.439 0.055 (0.307, 0.520)

15} 0.904 0.073 (0.725, 0.996)

) 0.423 0.049 (0.302, 0.495)

BSBR B8 0.919 0.066 (0.756, 0.997)

0] 0.432 0.059 (0.294, 0.518)

ITuB Ié] 0.898 0.079 (0.710, 0.996)

In the first approach, the run lengths, the parameters of the ZTDW model were
estimated by the Bayesian method previously described for positive and negative runs
for each bank. The posterior summaries of interest are presented in Table 3. To asses
model performance, it is considered the probability plots for the empiric distribution
versus the ZTDW distribution as well the traceplot plots for MCMC convergence in each
case. The plots are presented in Figures 3, 4 and 5. In terms of the computational cost,
the CPU time for user and system was measure in a Core i5-8600K (3.60 Ghz) machine
with 16 GB DDR4 RAM and Windows 11 Pro (version 10.0.22621) as operating system.
The results showed that the mean of time elapsed for user was 32.68 seconds while the
mean of the time elapsed by the system was 0.96 seconds, indicating a great performance
for the proposed model.
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Figure 3: Traceplots for the adjusted ZTDW model for the positive run lengths distribu-
tion of historical price stated in NYSE stock exchange from 19 of July of 2013
until 19 of July of 2018 (BBD — BSBR — ITUB. Upper panels: ¢ values;

lower panels: 3 values).
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Figure 4: Traceplots for the adjusted ZTDW model for the negative run lengths distri-
bution of historical price stated in NYSE stock exchange from 19 of July of
2013 until 19 of July of 2018 (BBD — BSBR — ITUB. Upper panels: ¢ values;

lower panels: [ values).
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From the results presented in Table 3 and Figure 5, it could concluded that the ZTDW
model fits well for the distribution of run lengths with a great accuracy. Moreover,
considering a simple random process with two equally likely outcomes such that the pmf
of run length should follow an ZTDW distribution, it is possible to conclude that the
market is equally likely to go up or go down everyday, ignoring the magnitudes and
considering only the signs of the daily returns.
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Figure 5: Probability plots for the adjusted ZTDW model for the positive (upper panels)
and negative (lower panels) run lengths distribution of historical price stated
in NYSE stock exchange from 19 of July of 2013 until 19 of July of 2018 (BBD
— BSBR — ITUB).

In the second approach, the absolute returns, the parameters of the W model were
estimated by the maximum likelihood method for the absolute returns for each bank.
The model summaries of interest are presented in Table 4. To asses model performance,
it is considered the plots for the empiric distribution versus the W distribution. The
plots are presented in Figure 6 for BBD, Figure 7 for BSBR and Figure 8 for ITUB.
In the same way of the run lengths analysis, it is concluded that the W model fits well
for the distribution of the absolute returns with a great accuracy which implies that the
distribution of the absolute returns is well described using the Weibull model.

Table 4: Maximum likelihood estimates for the absolute returns of BBD, BSBR and
ITUB in the period considered assuming the W model.

Bank Parameters MLE Std. Err. 95% Conf. Int.
BED é 0.022 0.001 (0.021, 0.023)
3 1.198 0.026 (1.148, 1.249)
& 0.020 0.001 (0.019, 0.021)
BSBR 3 1.192 0.025 (1.141, 1.242)
& 0.020 0.001 (0.019, 0.021)
ITUB 3 1.173 0.026 (1.123, 1.223)
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Figure 6: Plots of fitted W model for the absolute returns distribution of historical prices
stated in NYSE stock exchange from 19 of July of 2013 until 19 of July of 2018
for BBD bank.
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Figure 8: Plots of fitted W model for the absolute returns distribution of historical prices
stated in NYSE stock exchange from 19 of July of 2013 until 19 of July of 2018
for ITUB bank.

4 Concluding Remarks

In this paper, it is conducted a detailed analysis on runs of daily returns of three private
banks located in Brazil. As a result, it is observed that using a Bayesian approach based
on simulation MCMC methodology to get samples of the joint posterior distribution
of interest, we could get accurate inferences for the parameters of the ZTDW model
even considering very non-informative prior distributions. The model choice provided
a great fit the distribution of both length of the runs as well stated that the market
is equally likely to go up or go down everyday. For the return absolute value, it could
be seen that the Weibull model showed almost a perfect fit for the data, that is, the
absolute returns should be Weibull distributed. Once both Weibull models considered
here showed great accuracy, the results provided here could be of great importance in
financial frequency analysis since the parametric models could provide a way to predict
the stock exchange close or open values day-by-day behavior. Also, the major advantage
of the proposed model is inherit most of properties of the continuous Weibull model as
the asymmetric shape which is the main shape of the distribution of run and return
data, and the simplicity of the likelihood function which is a great advantage to get the
inferences of interest, since we can use regular algorithms to get the estimators.
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