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We take an in-depth look at the weighted Burr-XII distribution. This
distribution generalizes Burr-XII, Lomax, and log-logistic distributions. We
discuss the distributional characteristics of the probability density function,
the failure rate function, and mean residual lifetime of this distribution.
Moreover, we obtain various statistical properties of this distribution such
as moment generating function, entropies, mean deviations, order statistics
and stochastic ordering. The estimation of the distribution parameters via
maximum likelihood method and the observed Fisher information matrix are
discussed. We further employ a simulation study to investigate the behav-
ior of the maximum likelihood estimates (MLEs). A test concerning the
existence of size-bias in the sample is provided. In the end, a real data is
presented and it is analyzed using this distribution along with some existing
distributions for illustrative purposes.

keywords: Burr-XII distribution, hazard rate function,mean residual life-
time, maximum likelihood estimation, weighted Burr-XII distribution.

1 Introduction

The Burr-XII (BXII) distribution having log-logistic, Lomax, and Weibull distributions
as special sub-cases is introduced and studied in Burr (1942). This distribution is com-
monly used in many real applications such as flood frequency (Shao et al., 2004), relia-
bility (Wingo, 1993; Zimmer et al., 1998), and survival analysis (Shao and Zhou, 2004)
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due to its amenability and versatility. The attractive properties of the BXII distribution
have been investigated by many authors including Burr and Cislak (1968); AL-Hussaini
(1991); Rodriguez (1977) and Tadikamalla (1980) who gave the details on the connection
between the (BXII) distribution and other distributions. According to Soliman (2005),
the BXII distribution possessing algebraic tails which are effective for modeling phenom-
ena with less frequency compared to corresponding models that are based on exponential
tails. Recently, several generalizations of the BXII distribution have been introduced. For
example, the beta BXII , Kumaraswamy BXII, Weibull BXII, Marshall-Olkin exponen-
tiated BXII distributions have been considered and studied by Paranáıba et al. (2011);
Paranáıba et al. (2013); Afify et al. (2018); Cordeiro et al. (2017) respectively. Statisti-
cal inferences on the parameters of BXII distribution from complete and censored cases
have been discussed extensively, see, Wang et al. (1996); Wingo (1993); Shao (2004);
Soliman (2005); Wu et al. (2007); Silvaa et al. (2008); Usta (2013).
The idea of weighted (WD) distributions is originally introduced in Fisher (1934). These
distributions can be used to model many practical problems in the presence of biased
samples that arise naturally in many situations. More precisely, if X represents a random
variable of interest with probability density function f(x), then the weighted version of
X with respect to the weight function w(x) > 0 is a random variable denoted by Xw

with probability density function given

fXw(x) =
w(x)f(x)

E[w(X)]
, x > 0, (1)

provided that E[w(X)] <∞. Of particular interest is the generalized length-biased (GLB)
distributions of order α > 0 which can be obtained as special sub-case from (1) by taking
w(x) = xα. The so-called GLB distribution of order α is considered and studied in (Patil
and Ord, 1976). In this case, the pdf of the GLB is given by

fw(x) =
xα f(x)

µαf
, (2)

where µαf =
∫∞

0 xαf(x)dx. Notice that if α = 0 then the existence of size-bias in
the sample does not appear. Real applications of WD distributions are spread out in
various fields including environmental sciences (Patil, 2002; Gove, 2003), forestry (Gove
and Patil, 1998; Ducey and Gove, 2015), reliability (Gupta and Kirmani, 1990; Sansgiry
and Akman, 2006; Jain et al., 2007), water quality(Leiva et al., 2009)
The main objective of this paper is to study the structural properties of the weighted
BXII distribution and to provide various statistical measures such as moments, mean
residual life, order statistics and entropies. We also focus on the statistical inference on
the parameters of WWBXII distribution. In particular, we use the maximum likelihood
method to estimate these parameters and we discuss their proprieties. One major interest
is to provide some information concerning the existence of size-bias in the sample.

The rest of the paper is organized as follows. The WWBXII distribution along with
the shapes of its probability density function and hazard rate function are given in
section 2. In Section 3, we provide various statistical measures and properties of the
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WWBXII distribution. Estimating the parameters of the WWBXII distribution using
maximum likelihood method along with a test concerning the existence of size-bias in
the sample are given in Section 4. In Section 5, we conduct simulation study to assess
the performance of the MLEs. In Section 6, a real life data analysis is considered and
analyzed for illustrative purpose. Concluding remarks are given in Section 7.

2 The weighted BurrXII distribution

Let X be a random variable following the BXII with shape parameters parameters c, k >
0. The probability density function (pdf) of X can take the following form

f(x) =
k c xc−1

(1 + xc)k+1
, x > 0. (3)

The αth moment of X is

E(Xα) =
kΓ(k − α

c )Γ(αc + 1)

Γ(k + 1)
, ck > α. (4)

Using Equation (2) along with equations (3) and (4), the linked pdf of the weighted
BurrXII distribution (WWBXII) given respectively on the support of X is

fw(x) =
c xα+c−1

B(k − α
c , 1 + α

c ) (1 + xc)k+1
, x > 0, c, k, α > 0, k >

α

c
, (5)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function. The cumulative distribution
function (cdf) of X is given by

F (x) = 1I xc

1+xc

(
1 +

α

c
, k − α

c

)
=

1

B(k − α
c , 1 + α

c )

∫ xc

1+xc

0
y
α
c (1− y)k−

α
c
−1dy, (6)

where By(a, b) =
∫ y

0 w
a−1(1 − w)b−1dw is the incomplete beta function and 1Iy(a, b) =

By(a,b)
B(a,b) is the incomplete beta function ratio. To show Equation (6), we have that

Fw(x) =

∫ x

0
fw(y) dy =

c

B(k − α
c , 1 + α

c )

∫ x

0
yα+c−1(1 + yc)−(k+1)dy (7)

On substituting u = 1
1+yc , Equation (6) reduces to

Fw(x) =
1

B(k − α
c , 1 + α

c )

∫ 1

1
1+xc

uk−
α
c
−1(1− u)

α
c du = 1−

∫ 1
1+xc

0 uk−
α
c
−1(1− u)

α
c du

B(k − α
c , 1 + α

c )

= 1− 1I 1
1+xc

(
k − α

c
, 1 +

α

c

)
= 1I xc

1+xc

(
1 +

α

c
, k − α

c

)
,
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where the last equality follows from 1Ix(a, b) = 1−1I1−x(b, a). The reliability (rf), hazard
(hrf), and reversed hazard(rhf) functions are given respectively by

Sw(x) = 1− Fw(x) = 1I 1
1+xc

(
k − α

c
, 1 +

α

c

)
, (8)

hw(x) =
c xα+c−1

B 1
1+xc

(
k − α

c , 1 + α
c

)
(1 + xc)k+1

, (9)

aw(x) =
c xα+c−1

B xc

1+xc

(
1 + α

c , k −
α
c

)
(1 + xc)k+1

, (10)

where k > α/c. The WWBXII distribution extends naturally the following distribution:
When k = 1, equation (5) results in the two-parameter weighted log-logistic distribution.
When c = 1, equation (5) becomes weighted lomax distribution. When α = 1 and α = 2,
then equation (5) results in the length-biased and area-biased WWBXII distribution
respectively. Table 1 lists further possible sub-models of the WWBXII distribution. If

Table 1: sub- models of the WWBXII (α, c, k) distribution

Case α c k Distribution

[1] 0 c k BurrXII (BXII)

[2] 1 c k Size-biased (SBXII)

[3] α 1 k Two-parameter weighted Lomax (TWLM)

[4] α c 1 Two-parameter weighted Log-logistic (TWLL)

[5] 0 1 k Lomax (LM)

[6] 1 1 k Size-biased Lomax (SLM)

[7] 0 c 1 Log-logistic (LL)

[8] 1 c 1 Size-biased Log-logistic (SLL)

X denotes an WWBXII random variable, we write X ∼ WWBXII(α, c, k). The quantile
function of WWBXII can be obtained as a solution of xq = inf{x : F (x) = q}, where F is
the cdf given in (7) for a given q ∈ (0, 1). In our case F is strictly increasing function, it
follows that xq = F−1(q). The quantile function can be used to generate samples from
WWBXII distribution. Here, we describe an algorithm for generating observations from
the WWBXII distribution

• Generate independently uniform numbers ui ∼ U(0, 1), i = 1, . . . , n

• Solve

1I xc
i

1+xc
i

(
1 +

α

c
, k − α

c

)
− ui = 0 (11)

Figure 1 displays two simulated data sets. These two simulated data sets show clearly
that they are consistent with WWBXII distribution
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Figure 1: Plots of WWBXII densities for simulated data sets: (left panel) α = 2, c = 4,
k = 6 and (right panel) α = 0.3, c = 0.5, k = 1.3

3 Structural properties

In this section, distributional properties of the WWBXII distribution such as shapes of
the density function, the shapes of the hazard function, moments, the density of the rth

order statistics, and the mean and median deviations are derived and studied in detail.

3.1 Shapes of pdf and hrf

Theorem 3.1. The pdf of the WWBXII distribution is decreasing for 0 < c+α ≤ 1 and
is unimodal for c+ α > 1.

Proof. Set g(x) = ln(fw(x)) = d + (α + c − 1) ln(x) − (k + 1) ln (1 + xc), where d is a
constant which is free of x. The first derivative of g(x) is g′(x) = (c+α− 1)x−1 − c(k+
1)xc−1(1 + xc)−1. If 0 < c + α ≤ 1 then it follows that g

′
(x) < 0, for all x > 0. This

implies that fw(x) is a decreasing function. Next, if c + α > 1, it then follows that
g′(x) = x−1ω(x), where ω(x) = (α + c − 1 − c(k + 1)xc(1 + xc)−1). Now g′(x) = 0 if
and only if ω(x) = 0. In this case g

′
(x) has a unique positive solution xc = α+c−1

(ck−α+1) ,

with limx→ 0 ω(x) = c + α − 1 > 0 and limx→∞ ω(x) = (α − ck − 1) < 0. Thus ω(x) is
unimodal. Therefore, for c + α > 1, there exists x = x0 such that g(x) > 0 for x < x0

and g(x) < 0 for x > x0.

Theorem 3.2. The hazard rate function of the WWBXII distribution is decreasing for
0 < c+ α ≤ 1 and is an upside-down bathtub shaped for c+ α > 1and c > 1.

Proof. Let ηw(x) = −(∂/∂x) ln(fw(x)) = −(c + α − 1)x−1 + c(k + 1)xc−1(1 + xc)−1. It
follows that η

′
w(x) = (c+α−1)x−2 + c(c−1)(k+ 1)xc−2(1 +xc)−1− c2(k+ 1)x2(c−1)(1 +
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xc)−2. Clearly, η
′
w(x) < 0 for all x > 0 whenever α+ c < 1. So, it follows from a theorem

in Glaser (1980) that hw(x) is a decreasing function. For the second case, rewrite η
′
w(x)

as η
′
w(x) = x−2u(x), where

u(x) = (α+ c− 1) +
c(c− 1)(k + 1)xc

(1 + xc)
− c2(k + 1)x2c

(1 + xc)2
.

Now suppose that α + c > 1 and c > 1. The first derivative of u(x) after some algebra
lead to

u
′
(x) =

c2(1 + k)xc−1 [c− 1− (1 + c)xc]

(1 + xc)3
.

Notice that u(x) is decreasing with a root at that xc0 =
(
c−1
c+1

)
. Therefore u(x) is an

upside-down function with limx→0 u(x) = α + c − 1 > 0 by the assumption in the the
Theorem and limx→∞ u(x) = α + c − 1 + c(c − 1)(k + 1) − c2(k + 1) = α − ck − 1 < 0
by using the fact that k > α/c. So ηw(x) has a root at x = t0 such that u(t0) = 0, with
η
′
w(t0) > 0 for x < t0 and η

′
w(t0) < 0 for x > t0. Since limx→0 fw(x) = 0, it follows by

Glaser’s Theorem (Glaser, 1980) that Equation (9) is upside-down bathtub shaped.

Figure 2 displays some shapes for the pdf of WWBXII distribution
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Figure 2: plots of probability density function (left panel) and hazard rate function (right
panel) for some selected parameter values.

3.2 Moment generating function

The moment generating function plays an essential role in determining the probability
distribution for a given random X. The moments of X can be used to describe most
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important features and characteristics of a distribution. Let X ∼ WWBXII(α, c, k). the
MGF of X is

MX(t) = E[etX ] =

∞∑
r=0

(
tr

r!
)E(Xr) =

∞∑
r=0

tr

r!

B(k − r+α
c , 1 + r+α

c )

B(k − α
c , 1 + α

c )
. (12)

The rth moment can be readily obtained from Equation (12)

E(Xr) =
B(k − r+α

c , 1 + r+α
c )

B(k − α
c , 1 + α

c )
, k >

r + α

c
.

The first four moments are given below provided that k > c−1(α+ 4).

µ = E(X) =
(α+ 1) Γ(k − α+1

c )Γ(α+1
c )

αΓ(k − α
c )Γ(αc )

, µ2 = E(X2) =
(α+ 2)Γ(k − α+2

c )Γ(α+2
c )

αΓ(k − α
c )Γ(αc )

,

µ3 = E(X3) =
(α+ 3) Γ(k − α+3

c )Γ(α+3
c )

αΓ(k − α
c )Γ(αc )

, µ4 = E(X4) =
(α+ 4)Γ(k − α+4

c )Γ(α+4
c )

αΓ(k − α
c )Γ(αc )

.

By using these moments, the variance, skewness and kurtosis are obtained from well-
known relations among these moments,

σ2 = µ2 − µ2, γ3 =
µ3 − 3µσ2 − µ3

σ2
, γ4 =

µ4 − 4µµ3 + 6µ2µ2 − 3µ4

σ4
.

Figure 3 shows the skewness and kurtosis measures for WWBXII(α, c, k). Clearly, the two
measures namely, the skewness and kurtosis decrease as c and k increase and then start
increasing slightly.

3.3 Mean Deviations

The mean deviations about the mean µ = E(X) and about the median M are defined
respectively by

δ1(X) =

∫ ∞
0
|x− µ|fw(x)dx and δ2(X) =

∫ ∞
0
|x−M |fw(x)dx.

We obtain µ from Equation (12) and M is obtained as the solution of the non-linear
solution 1I xc

1+xc

(
k − α

c , 1 + α
c

)
= 0.5. These measures can be further simplified as δ1(X) =

2µFw(µ)− 2Lw(µ) and δ2(X) = µ− 2Lw(M), where Lw(t) =
∫ t

0 xfw(x)dx and Fw(x) is
given in. To compute Lw(t), let u = (1 + xc)−1 implies du = −cxc−1(1 + xc)−2. Simple
algebra leads to∫ t

0
xfw(x)dx =

1

B(k − α
c , 1 + α

c )

∫ 1

1
1+tc

uk−
α+1
c
−1(1− u)

α+1
c du

= 1− 1I 1
1+tc

(k − α+ 1

c
, 1 +

α+ 1

c
) = 1I tc

1+tc
(1 +

α+ 1

c
, k − α+ 1

c
).
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Figure 3: The plots of skewness and kurtosis as a function of c and k when α = 1, 2.

Consequently,

δ1(x) = 2µ1I µc

1+µc
(1 +

α

c
, k − α

c
)− 21I µc

1+µc
(1 +

α+ 1

c
, k − α+ 1

c
),

and

δ2(x) = µ− 21I Mc

1+Mc
(1 +

α+ 1

c
, k − α+ 1

c
).

3.4 Mean Life Residual

The mean residual lifetime is considered as one of the most important measures of the
lifetime distribution that is used extensively in reliability, risk, and survival analysis. It
is described by the conditional mean of X − t|X > t, t > 0 and is denoted by µw(t). Let
X be a WWBXII random variable, then the mean residual life of X is given by

µw(t) = E(X − t|X > t) =
Iw(t)

Sw(t)
− t, (13)
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where Iw(t) =
∫∞
t xfw(x)dx. The computation of Iw(t) is similar to the computation of

Lw(t). In this case, we have that

Iw(t) =

∫ ∞
t

xfw(x)dx = 1I 1
1+tc

(k − α+ 1

c
, 1 +

α+ 1

c
).

By substituting the value of the above integral into Equation (13), the mean residual
life is obtained and is equal to

µw(t) =
1I 1

1+tc
(k − α+1

c , 1 + α+1
c )

1I 1
1+tc

(k − α+1
c , 1 + α

c )
− t

By considering the relation between the mean residual life and hazard rate function, we
have the following theorem which describes its shape.

Theorem 3.3. Let hw(x) be the hazard rate function corresponding to the WWBXII
distribution, then µw(x) is bathtub shaped with a unique change point x ∈ (0, t̂], where t̂
is the change point of the hazard rate function.

Proof. We have that µw(0) =
[
αΓ(k − α

c )Γ(αc )
]−1

(α+1)Γ(k−α+1
c )Γ(α+1

c ) <∞ provided
that k > (1 + α)/c. Since hw(0) = 0 this implies that µw(0)hw(0) = 0 < 1. So it follows
by a theorem from Guess et al. (1998) that µw(x) is bathtub shaped with change point
0 < x < t̂.

3.5 Order Statistics

Let X1, X2, . . . , Xn be independent random variables having WWBXII distribution with
order statistics X(1), X(2), . . . , X(n), where X(j) denotes the jth order statistics for j =
1, . . . , n . The (pdf) of X(j) is given as follows .

fx(j)(x; c, k, α) =
n!

(j − 1)!(n− j)!
fw(x)(Fw(x))j−1(sw(x))n−j ,

By substituting the values of fw(x), Fw(x), and Sw(x) from Equations (5), (6) and (8)
respectively we have that

fwj:n(x) = j

(
n

j

)
c xα+c−1 (1 + xc)−(k+1)

B(k − α
c , 1 + α

c )

(
1I xc

1+xc

(
1 +

α

c
, k − α

c

))j−1

×
(

1I 1
1+xc

(
k − α

c
, 1 +

α

c

))n−j
.

Extreme order statistics namely, the minimum X(1) = min(X1, . . . , Xn) and the maxi-
mum X(n) = max(X1, . . . , X(n)) have important applications in modeling life of series
and parallel system. The asymptotic distributions of these extreme order statistics are
established in the following theorem.
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Theorem 3.4. Let X1, . . . , Xn be a random sample from WWBXII distribution. Let
X(1) = min(X1, . . . , Xn) and X(n) = max(X1, . . . , Xn) be the smallest and largest order
statistics from this sample. Then

(i) limn→∞ P
(
X(1) ≤ bn x+ an

)
= 1− exp(−(x(α+c))), where x > 0, an = 0, and bn can

be obtained as a solution of 1I bcn
1+bcn

(
1 + α

c , k −
α
c

)
= n−1.

(ii) limn→∞ P
(
X(n) ≤ cn x+ dn

)
= exp(−x−(ck−α)) where x > 0, dn = 0 and cn can be

obtained as a solution of 1I 1
1+bcn

(
k − α

c , 1 + α
c

)
= n−1.

Proof. The asymptotical result for X(1) reported in Arnold et al. (1992) indicates that
a necessary and sufficient conditions of the limiting distribution of X(1), say F (.) to
belong to the min domain of attraction of the Weibull type, i.e., limn→∞ P (X(1) ≤
bnx + an) = 1 − exp(−xβ), x > 0, β > 0 where bn = F−1( 1

n) − F−1 − F−1(0) if and
only if F−1(0) <∞ and for every x > 0 there exists β > 0 such that

lim
ε→0

F (F−1(0) + xε)

F (F−1(0) + ε)
= xβ.

For our case, we have that F−1
w (0) = 0 <∞ and moreover

lim
ε→0

F (xε)

F (ε)
= lim

ε→0

1I (εx)c

1+(εx)c

(
1 + α

c , k −
α
c

)
1I εc

1+εc

(
1 + α

c , k −
α
c

) .
= xα+c lim

ε→0

(
1 + εc

1 + (εx)c

)k+1

= xα+c,

where
.
= means that L, Hopitals rule is used. It then follows from Theorem (8.3.6) of

Arnold et al. (1992) that there exists normalizing constants (an)n∈N ⊂ R and (bn)n∈N ⊂
R>0 such that

lim
n→∞

P (X(1) ≤ bnx+ an) = 1− exp(−x(α+c)),

where these normalized constants can be determined by choosing an = 0 and bn =
F−1( 1

n)− F−1 − F−1(0). So bn can be obtained as a solution to

1I bcn
1+bcn

(
1 +

α

c
, k − α

c

)
= n−1.

Similarly, the asymptotical distribution for the largest order statistics belongs to the
max domain of attraction of Fréchet type, i.e., limn→∞ P (X(n) ≤ cnx + dn) = 1 −
exp(−tδ), x > 0, δ > 0 where dn = 0 and cn = F−1(1− 1

n) if and only if F−1(1) =∞
and for every t > 0 there exits δ > 0,

lim
t→∞

1− F (xt)

1− F (t)
= x−δ.

For the second part (ii),

lim
t→∞

Sw(xt)

Sw(t)
= lim

t→∞

1I 1
1+(xt)c

(
k − α

c , 1 + α
c

)
1I 1

1+tc

(
k − α

c , 1 + α
c

) .
= xc lim

t→∞

(
1 + tc

1 + (xt)c

)k−α
c

+2

= x−(ck−α)−c,
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where
.
= means that L, Hopitals rule is gain used. So it follows by Theorem (8.3.5) of

Arnold et al. (1992) that there exists deterministic constants (dn)n∈N ⊂ R and (cn)n∈N ⊂
R>0 such that

lim
n→∞

P (X(n) ≤ cnx+ dn) = exp(−x−(ck−α)−c),

where these normalized constants are given by dn = F−1
w (0) = 0 and cn can be obtained

as a solution to 1I 1
1+bcn

(
k − α

c , 1 + α
c

)
= n−1.

3.6 Entropies

The variation of uncertainty of a random variable X can be measured by the notion of
an entropy. Two well known entropy measures are: Renyi entropy and Shannon entropy.
Suppose that X ∼WWBXII(α, c, k), the Renyi entropy is defined as

IR(r)(x) =
1

1− r
ln(

∫ ∞
0

f rw(x)dx), (14)

where r > 0 and r 6= 1.

Theorem 3.5. Let X be an WWBXII random variable. The Renyi Entropy is

IR(r)(x) = − log(c)+
r

1− r
log[B(k−α

c
, 1+

α

c
)]+

1

1− r
log[B(rk−rα− r + 1

c
, r+

rα− r + 1

c
)]

Proof. We have that∫ ∞
0

f rw(x)dx =
cr

[B(k − α
c , 1 + α

c )]r

∫ ∞
0

xrα+cr−r (1 + xc)−r(k+1) dx.

On substituting u = 1
1+xc , it then follows∫ ∞

0
[fw(x)]rdx =

cr−1

(B(k − α
c , 1 + α

c ))r

∫ 1

0
(1− u)

rα−r+1
c

+r−1 urk−1− rα−r+1
c du

=
cr−1B(rk − rα−r+1

c , r + rα−r+1
c )

(B(k − α
c , 1 + α

c ))r
.

On substituting the above quantity into Equation (14), we get the desired result.

The Shannon entropy can is a special case of Renyi entropy and is defined as IS(x) =
limr→1 IR(r)(x) = E [− ln(f(X))] . The value of the Shannon entropy is given in the
following theorem

Theorem 3.6. Let X be an WWBXII random variable, the Shannon Entropy is

IS(x) = ln(B(k − α

c
, 1 +

α

c
))− ln(c)− (α+ c− 1)

c
[ψ(1 +

α

c
)− ψ(k − α

c
)]

+ (k + 1) [ψ(k + 1)− ψ(k − α

c
)].
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Proof. We have that

E[− ln fw(X)] = E
[
− ln(

c

β(k − α
c , 1 + α

c )
xα+c−1 (1 + xc)−(k+1))

]
= ln(

B(k − α
c , 1 + α

c )

c
)− (α+ c− 1)E[ln(X)] + (k + 1)E[ln(1 +Xc)].

(15)

Now consider the computation of E[ln(X)]. Observe that

E[ln(X)] =
c

B(k − α
c , 1 + α

c )

∫ ∞
0

ln(x)xα+c−1 (1 + xc)−(k+1) dx.

Set u = (1 + xc)−1 implies du = −c xc−1(1 + xc)−2dx. It then follows that

E[ln(X)] =
1

cB(k − α
c , 1 + α

c )

∫ 1

0
ln(

1− u
u

)uk−1−α
c (1− u)

α
c du

=
1

cB(k − α
c , 1 + α

c )

[∫ 1

0
ln(1− u)uk−1−α

c (1− u)
α
c

−
∫ 1

0
ln(u)uk−1−α

c (1− u)
α
c du

]
=

1

c
[ψ(1 +

α

c
)− ψ(k + 1)− ψ(k − α

c
) + ψ(k + 1)].

It can be seen that the integrals in the above equation can be computed by differentiating
the beta function. Specifically, the beta function B(a, b) =

∫ 1
0 t

a−1(1− t)b−1dt. The first
partial derivative of B(a, b) with respect to a and b respectively are :

(∂/∂a)B(a, b) =

∫ 1

0
ln(t)ta−1(1− t)b−1dt = B(a, b)[ψ(a)− ψ(a+ b)], (16)

and

(∂/∂b)B(a, b) =

∫ 1

0
ln(1− t)ta−1(1− t)b−1dt = B(a, b)[ψ(b)− ψ(a+ b)], (17)

where ψ(a) = (∂/∂a) ln(Γ(a)). By using equations (16) and (17) we have

E[ln(X)] =
ψ(1 + α

c )− ψ(k − α
c )

c
. (18)

The computation of E[ln(1 + xc)] can be treated similarly and hence

E[ln(1 + xc)] = ψ(k + 1)− ψ(k − α

c
). (19)

By substituting (18) and (19) into Equation in (15), the result follows.
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3.7 Stochastic ordering

Stochastic ordering of distribution functions plays an essential role in the statistical
methodology. The likelihood ratio ordering is considered as one of the most important
ordering among various stochastic orderings. Let X and Y be two random variables
with distributions F and G and corresponding probability density functions f and g.
We say that X is smaller than Y in (1) likelihood ratio order (X ≺lr Y ) if g(x)/f(x) is
increasing in x;(2) hazard rate order (X ≺hr Y ) if (1−G(x))/(1−F (x)) is increasing in
x; (3) standard stochastic order (X ≺st Y ) if G(x) > F (x); (4) mean residual life order
(X ≺mrl Y ) if E(x− t|x > t) ≤ E(Y − t|x > t.)

The relation among these stochastic orders implies that X ≺lr Y ⇒ X ≺hs Y ⇒
X ≺st Y. The reader is referred to Shakeda and Shanthikumar (2007) for further in-
formation and results. In this section, we are interested in comparing BXII(c, k) and
WWBXII(α, c, k)

Theorem 3.7. Let X ∼ BXII(c, k), Y ∼ WWBXII(α1, c, k), and Z ∼ WWBXII(α2, c, k),
then it follows that (1) X ≺lr Y. and (2) Y ≺lr Z. provided that α1 < α2.

The proof of the theorem is straightforward. This theorem tells us that WWBXII
distribution has thinner tail than BXII distribution and if α1 < α2 then WWBXII(α2, c, k)
has thinner tail than WWBXII(α1, c, k).As it has the likelihood ratio ordering, this implies
there exists a uniformly power test (UMP) for one-sided or two-sided hypothesis on the
shape parameter α, when the other parameters are known.

4 Model Estimation

In this section, we discuss the estimation of the model parameters using the maximum
likelihood method.

4.1 Maximum Likelihood Estimate

Let X1 . . . , Xn be independent and identically random sample from WWBXII distribution
with the vector parameters θ = (α, c, k)T , where Ω = {(α, c, k)T : α, c, k > 0, k > α

c }
is the parameter space. The log-likelihood function is given by

L(θ) = n ln(k) + 2n ln(c) + n ln(Γ(k))− n ln(α)− n ln(Γ(k − α

c
))

−n ln(Γ(
α

c
)) + (α+ c− 1)

n∑
i=1

ln(xi)− (k + 1)
n∑
i=1

ln(1 + xci ).
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Then we take the partial derivative of the log-likelihood function with respect to the
parameters give the following non-linear equations.

∂L
∂α

=
−n
α

+
n

c
ψ(k − α

c
)− n

c
ψ(
α

c
) +

n∑
i=1

ln(xi) (20)

∂L
∂k

=
n

k
+ nψ(k)− nψ(k − α

c
)−

n∑
i=1

ln(1 + xci ) (21)

∂L
∂c

=
2n

c
− αn

c2
ψ(k − α

c
) +

αn

c2
ψ(
α

c
) +

n∑
i=1

ln(xi)− (k + 1)

n∑
i=1

xci (1 + xci )
−1 ln(xi),

(22)

where ψ(a) = (∂/∂a) ln(Γ(a)). The maximum likelihood estimates of the parameters
c, k, α is the solution to the above equations. Due to non explicit solution of these
estimating equations (20), (21) and (22), the MLEs can be obtained numerically by
using for example Newton-Raphson procedure in R software. However, the MLEs can
be obtained efficiently by implementing the functions optim or nlm in the statistical
software R (Team, 2013).

4.2 Existence and Uniqueness of MLEs

Theorem 4.1. Let h(α; c, k, xn) denote the function on the right-hand-side (RHS) of
the equation (20), where α ∈ (0, ck).Then there exists a unique solution for h(k; c, α, xn)
provided that k > 1 and

∑n
i=1 ln(xi) > 0.

Proof. Since −γ = limx→0(ψ(x) +x−1) and ψ(x) = −γ+
∑∞

`=0
x−1

(`+1)(`+x) , where γ is the
Euler constant, it follows that

lim
x→0

h(α; c, k, xn) = lim
x→0

(
−n
α

+
n

c
ψ(k − α

c
)− n

c
ψ(
α

c
) +

n∑
i=1

ln(xi)

)

=
n

c
lim
x→0

(
ψ(
α

c
) +

c

α

)
+
n

c
ψ(k) +

n∑
i=1

ln(xi)

=
nγ

c
− nγ

c
+

∞∑
`=0

k − 1

(`+ 1)(`+ x)
+

n∑
i=1

ln(xi).

So, it follows that limx→0 h(α; c, k, xn) > 0 if and only if k > 1 and
∑n

i=1 ln(xi) > 0.
Similarly, limα→ck h(α; c, k, xn) = limα→ck

(−n
α + n

cψ(k − α
c )− n

cψ(αc ) +
∑n

i=1 ln(xi)
)

=
−∞. Hence, there exits a root for h(α; c, k, xn) in the interval α ∈ (0, ck).

Theorem 4.2. Let g(k; c, α, xn) denote the function on the right-hand-side (RHS) of
the equation (21), where k ∈ (αc ,∞). Then there exists a root for g(k; c, α, xn). The root
is unique if and only if k > 2αc .
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Proof. Since ψ(y) ≈ ln(y) − (2y)−1 for large y then equation (21), and after some ma-
nipulation, reduces

g(c; k, α, xn) =
n

2k
+

nc

2(ck − α)
+ n ln

(
1 +

α

(ck − α)

)
−

n∑
i=1

ln(1 + xci ).

Now, limk→∞ g(c; k, α, xn) = −
∑n

i=1 ln(1 + xci ) < 0. On the other hand and since that

lim
k→α

c

[
nc

2(ck − α)
+ n ln

(
1 +

α

ck − α

)]
=∞,

and hence limc→α
c
g(k; c, α, xn) =∞. This implies that there exits a root for g(k; c, α, xn)

in k ∈ (αc ,∞). To prove the uniqueness of the root, consider the first derivative of
g(k; c, α, xn),

g
′
(k; c, α, xn) = − n

2k2
− nc2

(ck − α)2
− nkα

(ck − α)(ck − 2α)
< 0,

if and only if k > 2αc .

Theorem 4.3. Let w(c; k, α, xn) denote the function on the right-hand-side (RHS) of
the equation (22), where c ∈ (αk ,∞).Then there exists a root for w(c; k, α, xn) provided
that the sample data xn = (x1, . . . , xn)T contains at least one measurement less than
unity, i.e., (xi < 1) for some i ∈ {1, . . . , n}.

Proof. Similar to the proof of theorem 4.2 and by using ψ(y) ≈ ln(y)− (2y)−1 for large
y then equation (22) after some manipulation reduces to

w(c; k, α, xn) =
2n

c
−nα
c2

ln

(
ck − α
α

)
−n

2

ck − 2α

c(ck − α)
+

n∑
i=1

ln(xi)−(k+1)

n∑
i=1

xci (1+xci )
−1 ln(xi).

Now, let v(c; k, α, xn) = 2n
c −

nα
c2

ln
(
ck−α
α

)
− n

2
ck−2α
c(ck−α) . Since limc→∞ v(c; k, α, xn) = 0, it

follows that

lim
c→∞

w(c; k, α, xn) = lim
c→∞

v(c; k, α, xn) +
n∑
i=1

ln(xi)− (k + 1) lim
c→∞

n∑
i=1

xci ln(xi)

(1 + xci )

=

n∑
i=1

ln(xi)− (k + 1) lim
c→∞

n∑
i=1

xci ln(xi)

(1 + xci )

=

n∑
i=1

ln(xi)− (k + 1) lim
c→∞

∑
{i:xi<1}

xci ln(xi)

(1 + xci )
− (k + 1) lim

c→∞

n∑
{i:xi≥1}

xci ln(xi)

(1 + xci )

=
n∑
i=1

ln(xi)− (k + 1)
n∑

{i:xi≥1}

ln(xi) =
∑

{k:xk<1}

ln(xk)− k
∑

{k:xk>1}

ln(xk) < 0.
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On the other hand and because

− lim
c→α

k

[
nα

c2
ln

(
ck − α
α

)
− n

2

ck − 2α

c(ck − α)

]
=∞,

we have that limc→α
k
w(c; k, α, xn) =∞. This implies that there exits a root for w(c; k, α, xn)

in c ∈ (αk ,∞).

The asymptotic distribution of the MLEs is approximately multivariate normal distri-
bution with mean vector θ and approximate variance-covariance matrix J−1(θ̂), where

J(θ̂) = −∂2L(θ)

∂θ∂θT

∣∣
θ=θ̂

is the observed information matrix. Its elements are given in Ap-
pendix. In this case, we can obtain an approximate confidence interval to the parameters
of our model. An 100%(1 − δ) asymptotic confidence interval for each parameter θ` is
given by

α̂± zδ/2
√

J(α̂,α̂), ĉ± zδ/2
√

J(ĉ,ĉ) k̂ ± zδ/2
√

J(k̂,k̂)

where J(`,`) is the (`, `) diagonal element of J−1(θ̂), for ` = α̂, ĉ, k̂ and zδ/2 is the quantile
1− δ/2 of the standard normal distribution.

4.3 Testing of existence of size-bias in the sample

Of major importance is to check the existence of size-bias in the sample. This is equiva-
lent to test the null hypothesis H0 : α = 0 against the alternative hypothesis Ha : α > 0.
In this case we can compute the maximized restricted log-likelihood Lr(0, c, k) and the
full model (unrestricted log-likelihood ) Lf (α, c, k) in order to construct the likelihood
ratio test statistics Λ(x) = −2 (Lf (α, c, k)− Lr(0, c, k)) . In this context, the standard
asymptotic distribution of Λ(x) does not work, i.e., Λ(x) does not converge to χ2

1 as
n → ∞ because the value of the parameter α under H0 lies in the boundary of the
parameter space of α = (0,∞), i.e., 0 ∈ ∂α. In this regard, we use Theorem 3 of Self
and Liang (1987) which implies that Λ(x) converges in distribution to

1

2
+

1

2
χ2

1.

5 Simulation and an application

We employ a simulation study to assess the performance of the precision of the point
estimates to the parameters of WBXII(α, c, k) and the coverage probability of the confi-
dence intervals for these parameters as well. The assessment procedure is based on the
root mean squared error (MSEs) for each parameter and the average length of confi-
dence intervals (mLCs). The simulation study was carried out using (1000) samples of
size 50, 80, 100, 150, and 250 from WWBXII(α, c , k) distribution with different choices
of the parameter (α, c, k). For each generated data, the maximum likelihood is used to
provide point estimates of the parameters and the mean of the MLEs (mMLEs) along
with the root mean squared errors are calculated and reported in Table 2. Besides to the
point estimates, approximate 95% confidence intervals of these parameters are calculated
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using observed Fisher information matrix and the mean length of confidence intervals
(mLCs) along with their corresponding coverage probability (see,Table 2). Simulation
outcomes indicate that the absolute differences between the average point estimates of
the parameters and the true values decay to 0 as the sample size increases. The root
mean squared errors decrease as the sample size increases which confirm that the MLEs
are behaved consistency. As expected, the average lengths of the mLCs decrease as
the sample sizes get grow. Additionally, the coverage probabilities for these confidence
intervals are close to 95%, as the sample sizes increase. Generally speaking, the average
length of the 95% confidence interval for the parameter c is shorter than that for the
rest of the parameters, but the coverage probabilities of the parameters are similar.

Table 2: Simulation outcomes: The mean of MLEs estimates(mMLEs) and the root mean
squared errors(msd)(within parentheses) of the WWBXII distribution along with the
mean length of 95% confidence intervals (mLCs) and their corresponding coverage
probability (within parentheses)

True values n mMLEs (msd) mLCs (95% C.I.)

α̂ ĉ k̂ C.I(α̂) C.I.(ĉ) C.I(k̂)

(2,3,3) 50 2.2439 3.0736 3.1889 1.867 1.028 1.505

(0.4763) (0.2622) (0.3840) (0.927) (0.942) (0.945)

80 2.2027 3.0376 3.1596 1.692 0.761 1.241

(0.4316) (0.1942) (0.3166) (0.949) (0.949) (0.941)

100 2.2147 3.0207 3.1724 1.646 0.666 1.245

(0.4195) (0.1699) (0.3176) (0.937) (0.952) (0.951)

150 2.1604 3.0013 3.1339 1.461 0.516 1.105

(0.3727) (0.1317) (0.2820) (0.946) (0.951) (0.942)

250 2.1194 2.9964 3.1036 1.227 0.452 0.905

(0.3131) 90.1153) (0.2308) (0.951) (0.957) (0.945)

(1,3,3) 50 0.9836 3.0972 3.0494 1.346 1.583 1.610

(0.3433) (0.4040) (0.4107) (0.931) (0.936) (0.945)

80 0.9634 3.0959 2.9927 1.318 1.297 1.392

(0.3362) (0.3308) (0.3552) (0.932) (0.935) (0.955)

100 0.9567 3.0532 3.0106 1.296 1.237 1.312

(0.3306) (0.3157) (0.3347) (0.936) (0.951) (0.952)

150 0.9649 3.0429 3.0051 1.221 1.068 1.217

(0.3114) (0.2723) (0.3104) (0.941) (0.945) (0.954)

250 0.9510 3.0481 2.9758 1.121 0.877 1.095

(0.2861) (0.2238) (0.2794) (0.951) (0.950) (0.951)
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Intial values n mMLEs (msd) mLCs (95% C.I.)

α̂ ĉ k̂ C.I(α̂) C.I.(α̂) C.I(α̂)

50 2.0832 4.0047 5.0751 1.826 1.601 1.580

(0.4657) (0.2622) (0.3840) (0.934) (0.964) (0.955)

80 2.0850 4.0086 5.1021 1.708 1.431 1.46

(0.4356) (0.3651) (0.3723) (0.934) (0.932) (0.951)

(2,4,5) 100 1.9994 4.0411 5.0127 1.357 1.232 1.358

(0.3953) (0.3146) (0.3463) (0.954) (0.951) (0.947)

150 1.9876 4.0354 4.9910 1.501 1.129 1.324

(0.3829) (0.2881) (0.3378) (0.958) (0.952) (0.949)

250 1.9839 4.0386 5.0038 1.364 0.993 1.153

(0.3479) (0.2534) (0.2940) (0.963) (0.947) (0.967)

50 5.0890 5.085800 10.2177 2.320 2.516 3.086

(0.5918) (0.6420) (0.7874) (0.951) (0.946) (0.954)

80 5.1173 5.0449 10.2338 1.7077 1.4313 1.4593

(0.5798) (0.5268) (0.7253) (0.951) (0.954) (0.949)

(5,5,10) 100 5.1350 5.0025 10.2004 2.265 1.910 2.804

(0.5777) (0.4872) (0.7152) (0.948) (0.951) (0.953)

150 5.1318 5.0014 10.2101 2.194 1.645 2.526

(0.5597) (0.4198) (0.6444) (0.952) (0.951) (0.950)

250 5.1727 4.9730 10.1893 2.158 1.328 2.255

(0.5506) (0.3389) (0.5751) (0.960) (0.956) (0.957)

6 Data analysis

In this section, we illustrate the adequacy and flexibility of the WWBXII(α, c, k) distribu-
tion in fitting real data set. We consider a data set from a study carried out by Bjerkedal
(1960). The data set comprise survival times in days of 72 Guinea pigs injected with
various amount of tubercle. From the study, we consider only the data in which pigs in
a single cage are under the same regimen. The data are given below:
12, 15, 22, 24, 24, 32, 32, 33, 34, 38 ,38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58,
59, 60, 60, 60,60, 61, 62, 63,65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85,
87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146,146, 175 ,175 ,211 ,233
,258 ,258 ,263 ,297 ,341, 341, 376. Table 3 gives some descriptive summary statistics to
these data which have positive skewness and kurtosis but have large standard deviation.
This indicates that the data are positively skewed, and hence the considered distribution
could be used to model this data.

In many applications, empirical information about the hazard rate shape can be useful



Electronic Journal of Applied Statistical Analysis 247

in selecting a particular distribution. In this regard, a tool called the total time on test
(TTT) plot can be used in identifying the suitable model, see for detail Aarset (1987).
The TTT-plot for WWBXII for our data is displayed in Figure 4 which indicates an
upside-down bathtub hazard rate function (unimodal). This indicates the appropriate-
ness of the WWBXII distribution to fit the current data.

Table 3: Descriptive Statistics of the Guinea pigs data

Mean Standard deviation Skewness Kurtosis Minimum Maximum

99.82 81.12 1.76 2.46 12 376
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Figure 4: TTT-plot the Guinea pigs data

Next, we fit the WWBXII model and eight models as special sub-cases using MLEs
(standard errors) along with the computation of the maximum of the log-likelihood
function(L), the values of Akaike information criterion (AIC), and the Bayesian infor-
mation criterion (BIC) statistics. Table 4 lists the MLEs of the parameters of WWBXII
along with the estimates of its sub-distributions and compare among them using the
statistics L, AIC, and BIC. The numerical values of the these statistics correspond to
the WWBXII are the lowest among those fitted sub-models and therefore our model is
the best model.
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Table 4: MLEs of the model parameters along with their corresponding Standard error
(given in parentheses) for Guinea pigs

MLEs of the parameters Measures

Model α̂ ĉ k̂ −L AIC(θ̂) BIC(θ̂)

WWBXII(α, c, k) 31.1736 0.3532 107.8556 390.25 786.5 793.33

(6.4808) (0.0846) (26.7517)

TWLM(α, k) 118.0781 − 120.0918 392.60 789.2 793.7533

(20.8566) (−) (21.1319)

TWLL(α, c) 0.7607 1.0183 − 479.97 963.94 968.4933

(0.2019) (0.2001) (−)

BXII(c, k) − 3.0486 0.0753 490.55 985.1 989.65

(−) (4.1154) (0.1017)

SBXII(c, k) − 0.4205 3.34601 467.71 939.42 943.97

(−) (0.0056) (0.4833)

LL(c) − 0.3531 − 526.97 1055.94 1058.22

(−) (0.0322) (−)

SBLL(c) − 1.2541 − 480.45 962.9 965.18

(−) (0.0285) (−)

LM(k) − − 0.2294 492 986 988.28

(−) (−) (0.0270)

SLM(k) − − 1.2795 476.95 955.9 958.18

(−) (−) (0.0322)

We also apply formal non-parametric goodness-of-fit tests such as Kolomogorov-Sminrov
(K-S), Cramer-von-Mises (W ∗n), and Anderson-Darling (A∗n) statistics in order check
which distribution fits better these data. For further information about W ∗n and A∗n
statistics, see Chen and Balakrishnan (1995). Usually, the smaller the values of these
statistics, the better the fit to the data. These statistics are computed for the current
data and given in Table 5. Based on the values of these non-parametric goodness-of-
fit tests reported in this table, the WWBXII distribution outperforms its special sub-
distributions and therefore fits much better these data. In particular, the K-S distance
between the empirical and fitted WWBXII distribution functions is 0.101 with the corre-
sponding p-value is 0.4581 which indicates that the data follow the WWBXII distribution
is strongly accepted whereas the p-values correspond to the K-S distances for the other
sub-models are less than 0.0001 expect of the sub-model TWLM, however, its p-value
is not high (K-S= 0.146, p-value=0.091). We also show formally that the size-bias in
this data is present by preforming the likelihood ratio test for testing the following hy-
pothesis H0 : α = 0 (there is no size-bias) versus Ha : α 6= 0 (there is size-bias). The
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likelihood ration test is Λ(x) = −2 (Lf (α, c, k)− Lr(0, c, k)) = 200.6 with p-value ap-
proximately equal to 0. The graphs of the estimated densities of WWBXII, and BXII
given in Figure 5 which show clearly that WWBXII distribution fits much better than
the BXII distributions.

Table 5: Goodness-of-fit tests for Guinea pigs data.

Statistics

Model K-S p-VALUE Wn An

WWBXII 0.101 0.4581 0.14 0.75

TWLM 0.146 0.091 0.20 1.11

TWLL 0.444 < 0.0001 0.14 20.82

BXII 0.480 < 0.0001 5.02 23.49

SBXII 0.410 < 0.0001 3.73 18.26

LL 0.721 < 0.0001 12.00 57.27

SLL 0.447 < 0.0001 4.41 21.00

LM 0.485 < 0.0001 5.08 23.74

SLM 0.452 < 0.0001 4.46 21.18
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Figure 5: Fitted WWBXII and BXII densities and the histogram for Guinea pigs data

We further consider three well-known three-parameter distributions to fit this data.

1. The generalized gamma distribution, GG(α, c, k); f(x;α, c, k) = α
cΓ(k)(xc )αk−1e−(x

c
)α ,
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where α, c k > 0

2. The size-biased generalized gamma distribution GSGG(α, c, k); f(x;α, c, k) =
αx

c2Γ(k+ 1
α

)
(xc )αk−1e−(x

c
)α , α, c, k > 0.

3. The size-biased Weibull distribution GSBW(α, c, k) f(x;α, c, k) = α
xk (x

c
)α−1e−(xc )

α

ck+1 Γ( k
α

+1)
,

where α, c, k > 0.

Table 6 lists the MLEs of the unknown parameters of the above distributions whereas
Table 7 lists the corresponding values of the statistics K-S,W ∗n , andA∗n. By examining the
values of statistics and measures given in these table, we conclude that that the WWBXII
distribution provides better fit than all the distributions considered in Table 6. The plots
of fitted densities of these models and the histogram of the Gunia pigs data is given in
Figure 6(left panel) and the plots of the fitted distributions of these models are given in
Figure 6(right panel) show that the WWBXII distribution produces better fit than the
other models. Additionally, the estimated hazard rate function is displayed in Figure
6(bottom panel) show that the estimated hazard rate function is unimodal which reflects
the actual behavior of these data. Gupta and Kundu (2009) analyzed this data by using
the weighted exponential distribution (WE) and they compared it with the Weibull (W),
gamma (G) and generalized exponential (GE) distributions. They observed that the K-S
distances of WE, W, G, and GE are 0.1173,0.149, 0.139 and 0.135 and the corresponding
p-values are 0.275, 0.082, 0.112 and 0.135, respectively. Additionally, Kharazmi et al.
(2015) fitted this data by using the generalized weighted exponential (GWE) distribution
and they compared the GWE distribution with GE distribution and the two-parameter
weighted exponential (TWE) distribution due to Shakhatreh (2012). They found that
the K-S distances of GWE and TWE are 0.11 and 0.114, and the corresponding p-values
are 0.35 and 0.31 respectively.

Table 6: MLEs of the model parameters (standard deviations), and the measures L, AIC
and BIC for Guinea pigs data

MLEs of the parameters Measures

Model α̂ ĉ k̂ −L(θ̂) AIC(θ̂) BIC(θ̂)

WWBXII(α, c, k) 31.1736 0.3532 107.8556 390.25 786.5 793.33

(6.4808) (0.0846) (26.7517)

GSBW(c, k) 0.5214 1.9823 3.2494 391.74 791.2 798.03

(0.2026) (6.0124) (1.6061)

GG(c, k) 0.5883 4.7225 5.650 392.03 790.06 796.89

(0.2571) (13.2308) (4.8493)

GSBGG(c) 0.5928 3.6796 4.3364 392.06 790.12 796.95

(0.5887) (31.4817) (9.2221)
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Table 7: Goodness-of-fit tests for Guinea pigs data.

Statistics

Model K-S p-VALUE Wn An

WWBXII 0.101 0.46 0.14 0.75

GSBW 0.115 0.29 0.24 1.27

GG 0.117 0.28 0.25 1.34

GSBGG 0.118 0.27 0.25 1.32
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Figure 6: plots of estimated probability densities with the histogram of the data (left
panel), estimated distribution (right panel), and estimated hazard rate (bot-
tom panel) functions for Guinea pigs data
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7 Conclusions

In this paper, we consider the weighted Burr-XII distribution and investigate many of
its mathematical and statistical properties. The WWBXII distribution generalizes many
interesting distributions including the two-parameter weighted lomax, two-parameter
weighted log-logistic, and BurrXII distributions. We provide rigorous analysis to the
shape of probability density and hazard rate functions of the WWBXII. We derive sev-
eral structural properties such as moment generating function, entropies, mean residual
life, extreme values and order statistics, and stochastic ordering. We investigate the
estimation of the model parameters by maximum likelihood thoroughly and we provide
sufficient conditions about the existence of these estimates. Also, we conduct some sim-
ulations to assess the finite sample behavior of the MLEs. Additionally, we provide a
test concerning the existence of size-bias in the sample. Finally, the usefulness of the
WWBXII distribution and practical relevance are demonstrated using the well-known
data given byBjerkedal (1960).
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Appendix

The elements of the observed Fisher information matrix are given below.

∂2L
∂k2

= − n

k2
+ nψ́(k)− nψ́(k − α

c
)

∂2L
∂α2

=
n

α2
− n

c2
ψ́(k − α

c
)− n

c2
ψ́(
α

c
)

∂2L
∂c∂k

= −nα
c2
ψ́(k − α

c
)−

n∑
i=1

xci (1 + xci )
−1 ln2(xi)

∂2L
∂k∂α

=
n

c
ψ́(k − α

c
)

∂2L
∂c∂α

=
αnψ́(k − α

c )− cnψ(k − α
c )

c3
+
n

c3
[cψ(

α

c
) + αψ́(

α

c
)]

∂2L
∂c2

= −2n

c2
−αn
c4

[αψ́(k−α
c

)−2cψ(k−α
c

)]−αn
c4

[2cψ(
α

c
)+αψ́(

α

c
)]−(k+1)

n∑
i=1

xci (1+xci )
−2 ln2(xi)(xi)


