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In this paper, Darna distribution (DD) is suggested as a new continuous
probability density function (PDF). The statistical properties of the DD as
the moments, shapes of the distribution, measures of skewness, kurtosis, co-
efficient of variation are presented as well as some calculations are provided.
Also, the maximum likelihood estimators, the Bonferroni and Lorenz curves,
and Gini Index are obtained. The Stress-Strength Reliability, Rényi entropy,
mean and median deviations are derived and proved. The distribution of
order statistics are presented. The reliability analysis including hazard, reli-
ability, odds, and reverse hazard functions are presented. An application of
Wheaton River data is considered.
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1 Introduction

The distribution f(x) is a mixture of k components distributions ϕ1(x), ϕ2(x), ..., ϕk(x)

if f(x) =
k∑
i=1

ηiϕi(x) where ηi is the mixing weights, such that 0 6 ηi 6 1, and
k∑
i=1

ηi = 1.

A random variable X is said to have a mixture of two distributions ϕ1(x) and ϕ2(x) if
its probability density function (PDF) is given by

f(x) = η1 ϕ1(x) + η2 ϕ2(x), (1)
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where η1, η2 are positive and η1+η2 = 1. Shanker (2017) suggested Akshaya distribution
with PDF given by

f(x; θ) =
θ4

θ3 + 2θ2 + 6θ + 6
(1 + x)3e−θx , x > 0 , θ > 0,

which is a mixture of four components, Exp(θ), Gamma(2, θ), Gamma(3, θ),
and Gamma(4, θ) distributions. Shanker and Ghebretsadik (2013) suggested new Quasi
Lindley distribution with PDF given by

f(x; θ) =
θ2

θ + 1
(1 + x) e−θx , x > 0 , θ > 0,

that is a mixture of Exp(θ) and Gamma(2, θ) distributions with mixture factor η =
α

θ2+α
.

Daniyal and Aleem (2014) proposed a new distribution as a mixture of Burr and
Weibull distributions. Hall and Zhou (2003) have introduced nonparametric estimation
of component distribution in a multivariate mixture. Cruz-Medina and Hettmansperger
(2004) have proposed nonparametric estimation in semiparametric univariate mixture
models. Roy et al. (1992) introduced a class of passion mixture distribution and in
(1995) introduced some negative binomial mixture distribution. Sultan (2007) intro-
duced mixture of two inverse Weibull distributions. Al-Omari et al. (2019c) suggested
power length-biased Suja distribution. Jiang et al. (1999) proposed Weibull and in-
verse Weibull mixture. Kamaruzzaman et al. (2012) introduced mixtures of normal
distributions. Balakrishnan and Mohanty (1972) proposed finite mixture of Laguerre
distributions. Nareeat et al. (2015) proposed new mixture Pareto distribution. Roy and
Sinha (1995) proposed negative binomial mixture of normal moment distribution. Adnan
(2009) (2009) suggested Laplace mixture distribution. Al-Omari et al. (2019a) suggested
exponentiated new Weibull-Pareto distribution. Al-Omari et al. (2019b) proposed size-
biased Ishita distribution. Al-Omari and Alsmairan (2019) introduced length-biased
Suja distribution. Al-Omari and Gharaibeh (2018) suggested Topp-Leone Mukherjee-
Islam distribution. Tamandi et al. (2019) suggested a generalized Birnbaum-Sauders
distribution with application to the air pollution data. Mdlongwa et al. (2017) proposed
the Burr XII modified Weibull distribution.

The rest of this paper is organized as follows: In Section 2, we introduce the PDF
and CDF of the Darna distribution and illustrate the shapes of the distribution for
various values of the distribution parameters. Section 3, provides the moments includes
the rth moment, the coefficients of skewness, kurtosis, and coefficient of variation, as
well as some simulations for the distribution moments. Also, we present the moment
generating function and the mode of the distribution Section 4, includes the Bonferroni
and Lorenz curves and Gini index of the Darna distribution and some simulations for
the Gini index for different distribution parameters. Median and mean deviations and
the stress-strength reliability are given in Section 5. The distributions of order statistics
from Darna distribution are provided in Section 6. In Section 7, the maximum likelihood
estimation of the distribution parameters and the Rényi entropy with some simulation
are presented. Stochastic ordering and reliability analysis are given in Section 8. An
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application of real data is given in Section 9. Finally, the paper is concluded in Section
10.

2 The Darna Distribution

In this section, we will define the PDF and cumulative distribution function (CDF) of
the Darna distribution and illustrate the shapes of the distribution. However, no any
work has been conducted on the Darna distribution to our best knowledge.

Definition: A random variable X is said to have a Darna distribution with two
parameters α and θ, if its probability density function is given by

fDD(x; θ, α) =
θ

2α2 + θ2

(
2α+

θ4x2

2α3

)
e−

θx
α ; x > 0, α > 0, θ > 0, θ > α, θ 6= α. (2)

Based on Equation (1), the proposed Darna distribution is a mixture of two distributions,
namely, exponential Exp

(
θ
α

)
and gamma G

(
3, θα

)
, distributions where ϕ1 = Exp

(
θ
α

)
=

θ
α e
− θ
α
x, x > 0, and ϕ2 = G

(
3, θα

)
= θ3

2α3 e
− θ
α
xx2, x > 0, with mixing factors η = 2α2

2α2+θ2

and 1− η = θ2

2α2+θ2
.

Theorem 1: The corresponding cumulative distribution function is given by

FDD(x;α, θ) = 1−
(
4α4 + 2α2θ2 + θ4x2 + 2αθ3x

)
2α2 (2α2 + θ2)

e−
θx
α ;x > 0, α > 0, θ > 0. (3)

Proof : The proof is direct using integration by parts as

FDD (x, α, θ) = P (X 6 x) =

x∫
0

fDD(t;α, θ) dt

=
θ

2α2 + θ2

2α

x∫
0

e−
θt
α dt+

θ4

2α3

x∫
0

t2e−
θt
α dt

 .

Now, let I1 = 2α
x∫
0

e−
θt
α dt = −2α

2

θ e
− θt
α

∣∣∣x
0

= −2α
2

θ

(
e−

θx
α − 1

)
and
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I2 =
θ4

2α3

x∫
0

t2e−
θt
α dt

=
θ4

2α3

−α
θ
t2e−

θt
α

∣∣∣x
0

+ 2
α

θ

x∫
0

te−
θt
α dt


=

θ4

2α3

−α
θ
t2e−

θt
α

∣∣∣x
0

+ 2
α

θ

−α
θ
te−

θt
α

∣∣∣x
0

+
α

θ

x∫
0

e−
θt
α dt


= − θ3

2α3
x2e−

θx
α − θ2

α
xe−

θx
α − θ

(
e−

θx
α − 1

)
.

Therefore,

FDD (x, α, θ) =
θ

2α2 + θ2
(I1 + I2) = 1−

e−
θx
α

(
4α4 + θ4x2 + 2xαθ3 + 2α2θ2

)
(2α2 + θ2) 2α2

.

It is easy to show that

fDD(x; θ, α) = θ
2α2+θ2

(
2α+ θ4x2

2α3

)
e−

θx
α > 0 and

∞∫
0

fDD(x; θ, α)dx = 1.

The shapes of the PDF and CDF of the Darna distribution are given in Figure (1)
for different values of the parameter α when θ = 3. It is clear from Figure (1) that the
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Figure 1: The PDF of DD for α = 1, 2, 3, 4, 5 and θ = 3

Darna distribution is skewed to the right.

3 The Moments of the Darna Distribution

In this section, we will provide some moments of the Darna distribution and present some
tables of the mean, standard deviation, coefficient of skewness, coefficient of variation,
and coefficient of kurtosis for some selected parameters.
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Figure 2: The CDF of DD for α = 1, 2, 3, 4, 5 and θ = 3

Theorem 1: Let X ∼ fDD(x;α, θ). Then, the rth moment of X is

E (Xr) = r!
(α
θ

)r (4α2 + (r + 1)(r + 2)θ2

2 (2α2 + θ2)

)
,
θ

α
> 0, r > −1. (4)

Proof: The rth moment of the Darna distribution can be derived as

E (Xr) =

∞∫
0

xr
θ

2α2 + θ2

(
2α+

θ4

2α3
x2
)
e−

θx
α dx

=
θ

2α2 + θ2

∞∫
0

(
2αxr +

θ4

2α3
xr+2

)
e−

θx
α dx

=
θ

2α2 + θ2

 ∞∫
0

2αxre−
θx
α dx+

∞∫
0

θ4

2α3
xr+2e−

θx
α dx


=

θ

2α2 + θ2

(
2α

r!(
θ
α

)r+1 +
θ4

2α3

(r + 2)!(
θ
α

)r+3

)

=
θ

2α2 + θ2
r!

(
θ

α

)−r(
2α

1(
θ
α

) +
θ4

2α3

(r + 2)(r + 1)(
θ
α

)3
)

=
θ

2α2 + θ2
r!

(
θ

α

)−r (2α2

θ
+
θ(r + 2)(r + 1)

2

)
= r!

(α
θ

)r (4α2 + (r + 1)(r + 2)θ2

2 (2α2 + θ2)

)
.

Hence, the first four moments of the DD(θ, α) distributed random variable can be found
by substituting r = 1, 2, 3, 4, respectively, in Equation (4) as
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E (X) =
α

2θ

(
4α2 + 6θ2

2α2 + θ2

)
, θ > 0, E

(
X2
)

=
α2

θ2

(
4α2 + 12θ2

2α2 + θ2

)
, θ > 0,

E
(
X3
)

=
3α3

θ3

(
4α2 + 20θ2

2α2 + θ2

)
, θ > 0, E

(
X4
)

=
12α2

θ4

(
4α2 + 30θ2

2α2 + θ2

)
, θ > 0.

Then, the variance of the Darna distribution is given by

V (X) = E
(
X2
)
− [E(X)]2 =

4α6 + 16α4θ2 + 3α2θ4

(2θ2 + θ3)2
.

The coefficient of skewness, coefficient of kurtosis, and coefficient of variation of the
Darna distribution, respectively, are given by

SkDD =
E
(
X3
)
− 3µσ2 − µ3

σ3

=
2α11 + 17α9θ2 + 20α7θ4 + 9α5θ6 + 1.875α3θ8 + 0.1875αθ10

(α2 + 0.5 θ2)3
√

4α6+16α4θ2+3α2θ4

(2α2θ+θ3)2
(α4θ + 4α2θ3 + 0.75θ5)

,
(5)

KuDD =
E
(
X4
)
− 4µE

(
X3
)

+ 6E
(
X2
)
σ2 + 3E

(
X4
)

σ8

=

0.56 θ4
(
2α2 + θ2

)2(12.8α12 + 149.333α10θ2 + 248.533α8θ4

+181.333α6θ6 + 69.6α4θ8 + 13.6α2θ10 + θ12

)
(1.33α5 + 5.33α3θ2 + αθ4)4

,

(6)

and

CvDD =
σDD
µDD

=
θ
(
2α2 + θ2

)√
4α6+16α4θ2+3α2θ4

(2α2θ+θ3)2

2α3 + 3αθ2
. (7)

Some values of the mean, standard deviation, coefficient of variation, coefficient skewness
and coefficient kurtosis for the Darna distribution are obtained for various values of the
parameters and the results are presented in Table (1).

Table (1) indicates that the mean, standard deviation, coefficients of variation are
increasing as the values of α increasing. The values of skewness are decreasing from
α = 0.1 to α = 1, then start increasing for α > 1 up to α = 4 .
Theorem 3: The moment generating function (MGF) of the Darna distribution is

MX(t) =
θ

α2 (2α2 + θ2)

[
−2α4(αt− θ)2 − α2θ4

(αt− θ)3

]
. (8)
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Table 1: The mean, standard deviation, coefficients of variation, skewness and kurtosis
for the DD(θ, α) with different values of the parameter α when θ = 3

α µDD σDD CvDD SkDD KuDD

0.1 0.09985 0.05778 0.578630 1.15217 4.99412

0.2 0.19883 0.11580 0.582435 1.14495 4.97702

0.3 0.29608 0.17429 0.588659 1.13413 4.95027

0.4 0.39084 0.23339 0.597140 1.12125 4.91627

0.5 0.48246 0.29317 0.607665 1.10806 4.87801

0.6 0.57037 0.35362 0.619985 1.09623 4.83874

0.7 0.65418 0.41464 0.633836 1.08715 4.80170

0.8 0.73359 0.47606 0.648942 1.08184 4.76983

0.9 0.80848 0.53766 0.665033 1.08093 4.74562

1 0.87879 0.59920 0.681852 1.08465 4.73103

1.1 0.94460 0.66043 0.699161 1.09297 4.72745

1.2 1.00606 0.72109 0.716741 1.10564 4.73572

1.3 1.06338 0.78095 0.734400 1.12225 4.75621

1.4 1.11682 0.83982 0.751971 1.14234 4.78893

1.5 1.16667 0.89753 0.769309 1.16540 4.83353

1.6 1.21322 0.95395 0.786295 1.19093 4.88948

1.7 1.25679 1.00898 0.802828 1.21846 4.95604

1.8 1.29767 1.06257 0.818830 1.24754 5.03240

1.9 1.33617 1.11468 0.834239 1.27778 5.11765

2 1.37255 1.16531 0.849009 1.30883 5.21087

2.1 1.40707 1.21445 0.863108 1.34039 5.31114

2.2 1.43997 1.26216 0.876516 1.37217 5.41752

2.3 1.47147 1.30846 0.889223 1.40396 5.52913

2.4 1.50175 1.35342 0.901227 1.43556 5.64512

2.5 1.53101 1.39710 0.912534 1.46680 5.76469

2.6 1.55938 1.43956 0.923156 1.49756 5.88706

2.7 1.58702 1.48087 0.933109 1.52771 6.01155

2.8 1.61405 1.52110 0.942412 1.55717 6.13747

2.9 1.64056 1.56032 0.951090 1.58586 6.26424

3 1.66667 1.59861 0.959166 1.61372 6.39130

3.1 1.69244 1.63603 0.966668 1.64071 6.51815

3.2 1.71796 1.67264 0.973622 1.66680 6.64432

3.3 1.74327 1.70851 0.980057 1.69197 6.76942

3.4 1.76845 1.74369 0.986001 1.71619 6.89306

3.5 1.79353 1.77825 0.991480 1.73947 7.01494

3.6 1.81856 1.81223 0.996523 1.76181 7.13475

3.7 1.84356 1.84569 1.001160 1.78320 7.25227

3.8 1.86857 1.87867 1.005400 1.80367 7.36726

3.9 1.89361 1.91120 1.009290 1.82322 7.47956

4 1.91870 1.94334 1.012840 1.84187 7.58900
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Proof: The mgf of the Darna distribution can be proved as

E
(
etx
)

=

∞∫
0

etx
θ

2α2 + θ2

(
2α+

θ4x2

2α3

)
e−

θx
α dx

=
θ

2α2 + θ2

 ∞∫
0

2αe(t−
θ
α)xdx +

θ4

2α3

∞∫
0

x2e(t−
θ
α)xdx

 .

Let

I1 =

∞∫
0

2αe(t−
θ
α)xdx =

−2α

t− θ
α

,

and

I2 =
θ4

2α3

∞∫
0

x2e(t−
θ
α)xdx

=
θ4

2α3

 x2

t− θ
α

e(t−
θ
α)x

∣∣∣∣∣
∞

0

− 2

t− θ
α

∞∫
0

xe(t−
θ
α)xdx


=

−2θ4

2α3
(
t− θ

α

)3 .
Therefore,

E
(
etx
)

=
−4α4

(
t− θ

α

)2 − 2θ4

2α3
(
t− θ

α

)3 θ

2α2 + θ2

=
−2α4

(
t− θ

α

)2 − θ4
α3
(
t− θ

α

)3 θ

2α2 + θ2

=
θ

α2 (2α2 + θ2)

[
−2α4(αt− θ)2 − α2θ4

(αt− θ)3

]
.

Theorem 4: The mode of the Darna distribution is the solution of the equation

x

(
1− θ

2α
x

)
= 2
(α
θ

)3
. (9)

Proof:

log [f (x;α, θ)] = log

[
θ

2α2 + θ2

(
2α+

θ4x2

2α3

)
e−

θx
α

]
= log

[
θ

2α2 + θ2

]
+ log

[
2α+

θ4x2

2α3

]
+ log

[
e−

θx
α

]
.
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with the first derivative given by

d

dx
log [f (x;α, θ)] =

2x θ4

2α3

2α+ θ4x2

2α3

− θ

α
.

Setting it to zero and with simple algebra we get the proof.

4 Bonferroni and Lorenz Curves and Gini Index

Assume that the random variable X is non-negative with continuous and twice differ-
entiable cumulative distribution function F (x). The Bonferroni Curve of the random
variable X is defined as

B(p) =
1

pµ

q∫
0

xf(x)dx =
1

pµ

∞∫
0

xf(x)dx−
∞∫
q

xf(x)dx

 =
1

pµ

µ− ∞∫
q

xf(x)dx

 ,

where q = F−1(p) and p ∈ (0, 1]. The Lorenz curve is defined as

L(p) =
1

µ

q∫
0

xf(x)dx =
1

µ

∞∫
0

xf(x)dx−
∞∫
q

xf(x)dx

 =
1

µ

µ− ∞∫
q

xf(x)dx

 .

The Gini index is given by

G = 1− 1

µ

∞∫
0

(1− F (x))2dx =
1

µ

∞∫
0

F (x)(1− F (x))dx.

Now, for the Darna distribution, the Bonferroni curves, Lorenz curves and Gini index
are in the following theorem.

Theorem 5: The Bonferroni curve, Lorenz curve and Gini index for the Darna
distribution, respectively, are

B(p) =
1

2p

(
2−

e−
θq
α

(
4α5 + 6α3θ2 + θ5q3 + 3αθ4q2 + 4α4θq + 6α2θ3q

)
α3 (2α2 + 3θ2)

)
, (10)

L(p) = 1−
e−

qθ
α

(
4α5 + 4qα4θ + 6α3θ2 + 6qα2θ3 + 3q2αθ4 + q3θ5

)
2α3 (2α2 + 3θ2)

, (11)

and the Gini index is

GDD(θ, α) =
32α4 + 72α2θ2 + 15θ4

64α4 + 128α2θ2 + 48θ4
. (12)

Table (2) shows that the Gini index values for the Darna distribution for θ = 2 are
increasing as α increasing up to α = 3.6, then it is decreasing. But for θ = 5 the values
of the Gini index are increasing for all considered values of α. However, for fixed α, as
θ increasing the Gini index values are decreasing.
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Table 2: Gini index values for the Darna distribution for θ = 2, 5 and selected values of
α

α GDD(2, α) α GDD(2, α) α GDD(2, α) α GDD(5, α) α GDD(5, α) α GDD(5, α)

0.1 0.314157 1.6 0.475150 3.1 0.514098 0.1 0.312766 1.6 0.367578 3.1 0.444452

0.2 0.319017 1.7 0.481482 3.2 0.514438 0.2 0.313563 1.7 0.373135 3.2 0.448517

0.3 0.326761 1.8 0.486988 3.3 0.514675 0.3 0.314880 1.8 0.378728 3.3 0.452414

0.4 0.336911 1.9 0.491746 3.4 0.514825 0.4 0.316705 1.9 0.384325 3.4 0.456145

0.5 0.348889 2 0.495833 3.5 0.514900 0.5 0.319017 2 0.389901 3.5 0.459710

0.6 0.362088 2.1 0.499326 3.6 0.514913 0.6 0.321792 2.1 0.395429 3.6 0.463112

0.7 0.375929 2.2 0.502293 3.7 0.514874 0.7 0.325003 2.2 0.400888 3.7 0.466353

0.8 0.389901 2.3 0.504799 3.8 0.514790 0.8 0.328616 2.3 0.406258 3.8 0.469437

0.9 0.403585 2.4 0.506904 3.9 0.514670 0.9 0.332598 2.4 0.411523 3.9 0.472368

1 0.416667 2.5 0.508658 4 0.514520 1 0.336911 2.5 0.416667 4 0.475150

1.1 0.428924 2.6 0.510109 4.1 0.514345 1.1 0.341517 2.6 0.421678 4.1 0.477787

1.2 0.440219 2.7 0.511299 4.2 0.514151 1.2 0.346376 2.7 0.426546 4.2 0.480284

1.3 0.450487 2.8 0.512263 4.3 0.513940 1.3 0.351450 2.8 0.431263 4.3 0.482647

1.4 0.459710 2.9 0.513033 4.4 0.513716 1.4 0.356700 2.9 0.435822 4.4 0.484880

1.5 0.467914 3 0.513636 4.5 0.513483 1.5 0.362088 3 0.440219 4.5 0.486988

5 Mean and Median Deviations

To measure the scatter in the population, the mean deviation about the mean Z1(x),
and the mean deviation about the median Z2(x), can be used, where

Z1(x) =

∞∫
0

|x− µ|f(x)dx =

µ∫
0

(µ− x)f(x)dx+

∞∫
µ

(x− µ)f(x)dx = 2µF (µ)−2

µ∫
0

xf(x)dx,

and

Z2(x) =

∞∫
0

|x−M |f(x)dx =

M∫
0

(M − x)f(x)dx+

∞∫
M

(x−M)f(x)dx = µ−2

M∫
0

xf(x)dx,

where µ and M are the population mean and median, respectively. The mean and
median deviations about the mean and median for the Darna distribution are defined in
the following theorem.

Theorem 6: Let X has fDD(x; θ, α), the mean and median deviations about the
mean and median, respectively, are

Z1(θ, α) =
α
(
2α2 + 3θ2

)2 (
4α2 + 3θ2

)
θ(2α2 + θ2)3

e
4α2

2α2+θ2
−3
, (13)

and

Z2(θ, α) =
e−

θM
α

[
θ5M3 + 3αθ4M2 − 2α5

(
e
θM
α − 2

)
+ 4α4θM − 3α3θ2

(
e
θM
α − 2

)
+ 6α2θ3M

]
α2 (2α2θ + θ3)

. (14)

Proof: For the Darna distribution we have
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FDD(µ;α, θ) = 1−
e
−θ

(
2θ

2α2+θ2
+ 1
θ

) [
4α4 + 2α2θ2 + α2θ4

(
2θ

2α2+θ2
+ 1

θ

)2
+ 2α2θ3

(
2θ

2α2+θ2
+ 1

θ

)]
2α2 (2α2 + θ2)

,

and

µ∫
0

xf(x)dx =

α
(
2α2 + 3θ2

) [
e3
(
2α2 + θ2

)3 − e
4α2

2α2+θ2
(
16α6 + 40α4θ2 + 38α2θ4 + 13θ6

)]
e3θ(2α2 + θ2)4

.

Hence, the mean deviation about mean for the Darna distribution is given by

Z1(x) = 2µF (µ)− 2

µ∫
0

xf(x)dx =
αe

4α2

2α2+θ2
−3(

2α2 + 3θ2
)2 (

4α2 + 3θ2
)

θ(2α2 + θ2)3
.

Also,
M∫
0

xf(x)dx =
θ
(
6α3−e−

θM
α (6α3+θ3M3+3αθ2M2+6α2θM)

)
2α2(2α2+θ2)

+
2α2

(
α−e−

θM
α (α+θM)

)
2α2θ+θ3

. There-

fore,

Z2(x) = µ− 2

M∫
0

xf(x)dx

=
e−

θM
α

[
θ5M3 + 3αθ4M2 − 2α5

(
e
θM
α − 2

)
+ 4α4θM − 3α3θ2

(
e
θM
α − 2

)
+ 6α2θ3M

]
α2 (2α2θ + θ3)

.

6 The Stress-Strength Reliability and Order Statistics

6.1 The stress-strength reliability

The stress-strength reliability explain the life of a component that has a random strength
Y that is subjected to a random stress X. For independent random variables X and Y
the stress-strength reliability is defined as

R = P (Y < X) =

∞∫
0

P (Y < X|X = x) f(x)dx =

∞∫
0

f(x; θ, α)F (x; , λ)dx.

Let the random variables X and Y are independent and observed from the Darna dis-
tribution.
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RDD = P (YDD < XDD)

=
αΥ

(2α2 + θ2) (2λ2 + Υ2) (αΥ + θλ)5



2α6
(
Υ6 + 2λ2Υ4

)
+ 18αθ5λ5Υ

+6θ6λ6 + 4α5θλΥ3
(
4λ2 + Υ2

)
+α4θ2Υ2

(
24λ4 + Υ4 + 4λ2Υ2

)
+α3θ3λΥ

(
16λ4 + 5Υ4 + 10λ2Υ2

)
+2α2θ4λ2

(
2λ4 + 5Υ4 + 10λ2Υ2

)


.

(15)

Remark: It can be seen that RDD is a function of the stress parameters (θ, α) and
strength parameters (Υ, λ). Also, RDD = 0.5 if Υ = θ = 1, orΥ = θ = α = λ = 1, and
for α = λ = 1, we have .

RDD =
Υ

(θ2 + 2) (Υ2 + 2) (θ + Υ)5

6θ6 + 2
(
Υ6 + 2Υ4

)
+ 2θ4

(
5Υ4 + 10Υ2 + 2

)
+θ3Υ

(
5Υ4 + 10Υ2 + 16

)
+ 4θΥ3

(
Υ2 + 4

)
+θ2Υ2

(
Υ4 + 4Υ2 + 24

)
+ 18θ5Υ

 .

6.2 Order statistics

Let X(1:m), X(2:m), ..., X(m:m) be the order statistics of the random sample X1, X2, ..., Xm

selected from a PDF and CDF f(x) and F (x), respectively. The PDF of the ith order
statistics X(i:m) as defined by David and Nagaraja (2003) as

f(i:m)(x) =
m!

(i− 1)!(m− i)!
[F (x)]i−1[1− F (x)]m−if(x), i = 1, 2, ...,m. (16)

From Equation (17), the PDF of smallest order statistic, X(1:m), and largest order
statistic, X(m:m), are respectively, given by

f(1:m)(x; θ, α) =
θm
(
4α4 + θ4x2

)
2mα2m+1(2α2 + θ2)m

(
4α4 + 2α2θ2 + θ4x2 + 2αθ3x

)m−1
e−m

θx
α , (17)

with CDF given by

F(1:m)(x; θ, α) =
1

2
mδ1−m

(
1−

e−
θx
α

(
4α4 + 2α2θ2 + θ4x2 + 2αθ3x

)
2α2 (2α2 + θ2)

)2

, (18)

where δm1,m2,... equal to 1 if all mi are equal, and 0 otherwise. The PDF of largest order
statistic, X(m:m), is given as

f(m:m)(x; θ, α) =
θme−

θx
α

(
2α+ θ4x2

2α3

)
2α2 + θ2

(
1−

e−
θx
α

(
4α4 + 2α2θ2 + θ4x2 + 2αθ3x

)
2α2 (2α2 + θ2)

)m−1
,

(19)
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with CDF

F(m:m)(x; θ, α) =
m

m+ 1

(
1−

e−
θx
α

(
4α4 + 2α2θ2 + θ4x2 + 2αθ3x

)
2α2 (2α2 + θ2)

)m+1

. (20)

7 Maximum Likelihood Estimation and Rényi Entropy

7.1 Maximum likelihood estimation

For a random sample of size n, X1, X2, ..., Xn from the Darna distribution with pa-
rameters θ > 0, α > 0. The maximum likelihood estimator of the Darna distribution
parameter can be obtained as follows

L(x; θ, α) =
n∏
i=1

f(xi, θ, α) =

(
θ

2α2 + θ2

)n n∏
i=1

(
2α+

θ4x2i
2α3

)
e−

θxi
α .

The logarithm of the last equation is

lnL(x; θ, α) = n ln

(
θ

2α2 + θ2

)
+

n∑
i=1

ln

(
2α+

θ4x2i
2α3

)
−

n∑
i=1

θxi
α

and its derivative with respect θ and α, respectively, are

d ln

dθ
=
n

θ
− 2nθ

2α2 + θ2
+

n∑
i=1

 4θ3x2i
2α3

2α+
θ4x2i
2α3

− n∑
i=1

xi
α
,

and

d ln

dα
=
−4nα

2α2 + θ2
+

n∑
i=1

2 +
(
−3α−4

)
x2i

θ4

2

2α+
θ4x2i
2α3

+
n∑
i=1

θxi
α2

.

Since there is no closed from for these equations, then the MLE θ̂ and α̂ of θ and α,
respectively can be solved numerically.

7.2 The Rényi entropy

The Rényi entropy of a random variable X is a measure of variation of the uncertainty
and it defined as

RE(β) =
1

1− β
log

 ∞∫
0

f(x)βdx

 ,

where β > 0 and β 6= 0. For more about entropy see Zamanzade and Al-Omari (2016),
Zamanzade (2015), and Al-Omari and Haq (2019b).

Theorem 8: If X ∼ fDD (x; θ, α), the Rényi entropy is defined as
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RE(β, θ, α) =
1

1− β
log

( 2α θ

2α2 + θ2

)β β∑
j=0

(
β

j

)(
θ

α

)2j−1 (2j)!

4jβ2j+1

 . (21)

Proof: The Rényi entropy of the Darna distribution can be derived as

RE(β, θ, α) =
1

1− β
log

 ∞∫
0

[fDD (x; θ, α)]βdx


=

1

1− β
log

 ∞∫
0

(
θ

2α2 + θ2

(
2α+

θ4x2

2α3

)
e−

θx
α

)β
dx


=

1

1− β
log

( 2α θ

2α2 + θ2

)β ∞∫
0

(
1 +

θ4x2

4α4

)β
e−

θβ
α
xdx


=

1

1− β
log

( 2α θ

2α2 + θ2

)β ∞∫
0

β∑
j=0

(
β

j

)(
θ4x2

4α4

)j
e−

θβ
α
xdx



=
1

1− β
log

( 2α θ

2α2 + θ2

)β β∑
j=0

(
β

j

)(
θ4

4α4

)j
(2j)!(
βθ
α

)2j+1


=

1

1− β
log

( 2α θ

2α2 + θ2

)β β∑
j=0

(
β

j

)(
θ4

4α4

)j
α2j+1(2j)!

(βθ)2j+1


=

1

1− β
log

( 2α θ

2α2 + θ2

)β β∑
j=0

(
β

j

)(
θ

α

)2j−1 (2j)!

4jβ2j+1

 .
Based on Table 3 we can conclude the following:

• For fixed values of θ and β, the Rényi entropy is increasing as α is increasing. As
an example, for θ = 2 and β = 3, the Rényi entropy for α = 1, 2 and 15, are
0.87156, 1.05089, and 2.576, respectively.

• For fixed θ and α the Rényi entropy of Darna Distribution is decreasing as is
increasing. As an example for =6, =2, the Rényi entropy values are 1.71950,
1.51996 for β = 3, 6, respectively.
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Table 3: Rényi entropy values for selected values of the Darna distribution parameters
α RE(3, 2, α) α RE(3, 2, α) α RE(3, 2, α) α RE(6, 2, α) α RE(6, 2, α) α RE(6, 2, α)

1 0.87156 16 2.63911 31 3.29292 1 0.77338 16 2.44687 31 3.10162

2 1.05089 17 2.69856 32 3.32450 2 0.82452 17 2.50646 32 3.13322

3 1.21434 18 2.75473 33 3.35511 3 0.99656 18 2.56275 33 3.16385

4 1.39694 19 2.80796 34 3.38482 4 1.18849 19 2.61609 34 3.19358

5 1.56716 20 2.85854 35 3.41368 5 1.36426 20 2.66676 35 3.22246

6 1.71950 21 2.90671 36 3.44173 6 1.51996 21 2.71501 36 3.25052

7 1.85513 22 2.95270 37 3.46902 7 1.65774 22 2.76106 37 3.27783

8 1.97647 23 2.99668 38 3.49559 8 1.78052 23 2.80510 38 3.30441

9 2.08580 24 3.03883 39 3.52147 9 1.89087 24 2.84730 39 3.33030

10 2.18508 25 3.07929 40 3.54670 10 1.99088 25 2.88781 40 3.35554

11 2.27587 26 3.11819 41 3.57132 11 2.08222 26 2.92675 41 3.38016

12 2.35942 27 3.15565 42 3.59534 12 2.16620 27 2.96424 42 3.40420

13 2.43677 28 3.19176 43 3.61880 13 2.24388 28 3.00038 43 3.42767

14 2.50874 29 3.22662 44 3.64173 14 2.31610 29 3.03527 44 3.45060

15 2.57600 30 3.26032 45 3.66414 15 2.38358 30 3.06899 45 3.47302

8 Stochastic Ordering and Reliability Analysis

8.1 Stochastic ordering

The stochastic ordering can be used to compare two positive continuous distributions.
A random variable X is smaller than random variable Y in

1. Mean residual life order denoted by X ≤
MRLO

Y , if mX(x) ≤ mY (x) for all x.

2. Hazard rate order denoted by X ≤
HRO

Y , if hX(x) ≥ hY (x) for all x.

3. Stochastic order denoted by X ≤
SO
Y , if FX(x) ≥ FY (x) for all x.

4. Likelihood ratio order denoted by X ≤
LRO

Y, if fX(x)
fY (x) decreases in x.

It is shown by Shaked and Shanthikumar (1994) that

X ≤
LRO

Y ⇒ X ≤
HRO
⇓

X ≤
SO

Y

Y ⇒ X ≤
MRLO

Y.

Theorem 9: Let X ∼ fX (x;α, θ), Y ∼ fY (x;β, η), and if (α < β, and θ > η), then
X 6

LRO
Y , X 6

HRO
Y , X 6

MRLO
Y and X 6

SO
Y .

Proof: Let X ∼ fX (x;α, θ), Y ∼ fY (x;β, η). To prove the theorem, it is sufficient

to show that fX(x;α,θ)
fY (x;β,η) is a deceasing function of x, where its log is

log
fX (x;α, θ)

fY (x;β, η)
= log

 θ
2α2+θ2

(
2α+ θ4x2

2α3

)
e−

θ
α
x

η
2β2+η2

(
2α+ η4x2

2β3

)
e
− η
β
x


= log

[
θ
(
2β2 + η2

)
η (2α2 + θ2)

]
+ log

2α+ θ4x2

2α3

2α+ η4x2

2β3

+ log e
−

(
θ
α
− η
β

)
x
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= log

[
θ
(
2β2 + η2

)
η (2α2 + θ2)

]
+ log

(
2α+

θ4x2

2α3

)
− log

(
2β +

η4x2

2β3

)
−
(
θ

α
− η

β

)
x.

Taking the derivative of the last equation with respect to x yields

d

dx
log

(
fX (x;α, θ)

fY (x;β, η)

)
=

2xθ4

2α3

2α+ θ4x2

2α3

−
2xη4

2β3

2β + η4x2

2β3

−
(
θ

α
− η

β

)

=
2θ4x

4α4 + θ4x2
− 2η4x

4β4 + η4x2
−
(
θ

α
− η

β

)
.

Hence, if (α 6 β, θ > η), then d
dx log

(
fX(x;α,θ)
fY (x;β,η)

)
< 0. Therefore, the theorem is proved.

8.2 Reliability analysis

The reliability and hazard function of function of the Darna distribution are given by

RDD(x; θ, α) = 1− FDD(x; θ, α)

=

(
4α4 + 2α2θ2 + θ4x2 + 2αθ3x

)
2α2 (2α2 + θ2)

e−
θx
α ; x > 0, α > 0, θ > 0.

(22)

1 2 3 4

x

0.2

0.4

0.6

0.8

1.0

RDDHxL

Α =5

Α =4

Α =3

Α =2

Α =

Figure 3: The reliability function of DD for α = 1, 2, 3, 4, 5 and θ = 3

and

HDD(x; θ, α) =
fDD(x; θ, α)

1− FDD(x; θ, α)

=
4α4θ + θ5x2

4α5 + 2α3θ2 + αθ4x2 + 2α2θ3x
.

(23)
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Figure 4: The hazard function of DD for α = 1, 2, 3, 4, 5 and θ = 3

The reversed hazard rate and odds functions for the Darna distribution, respectively,
are defined as

RHDD(x; θ, α) =
fDD(x; θ, α)

FDD(x; θ, α)

=
4α4θ + θ5x2

2α3 (2α2 + θ2) e
θx
α − α (4α4 + 2α2θ2 + θ4x2 + 2αθ3x)

,

(24)

and

ODD(x; θ, α) =
FDD(x; θ, α)

1− FDD(x; θ, α)

=
2α2

(
2α2 + θ2

)
e
θx
α

4α4 + 2α2θ2 + θ4x2 + 2αθ3x
− 1.

(25)
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Figure 5: The reversed hazard rate functions of DD for α = 1, 2, 3, 4, 5 and θ = 3
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Figure 6: The odds functions of DD for α = 1, 2, 3, 4, 5 and θ = 3

9 An Application of Real Data

In this section, to justify the suitability of the Darna distribution in a practical applica-
tion we used a real data set from the excesses of flood peaks (in m3/s ) Wheaton River
near Car cross in the Yukon Territory, Canada. 72 exceedances of the years 1958 to 1984
are recorded, rounded to one decimal place. These data is considered by Choulakian and
Stephens (2001), and Bodhisuwan et al. (2016) are

1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6,
14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1,
0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5,
3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5,
27.0

The Darna distribution is fitted to the real data and compared with the following dis-
tributions

1. Size biased Ishita distribution, SBID(α): f(x;α) = α4

α3+6
x
(
α+ x2

)
e−αx;x >

0, α > 0.

2. Janardan distribution, JD(α, θ): f(x;α, θ) = θ2

α(θ+α2)
(1 + αx)e−

θ
α
x;x > 0, θ >

0, α > 0.

3. Ishita distribution, ID(τ): f(x; τ) = τ3

τ3+2

(
τ + x2

)
e− τx; x > 0, τ > 0.

4. Sushila distribution, SD(δ, η): f(x; η, δ) = δ2

η(δ+1)

(
1 + x

η

)
e
− δ
η
x
;x > 0, δ > 0, η >

0.

The distributions parameters are estimated based on maximum likelihood method,
and the negative maximized log-likelihood values (MLL), Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion
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Table 4: The MLEs of the unknown parameter with the corresponding standard errors
and the confidence intervals for the 72 exceedances data.

Model MLE Std. Dev. 0.95%CI

ID(τ) τ̂ = 0.250504 0.016805 (0.217566, 0.283442)

SBID(α) α̂ = 0.330328 0.019469 (0.292170, 0.368486)

JD(α, θ) α̂ = 0.031261 0.005674 (0.020139, 0.042382)

θ̂ = 0.003172 0.000565 (0.002064, 0.004279)

SD(δ, η) η̂ = 40.63191 46.152651 (-49.825630, 131.0894)

δ̂ = 3.988327 4.008477 (-3.868143, 11.84480)

DD(x; θ, α) α̂ = 0.897484 5.404177 (-9.694508, 11.489475)

θ̂ = 0.074041 0.445767 (-0.799646,0.947728)

Table 5: The AIC, CAIC, BIC, HQIC, -2LL, KS, P-value for 72 exceedances data

Model ID(τ) SBID(α) SD(δ, η) JD(α, θ) DD(x; θ, α)

AIC 603.7872 698.8290 508.5015 508.6630 508.2554

CAIC 603.8444 698.8862 508.6755 508.8369 508.4293

BIC 606.0639 701.1057 513.0549 513.2163 512.8087

HQIC 604.6936 699.7354 510.3142 510.4757 510.0681

−2LL 300.8936 348.4145 252.2508 252.3315 252.1277

K.S 0.159313 0.340367 0.148772 0.150300 0.141658

P − V alue 0.051733 1.14e-07 0.082572 0.077313 0.111173

(BIC), Hannan-Quinn Information Criterion (HQIC), and Kolmogorov-Smirnov (KS)
test statistics where these measures are defined as

• AIC = −2MLL+ 2κ,

• CAIC = −2MLL+ 2κn
n−κ−1 ,

• HQIC = 2Log {Log(n)[κ− 2MLL]},

• BIC = −2MLL+ κLog(n),

• K.S = Supn |Fn(x)− F (x)|, Fn(x) = 1
n

n∑
i=1

Ixi≤x,

where κ is the number of parameters and n is the sample size. Fn(x) is empirical
distribution function and F (x) is cumulative distribution. The results are summarized
in Tables (4) and (5).

It is clear that the Darna distribution have the smallest values of the criteria AIC,
CAIC, BIC, and HQIC. Also, the Darna distribution have the smallest value of the KS
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among the other distributions with largest P-value of 0.111173. Hence, we can say that
the Darna distribution represents a good fit to

10 Conclusions

A new continuous two parameters lifetime distribution is suggested in this paper and
called as Darna distribution. The main statistical properties of the distribution are pro-
vided. The distributions of order statistics from the Darna distribution are presented.
The reliability, hazard, reversed hazard and odds functions are given. Also, the maxi-
mum likelihood estimation of the distribution parameters are presented. The Fisher’s
information, and Rényi entropy are proved for the Darna distribution. The stochastic
ordering, stress-strength, mean and median deviations about the mean and the median
of the Darna distribution are established. A real data set of 72 exceedances is considered
for illustration. Also, for future research the authors will estimate the parameters of the
newly developed distributions using ranked set sampling. See for example Al-Omari and
Haq (2019a), Zamanzade and Mahdizadeh (2017), Haq et al. (2016), Haq et al. (2015)
and Al-Omari and Zamanzade (2019) proposed new ranked set sapling for estimating
the population mean.
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