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In recent years, the use of copulas has grown rapidly, especially in survival
analysis. In this paper, we introduce a bivariate modified Weibull distribu-
tion derived from the Farlie–Gumbel–Morgenstern (FGM), a copula function
commonly used to model very weak linear dependences. Considering the
presence of non censored data and censored data, an extensive simulation
study was developed to check the performance of the maximum likelihood
method in estimating the parameters of the proposed model. Maximum like-
lihood and Bayesian approaches for the estimation of the model parameters
are presented. In the Bayesian analysis, the posterior distributions of the pa-
rameters are estimated using Markov chain Monte Carlo (MCMC) method-
ology. An example, considering a real data set, is introduced to illustrate the
proposed methodology.

keywords: Bayesian estimates, bivariate data, copula function, simulation
study, survival analysis.

1 Introduction

In the lifetime data analysis, researchers commonly use standard non-parametric tech-
niques, as for example, the Kaplan–Meier estimators for the survival function, the log-
rank test or semi-parametrical Cox proportional hazard models (Kleinbaum and Klein,
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2012). However, in some situations more complex models are needed. A very common
example in the survival analysis is given when for each patient we observe two lifetimes,
that is, the time to the events can be modeled by a bivariate distribution function. In the
statistical literature, many authors introduced different solutions to modeling bivariate
time-to-event data. As examples, we can consider Hougaard (1987), Liang et al. (1995),
Parner (2001) and Hougaard (2012).

Commonly, a bivariate survival dataset presents dependence between the times to
events and the study of this dependence structure has been the goal of many researchers.
For the study of this dependence, a popular technique is the use of frailty models pro-
posed by Vaupel et al. (1979). In these models one or more random effects are included
to model the dependence between the observations. In this case the marginal times are
conditionally independent given the frailty variable. An other frequently used approach
involves bivariate parametric distributions that introduce specific parameters to capture
the dependence between the lifetimes, for example: Gumbel bivariate exponential (Gum-
bel, 1960), Marshall-Olkin bivariate exponential (Marshall and Olkin, 1967), Block and
Basu bivariate exponential (Block and Basu, 1974) and Basu-Dhar Bivariate geometric
distributions (Basu and Dhar, 1995; De Oliveira and Achcar, 2018).

An alternative method to model dependence between the survival times is the use of
copula functions, described for example by Nelsen (1999), Balakrishnan and Lai (2009),
Jaworski et al. (2010) and Joe (2014). Copulas are basically functions that “join ”or
couple univariate distributions creating multivariate distributions. The copula functions
allow us to define different distributions for the margins, with a dependence structure of
the copula, creating a multivariate distribution with the selected margins. In this way
copulas are multivariate distributions modeling the dependence structure between vari-
ables, irrespective of their marginal distributions. Copula functions have been applied
in many fields, including: hydrology and climate (Favre et al., 2004; Zhang and Singh,
2006), management science (Abbas, 2006), finance and economics (Roch and Alegre,
2006; Patton, 2006; Rivieccio, 2015) and medical science (Viswanathan and Manatunga,
2001; Achcar et al., 2016). It is important to note that different copula functions intro-
duce different structures of dependence among the variables.

The focus of this article is related to bivariate survival data in different kinds of sit-
uations including censored data where two lifetimes are observed for the same patient.
For example, the interest could be in studying the lifetimes of paired human organs such
as kidneys and eyes or the times between a first and a second hospitalization for a par-
ticular disease, among others. We consider the modified Weibull distribution, since this
distribution is more flexible in relation to the risk function when compared, for example,
with the standard exponential and Weibull distributions (Rinne, 2008; Bhattacharjee
and Misra, 2016). We also present a simulation study of the bivariate modified Weibull
distribution derived from a Farlie-Gumbel-Morgenstern copula, in the presence of dif-
ferent sample sizes, percentage of censored data and different correlations between the
times, with a brief comparison among classic and Bayesian estimates. Applications to
real data are also presented, considering both the frequentist and Bayesian approaches.
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2 Methods

2.1 Modified Weibull Distribution (MW)

Let T be a random variable representing the time to some event of interest. The proba-
bility density function of the modified Weibull distribution (MW) with three parameters,
introduced by Lai et al. (2003), is given by

f(t) = αtβ−1(β + λt) exp(λt− αtβeλt), (1)

where t ≥ 0, α > 0, β > 0 and λ > 0. The corresponding survival function is given by

S(t) = 1− P (T < t) = exp(−αtβeλt), (2)

and the hazard function takes the following form:

h(t) =
f(t)

S(t)
= αtβ−1(β + λt) exp(λt). (3)

The MW distribution contains as special sub-models three well-known distributions:

(1) For λ = 0, the expression (1) is the probability density function of a two-parameter
Weibull distribution, with parameters α and β.

(2) When λ = 0 and β = 1, the expression (1) is reduced to the probability density
function of an exponential distribution with only one parameter α.

(3) If λ = 0 and β = 2, the expression (1) is reduced to the probability density function
of a Rayleigh distribution with parameter α.

An important characteristic of the MW distribution is the flexibility of its hazard
function. As observed by Lai et al. (2003), if β > 1 in the expression (3) we have an
increasing form for the hazard function. However, if 0 < β < 1 we observed a bathtub
shape for expression (3). Figure 1 illustrates the probability density function, the survival
function and the hazard function of the MW distribution, considering different values
for the parameters α, β and λ.
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Figure 1: The probability density function (a), survival function (b) and hazard function
(c) of the modified Weibull distributions for some values of α, β and λ.
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2.2 Farlie-Gumbel-Morgenstern Copula (FGM)

Copula functions are used to represent the joint distribution function of two marginal
univariate distributions. If S(tk) is the univariate survival function for Tk, k = 1, 2, the
joint survival function S(t1, t2) is defined by a copula function given by

S(t1, t2) = Cφ(S(t1), S(t2)), (4)

for t1 > 0 and t2 > 0, where φ is a measure of the dependence between T1 and T2.
Farlie–Gumbel–Morgenstern copula was originally proposed by Morgenstern (1956)

and further studied by Gumbel (1960) and Farlie (1960). The joint survival function
considering the FGM copula for T1 and T2 is given by

S(t1, t2) = S(t1)S(t2) {1 + φ[1− S(t1)][1− S(t2)]} , (5)

where −1 ≤ φ ≤ 1. When φ = 0 the joint survival function (5) takes the form S(t1, t2) =
S(t1)S(t2), that is, in this case T1 and T2 are independent. The parameter φ is related
to the Kendall rank correlation coefficient by the expression

τ(φ) =
2φ

9
. (6)

We observe that −2/9 ≤ τ(φ) ≤ 2/9, or to say, the FGM copula is only appropriate
to model weak dependences. In other situations, more appropriate copula functions
are given by Gumbel copula (Gumbel, 1960), Clayton copula (Clayton, 1978) and Ali-
Mikhail-Haq copula (Ali et al., 1978).

2.3 Bivariate Modified Weibull Distribution Derived From FGM
(BMW)

Considering the bivariate lifetime distributions with a dependence structure given by
FGM copula functions, we assume as a special model, the modified Weibull distribution.
In this way, the marginal MW distributions for the lifetimes T1 and T2 have density
functions given by

f1(t1) = α1t
β1−1
1 (β1 + λ1t) exp(λ1t1 − α1t

β1
1 e

λ1t1) (7)

and
f2(t2) = α2t

β2−1
2 (β2 + λ2t) exp(λ2t2 − α2t

β2
2 e

λ2t2). (8)

The survival functions are given by

S1(t1) = exp(−α1t
β1
1 e

λ1t1) (9)

and
S2(t2) = exp(−α2t

β2
2 e

λ2t2), (10)

with distribution functions given, respectively, by F1(t1) = 1 − S1(t1) and F2(t2) =
1− S2(t2).
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From the expressions (9) and (10), the joint survival function based on the FGM
copula expressed in (5) is given by

S(t1, t2) = exp(−α1t
β1
1 e

λ1t1 − α2t
β2
2 e

λ2t2)

×
{

1 + φ[1− exp(−α1t
β1
1 e

λ1t1)][1− exp(−α2t
β2
2 e

λ2t2)]
}
, (11)

The joint probability density function for T1 and T2 is given by the second derivate of
S(t1, t2) with respect to t1 and t2, that is,

f(t1, t2) =
∂2S(t1, t2)

∂t1∂t2
. (12)

2.4 Maximum Likelihood Estimation

Let us consider that either T1 and T2 can be censored and that censoring is independent
of the time to the events of interest in the study. Assuming a random sample of size n,
each ith observation (i = 1, ..., n) can be classified into one of four groups following:

(1) C1 : t1i and t2i are complete observations, they are uncensored lifetimes;

(2) C2 : t1i is a complete observation and t2i is a censored lifetime;

(3) C3 : t2i is a complete observation and t1i is a censored lifetime;

(4) C4 : t1i and t2i are censored lifetimes.

Thus, the likelihood function is given by

L =
∏
i∈C1

[
∂2S(t1i, t2i)

∂t1i∂t2i

] ∏
i∈C2

[
−∂S(t1i, t2i)

∂t1i

] ∏
i∈C3

[
−∂S(t1i, t2i)

∂t2i

] ∏
i∈C4

[S(t1i, t2i)] (13)

Let us consider two indicator variables, denoted by δ1i and δ2i, where δji = 1 when
tji is an observed lifetime and δji = 0 when tji a censored observation, j = 1, 2 and
i = 1, ..., n. In this way, we can rewrite the likelihood function as

L =
n∏
i=1

[
∂2S(t1i, t2i)

∂t1i∂t2i

]δ1iδ2i [
−∂S(t1i, t2i)

∂t1i

]δ1i(1−δ2i)
×

[
−∂S(t1i, t2i)

∂t2i

]δ2i(1−δ1i)
[S(t1i, t2i)]

(1−δ1i)(1−δ2i) . (14)

We observe that if there is no censored observations, the expression above is reduced
to the form,

L =
n∏
i=1

∂2S(t1i, t2i)

∂t1i∂t2i
=

n∏
i=1

f(t1, t2), (15)
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where S(t1i, t2i) is given by equation (5) considering the FGM copula.

The first partial derivatives of S(t1i, t2i) with respect to t1i and t2i are obtained from
the relations,

−∂S(t1i, t2i)

∂t1i
= f1(t1)S2(t2) [1 + φ(1− S2(t2))(1− 2S1(t1))] (16)

and

−∂S(t1i, t2i)

∂t2i
= f2(t2)S1(t1) [1 + φ(1− S1(t1))(1− 2S2(t2))] . (17)

In addition, we have

∂2S(t1i, t2i)

∂t1i∂t2i
= f1(t1)f2(t2) [1 + φ(1− 2S1(t1))(1− 2S2(t2))] , (18)

the joint probability density function obtained from a FGM copula function. Replacing
(7), (8) , (9) and (10) in the above expression, we obtain the joint probability density
function of the bivariate modified Weibull distribution based on a FGM copula.

2.5 Bayesian Analysis

Assuming the proposed model, let θ = (α1, β1, λ1, α2, β2, λ2, φ) be the vector of unknown
parameters. Under a Bayesian framework, the joint posterior distribution for the model
parameters is obtained by combining the joint prior distribution of the parameters and
the likelihood function given by equation (14). To simulate samples from the joint
posterior distribution, we could consider the use of MCMC (Markov Chain Monte Carlo)
algorithms implemented in the OpenBUGS software, where we just need to specify the
data distribution and the prior distribution for the parameters.

In this proposed model under a Bayesian approach, we assume independent gamma
prior distributions for the parameters α1, β1, λ1, α2, β2 and λ2, since these parameters
are positive. That is, we assume α1 ∼ Gamma(a1, b1), α2 ∼ Gamma(a2, b2), β1 ∼
Gamma(a3, b3), β2 ∼ Gamma(a4, b4), λ1 ∼ Gamma(a5, b5) and λ2 ∼ Gamma(a6, b6),
where ak and bk,k = 1, ..., 6, are known hyperparameters, and Gamma(a, b) denotes
a gamma distribution with mean a/b and variance a/b2. We also assume that the
dependence parameter φ follows a uniform prior distribution (1 − φ)/2 ∼ Beta(c, d).
This choice assures that φ ∈ (−1, 1).

2.6 A simulation method to generate a random variable with a BMW
distribution

Adapting an algorithm suggested by Balakrishnan and Lai (2009), we simulate a sample
of size n from the bivariate modified Weibull distributions based on the FGM copula
with right-censored data following the steps:

Step 1. Fix values for the parameters: α1, β1, λ1, α2, β2, λ2 and φ.
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Step 2. Generate n random samples from ui1 ∼ U(0, 1).

Step 3. Get values from T1i considering F1(t1i) = 1−S1(t1i) = ui1 and isolate t1i, from
which, we get

t′1i = exp

{
− 1

β1

[
β1W

(
λ1
β1
e

1
β1

ln

(
− ln(1−ui1)

α1

))
− ln

(
− ln (1− ui1)

α1

)]}
, (19)

where W (·) is the Lambert W function (Corless et al., 1996).

Step 4. Generate n values for c1i from an exponential distribution with parameter θ1,
where c1i denotes the censored time to event data and θ1 controls the proportion
of censored observations.

Step 5. Calculate t1i = min(t′1i, c1i).

Step 6. Pairs of values (t1i, δ1i) are thus obtained, where δ1i = 1 if t1i < c1i and δ1i = 0
if t1i > c1i.

Step 7. Generate n random quantities from ui2 ∼ U(0, 1).

Step 8. Get values from wi, considering the expression given by,

wi =
ui2 − φui12 + φui1 − ui1

2φui1(1− ui1)
. (20)

This expression is the derivative of (5) with respect to ui1, when S(t1i) = ui1 and
S(t2i) = wi. When this derivative is equalized to ui2, we find wi from the obtained
mathematical expression. Thus, wi ∼ U(0, 1).

Step 9. Get values of T2i considering F2(t2) = 1 − S2(t2) = wi and isolate t2i, from
which it is obtained,

t′2i = exp

{
− 1

β2

[
β2W

(
λ2
β2
e

1
β2

ln

(
− ln(1−wi)

α2

))
− ln

(
− ln (1− wi)

α2

)]}
. (21)

Step 10. Generate n values for c2i from an exponential distribution with parameter θ2,
where c2i denotes the censored time to event data and θ2 controls the proportion
of censored observations.

Step 11. Calculate t2i = min(t′2i, c2i).

Step 12. Pairs of values (t2i, δ2i) are obtained, where δ2i = 1 if t2i < c2i and δ2i = 0 if
t2i > c2i.

The R function code based on these steps is shown in an Appendix at the end of this
paper.
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2.7 Model Comparison Criteria

In the literature, there are many approaches to analyze the adequacy of a probability
distribution to be fitted by a dataset and in the selection of the best fit among different
specifications of the model. In this article, we consider for comparison between frequen-
tist models the Akaike information criterion (AIC) introduced by Akaike (1974). This
criterion is based on the log-likelihood value calculated on the estimates of the model
parameters. The expression for the AIC is given by

AIC = `(θ̂) + 2n, (22)

where `(θ̂) is the log-likelihood function, evaluated in the maximum likelihood estimates
of the parameters and n is the number of parameters in the model.

Under a Bayesian approach, we consider for comparison between Bayesian models the
deviation information criterion (DIC) proposed by Spiegelhalter et al. (2002). The DIC
value is given by

DIC = D(θ̂) + 2np = 2D̄ −D(θ̂), (23)

where D(θ̂) is the deviance evaluated in the posterior mean of the parameter of interest
obtained using MCMC simulation methods and np is the effective number of parameters

in the model, with np = D̄ − D(θ̂), where D̄ = E[D(θ)] is the posterior mean of the
deviance. Lower values of AIC and DIC indicate better model fit.

3 Results

3.1 A simulation study

In order to examine the performance of the maximum likelihood estimation method,
it was considered a simulation study to observe the coverage probability of the Wald
confidence interval for the parameters α1, β1, λ1, α2, β2, λ2 and φ, with their corre-
sponding bias and mean squared errors (MSE). The coverage probability is the observed
percentage of times that the confidence interval includes the respective parameter. The
bias and MSE in the estimation of a parameter θ are estimated, respectively, by,

B̂ias(θ̂) =
1

N

N∑
i=1

(
θ̂(i) − θ

)
and M̂SE(θ̂) =

1

N

N∑
i=1

(
θ̂(i) − θ

)2
, (24)

where θ̂ = (α̂1, β̂1, λ̂1, α̂2, β̂2, λ̂2, φ̂) is the vector of maximum likelihood estimates and
N is the number of simulated samples of size n.

Considering that the nominal parameter values may or may not be contained in their
respective confidence intervals, we define the observed coverage probability as the number
of times that the nominal value falls within the confidence interval which is modeled by a
binomial distribution Binomial(N, p), where N is number of simulated samples and p is
the nominal coverage probability. In this simulation study we have used N = 1000 and
p = 0.95, and we reject the equality between the nominal coverage probability and the
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observed coverage probability assuming a significance level of 5%, that is, if the observed
coverage probability is outside the range interval (0.9365, 0.9635).

We generated random samples each of size n = 30, 40, ..., 500, from a BWM distribu-
tions with arbitrary parameters values of α1 = 0.4, α2 = 0.6, β1 = 0.6, β2 = 0.5, λ1 =
0.2, and λ2 = 0.1 and five different values of φ = (−0.8,−0.3, 0, 0.3, 0.8). For each value
of φ we considered different possibilities for the percentage of censored data, given by
0%, 30%, 50%, 70%. We considered these parameter values since the samples are gen-
erated with t < 10 and the hazard function is bathtub shaped. We used 0.95 nominal
confidence coefficients for the intervals and computed the maximum likelihood estimates
and corresponding standard errors for each simulated sample using the maxLik package
in R (Henningsen and Toomet, 2011), applying Nelder-Mead maximization method.

In Figure 2 it is shown in the plots of the coverage probability, the biases and the
MSE of φ versus the sample sizes for the simulated data from the BWM distribution,
for different proportions of censored data. We can observe from Figure 2 that the
coverage probability generally is near the nominal value, except for the simulated samples
considering φ = 0.8 with 70% censored data and the biases generally approach zero with
increased samples size, except again φ = 0.8 with 70% censored data and the respective
MSE for φ decreases to zero with increased samples sizes. In Figure 3 and 4 the plots show
the coverage probability, the biases and the MSE for α1, β1, λ1, α2, β2 and λ2 versus
sample size for the simulated data from BWM distributions, for different proportions of
censored data and assuming, respectively, φ = −0.8 and φ = 0.8. In these plots, we can
observe that the coverage probability generally is properly near the nominal value, for
all parameters in this scenario.

From this study, we observed highest bias and MSE in the samples with 70% censored
data. We observe that the bias and MSE for the parameters generally are enough small
(B̂ias(θ̂) < 0.01) when the sample size is higher than 100 with 50% of censored data and
are enough small when the sample size is higher than 200, considering 70% of censored
data..

During the simulation process, it was noted the presence of simulated samples resulting
in monotone likelihood functions (error informed by maxLik), mainly when we considered
low samples sizes and high proportion of censored data or values for φ near to −1 and 1.
For example, when n = 30 and φ = 0.8 considering 70% of censored data, we found 74
(7.4%) simulated samples of size n = 30 resulting in monotone likelihood functions. In
the case of sample sizes greater than n = 250 or not considering the presence of censored
data, we did not find situations of monotone likelihood functions.

3.2 A simulation study data

In this section to exemplify the application of the proposed bivariate model and to
compare the obtained inference results under the frequentist and Bayesian methods,
samples from the BWM distribution were simulated for different sizes and fixed values
for the parameters, with samples in presence of 70% of censored observations. We
simulated samples of size n = 50, 100, 200 and 300 from the BMW distribution, with
model parameters arbitrarily fixed at α1 = 0.4, α2 = 0.6, β1 = 0.6, β2 = 0.5, λ1 =
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0.2, and λ2 = 0.1, and the parameter φ was fixed at −0.8 and 0.8.
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Figure 2: Plots of the coverage probability, biases and MSE of φ’s versus sample sizes
for simulated data with different proportions of censored data, considering the
maximum likelihood estimation method.
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Figure 3: Plots of the coverage probability, biases and MSE for α1 = 0.4, α2 = 0.6, β1 =
0.6, β2 = 0.5, λ1 = 0.2, and λ2 = 0.1 versus sample sizes for simulated
data with different proportions of censored data from BWM distributions with
φ = −0.8, considering the maximum likelihood estimation method.
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Figure 4: Plots of the coverage probability, biases and MSE for α1 = 0.4, α2 = 0.6, β1 =
0.6, β2 = 0.5, λ1 = 0.2, and λ2 = 0.1 versus sample sizes for simulated
data with different proportions of censored data from BWM distributions with
φ = 0.8, considering the maximum likelihood estimation method.
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Table 1 shows the maximum likelihood and Bayesian estimates for all parameters of
the model with φ = 0.8. The use of posterior medians instead of posterior means are
considered due to the skewness of the distributions. We can note that MLE and Bayesian
estimates are satisfactory close to the nominal values for each parameter. From these
results, we observed that the Wald-type 95% confidence intervals can include negative
values, extrapolating the set of possible values for the correspondent parameters, espe-
cially for λ1, λ2 and φ when using relatively small sample sizes. On the other hand,
the bounds of the credible intervals are directly related to the posterior distributions
of the parameters, avoiding values that are incompatible with the correspondent para-
metric space. Figure 5 shows the non-parametric survival functions estimated by the
Kaplan-Meier method for each simulated data set and the corresponding parametric
curves obtained from the fit of the model based on the BWM distribution with esti-
mated parameters presented in Table 1.

Table 2 shows the maximum likelihood and Bayesian estimates for all parameters of
the model with φ = −0.8. In this case, we also can note that the MLE and Bayesian
estimates are satisfatory close to the fixed values of the parameters, with exception to the
dependence parameter φ. These results are also observed in Table 1. Figure 6 shows the
estimated survival functions obtained by the Kaplan-Meier method for each simulated
data set and the corresponding parametric curves obtained from the fit of the model
based on the BWM distribution with parameter estimates presented in Table 2.

In a brief further statistical analysis, we also assumed a reparametrization for the
parameters λ1 and λ2, considering γk = exp(λk) and also ηk = 1

λk
, k=1,2. However, no

significant changes were observed with the obtained inference results when compared to
the inference results presented in Table 1 and Table 2.

3.3 An application to a real data set

In this application, we consider the analysis of the dataset presented in the diabetic
retinopathy study data by Group et al. (1976). This study consists of follow up times
for 197 diabetic patients under 60 years of age. The main purpose of the study is to assess
the efficacy of photocoagulation treatment for proliferative retinopathy. Each patient
had one eye randomized to laser treatment and the other eye received no treatment. It
was considered that T1 is the time up to visual loss for the treatment eye, while T2 is
the time up to visual loss for the control eye. The censored observation was caused by
death, abandonment or termination of the study, being that 73% of treated eyes and
43% of not treated eyes were censored.
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Table 1: Maximum likelihood and Bayesian estimates for the model based on the BWM
distribution simulated data with φ = 0.8 and 70% censored data.

n
Nominal

Values

Maximum Likelihood Estimate Bayesian Estimate

Estimate Std. Error 95%CI Median 95%CrI

50

α1 0.4 0.4260 0.2030 (0.0281,0.8239) 0.4434 (0.1951,0.7932)

α2 0.6 0.5498 0.1906 (0.1762,0.9234) 0.5265 (0.2835,0.8965)

β1 0.6 0.7564 0.2692 (0.2287,1.2840) 0.7678 (0.3709,1.2030)

β2 0.5 0.3198 0.0887 (0.1459,0.4937) 0.3360 (0.1952,0.5162)

λ1 0.2 0.3417 0.3348 (-0.3145,0.9979) 0.3052 (0.0165,0.861)

λ2 0.1 0.1714 0.2827 (-0.3826,0.7255) 0.2164 (0.0097,0.6699)

φ 0.8 0.7400 0.4891 (-0.2186,1.6986) 0.4844 (-0.4649,0.9667)

AIC = 72.1 DIC =68.6

100

α1 0.4 0.3401 0.1211 (0.1027, 0.5775) 0.3756 (0.1945,0.6516)

α2 0.6 0.5494 0.1718 (0.2126,0.8861) 0.5333 (0.3078,0.8337)

β1 0.6 0.6023 0.1596 (0.2895,0.9151) 0.6367 (0.3693,0.9541)

β2 0.5 0.4218 0.0930 (0.2395,0.6041) 0.4184 (0.2674,0.5829)

λ1 0.2 0.5491 0.2839 (-0.0073,1.1055) 0.4538 (0.0480, 0.9743)

λ2 0.1 0.2793 0.3505 (-0.4076,0.9662) 0.3041 (0.0175, 0.9107)

φ 0.8 0.6009 0.4941 (-0.3675,1.5693) 0.4672 (-0.3340, 0.9674)

AIC =303.00 DIC=300.1

200

α1 0.4 0.4143 0.0824 (0.2528,0.5759) 0.3906 (0.2724, 0.5276)

α2 0.6 0.5490 0.1304 (0.2934,0.8046) 0.5141 (0.3402, 0.7168)

β1 0.6 0.6347 0.0955 (0.4474,0.8220) 0.6120 (0.4558, 0.7793)

β2 0.5 0.52821 0.0837 (0.3640,0.6923) 0.5106 (0.3759, 0.6528)

λ1 0.2 0.0721 0.1138 (-0.1509,0.2952) 0.1012 (0.0053, 0.3005)

λ2 0.1 0.1089 0.2253 (-0.3327,0.5507) 0.1414 (0.0092, 0.5736)

φ 0.8 0.8329 0.3855 (0.0772,1.5884) 0.6612 (0.0459, 0.9821)

AIC= 271.0 DIC=278.4

300

α1 0.4 0.3605 0.0702 (0.2229,0.4981) 0.3601 (0.2452, 0.5073)

α2 0.6 0.5305 0.1061 (0.3225,0.7385) 0.5399 (0.3686, 0.7502)

β1 0.6 0.6153 0.0892 (0.4404,0.7901) 0.6165 (0.4599, 0.7945)

β2 0.5 0.5005 0.0668 (0.3696,0.6314) 0.5077 (0.3888, 0.6367)

λ1 0.2 0.2586 0.1365 (-0.0089,0.5261) 0.2521 (0.0342, 0.5099)

λ2 0.1 0.3878 0.2341 (-0.0710,0.8466) 0.3623 (0.0388, 0.8138)

φ 0.8 0.9874 0.2999 (0.3995,1.5752) 0.7795 (0.3114, 0.9895)

AIC=418.8 DIC=418.2

Std. error: standard error; 95%CI: 95% confidence interval; 95%CrI: 95% credible interval; AIC:
Akaike information criterion; DIC: Deviance information criterion.
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Figure 5: Plots of survival function estimated by the Kaplan-Meier and assuming the
model based on the BMW distributions with φ = 0.8 under maximum likeli-
hood estimates and Bayesian estimates.
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Table 2: Maximum likelihood and Bayesian estimates for the model based on the BWM
distribution simulated data with φ = −0.8 and 70% censored data.

n
Nominal

Values

Maximum Likelihood Estimate Bayesian Estimate

Estimate Std. Error 95%CI Median 95%CrI

50

α1 0.4 0.3928 0.1662 (0.0671, 0.7184) 0.3813 (0.1823,0.6728)

α2 0.6 0.7849 0.3429 (0.1127, 1.4571) 0.6256 (0.3117,1.0790)

β1 0.6 0.4853 0.1607 (0.1704, 0.8002) 0.4779 (0.2456,0.7543)

β2 0.5 0.5639 0.1537 (0.2628, 0.8652) 0.5094 (0.2972,0.7641)

λ1 0.2 0.2385 0.2803 (-0.3110, 0.7880) 0.2233 (0.0125,0.6706)

λ2 0.1 0.0468 0.4119 (-0.7605, 0.8540) 0.2411 (0.0102,0.8862)

φ -0.8 -0.6616 0.5763 (-1.7912, 0.4681) -0.4844 (-0.9628,0.7008)

AIC = 73.3 DIC =69.8

100

α1 0.4 0.5589 0.1389 (0.2866, 0.8312) 0.5020 (0.3217,0.7328)

α2 0.6 0.3974 0.1223 (0.1577, 0.6370) 0.4071 (0.2349,0.6503)

β1 0.6 0.5887 0.1086 (0.3757, 0.8016) 0.5499 (0.3802,0.7457)

β2 0.5 0.3564 0.0831 (0.1936, 0.5192) 0.3663 (0.2292,0.5318)

λ1 0.2 0.0241 0.1495 (-0.2690, 0.3172) 0.1072 (0.0052, 0.3657)

λ2 0;1 0.4013 0.3413 (-0.2677, 1.0703) 0.3446 (0.0222, 0.9504)

φ -0.8 -0.7589 0.3487 (-1.4423, -0.0756) -0.5904 (-0.9728, 0.1677)

AIC =112.1 DIC=109.4

200

α1 0.4 0.3997 0.0868 (0.2295,0.5699) 0.4036 (0.2680, 0.5704)

α2 0.6 0.5024 0.1249 (0.2577,0.7472) 0.4800 (0.3106, 0.6938)

β1 0.6 0.5839 0.0961 (0.3955,0.7723) 0.5869 (0.4187, 0.7628)

β2 0.5 0.5549 0.0908 (0.3768,0.7329) 0.5455 (0.3976, 0.7030)

λ1 0.2 0.2089 0.1459 (-0.0771, 0.4948) 0.1992 (0.0163, 0.4661)

λ2 0.1 0.1778 0.2432 (-0.2990, 0.6546) 0.2091 (0.0111, 0.6288)

φ -0.8 -0.8337 0.2753 (-1.3735, -0.2940) -0.7043 (-0.9833, -0.1306)

AIC= 292.3 DIC=289.9

300

α1 0.4 0.3542 0.0641 (0.2284,0.4800) 0.3657 (0.2587, 0.5103)

α2 0.6 0.4709 0.0869 (0.3004,0.6414) 0.4834 (0.3395, 0.6708)

β1 0.6 0.5163 0.0743 (0.3707,0.6619) 0.5274 (0.3936, 0.6799)

β2 0.5 0.4573 0.0606 (0.3386,0.5761) 0.4662 (0.3578, 0.5863)

λ1 0.2 0.3368 0.1277 (0.0864,0.5873) 0.3119 (0.0803, 0.5538)

λ2 0.1 0.4055 0.1887 (0.0357,0.7754) 0.3658 (0.0618, 0.7204)

φ -0.8 -0.7760 0.1952 (-1.1586 -0.3934) -0.7208 (-0.97284, -0.2572)

AIC=370.8 DIC=369.8

Std. error: standard error; 95%CI: 95% confidence interval; 95%CrI: 95% credible interval; AIC:
Akaike information criterion; DIC: Deviance information criterion.
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Figure 6: Plots of survival function estimated by the Kaplan-Meier and assuming the
model based on the BMW distribution with φ = −0.8 under maximum likeli-
hood estimates and Bayesian estimates.
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The procedure to fit the BMW distribution is similar to that presented in Section
3.2. That is, the likelihood maximization was performed by the maxLik package and
Bayesian estimates were based on the simulated posterior samples recorded every 20th
iteration from 220,000 Gibbs samples after a “burn-in” of 20,000 samples. We assumed
the following independent prior distributions: αk ∼ Gamma(1, 1), βk ∼ Gamma(1, 1),
λk ∼ Gamma(1, 1) and (1−φ)/2 ∼ Beta(1, 1) , k=1,2. The convergence of the MCMC
samples was checked by visual examination of traceplots of the simulated samples.

Table 3 shows the maximum likelihood and Bayesian estimates for the parameters of
the models based on the BWM distributions and their special sub-models considering
the retinopathy data. We observe that the Bayesian estimates are quite close to the
maximum likelihood estimates. From these results, we observed that the Wald-type 95%
confidence intervals can include negative values to λ1 and λ2 in the BWM distribution,
including the value 0, suggesting that the model based on the bivariate standard Weibull
distribution could be fitted by the data. The AIC and DIC values obtained from fitting
the different models based on the BWM distributions and bivariate standard Weibull
distribution are practically the same, suggesting that both models are suitable to be fitted
by the dataset the dataset. The maximum likelihood estimators for φ are slightly lower
than the obtained estimators using the Bayesian approach. Similar inference results for
the parameter φ also were obtained by Louzada et al. (2013) and Martinez and Achcar
(2014).

Figure 7 compares the survival curves S(t) estimated from the Kaplan-Meier method
and from the fitted models based on the BWM distributions and their special sub-models,
considering the frequentist and Bayesian approaches. Clearly, it is observed from these
plots that the predicted values obtained from the model based on the BWM distribution
are those closest to the empirical values. We also observe that the maximum likelihood
and Bayesian methods produce similar survival curves.

4 Conclusion

Based on a modified Weibull distribution it was proposed in this study a new bivariate
lifetime distribution constructed using the Farlie-Gumbel-Morgenstern copula function
in presence of right-censored data. Under this new model,it was developed an extensive
simulation study showing the performance of the obtained inference results under clas-
sical maximum likelihood and Bayeasian approaches. The simulation study showed that
the maximum likelihood and Bayesian method are suitable approaches to estimate the
parameters of the BWM distribution. However, in the situations where there is a high
proportion of censored data (>70%) and small sample sizes we do not recommend the
use of this distribution. We also observed that the estimates are more easily obtained
if the lifetimes are smaller values than 10. The applications with simulated and real
data showed that BWM distribution can be satisfactorily fitted by the data in almost
all cases, under maximum likelihood and Bayesian approaches. Finally, it is important
to point out that the computational algorithms for the proposed model can be easily
implemented using R or OpenBUGS free softwares.
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Table 3: Maximum likelihood and Bayesian estimates for the models based on the BWM
distribution and yours special sub-models from retinopathy data.

Model
Maximum Likelihood Estimate Bayesian Estimate

Estimate Std. Error 95%CI Median 95%CrI

BWM

α1 0.2362 0.0385 (0.1607, 0.3117) 0.2286 (0.1729,0.2960)

α2 0.1133 0.0259 (0.0625, 0,1641) 0.1092 (0.0735,0.1543)

β1 0.8161 0.1216 (0.5777, 1,0544) 0.7803 (0.6248,0.9362)

β2 0.7658 0.1623 (0.4477, 1,0839) 0.7448 (0.5497,0.9536)

λ1 0.0021 0.0057 (-0.0091, 0.0133) 0.0190 (0.0007,0.0838)

λ2 0.0002 0.0078 (-0.0151, 0.0155) 0.0189 (0.0007,0.0914)

φ 0.4348 0.2860 (-0,1257, 0.9954) 0.6217 (0.4143,0.9924)

AIC = 907.5 DIC =901.5

BW

α1 0.2379 0.0311 (0.1769, 0.2988) 0.2392 (0.1830, 0.3073)

α2 0.1118 0.0208 (0.0710, 0.1526) 0.1148 (0.0787, 0.1611)

β1 0.8250 0.0725 (0.6829, 0,9671) 0.8187 (0.6842,0.9649)

β2 0.7980 0.0995 (0.6029, 0.9930) 0.7827 (0.6066,0.9831)

φ 0.6352 0.280 (0.0864, 1.184) 0.8229 (0.3913, 0.9923)

AIC =900.6 DIC=898.0

BE

α1 0.1917 0.0189 (0.1546,0.2287) 0.1924 (0.1580, 0.2315)

α2 0.0846 0.0114 (0.0622,0.1069) 0.0858 (0.0653, 0.1101)

φ 0.6654 0.2521 (0.1712, 1.1595) 0.8045 (0.3996, 0.9901)

AIC= 904.8 DIC=902.9

BRay

α1 0.0493 0.0048 (0.0398,0.0587) 0.0492 (0.0403, 0.0595)

α2 0.0203 0.0027 (0.0150,0.0256) 0.0200 (0.0152, 0.0257)

φ 0.5469 0.1924 (0.1687, 0.9240) 0.6940 (0.3331, 0.9638)

AIC=1119.4 DIC=1119.0

BWM: Bivariate modified Weibull; BW: bivariate standard Weibull; BE: bivariate exponential.
RRay: bivariate Rayleigh; Std. error: standard error; 95%CI: 95% confidence interval; 95%CrI:
95% credible interval; AIC: Akaike information criterion; DIC: Deviance information criterion.
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Figure 7: Plots of survival function estimated by the Kaplan-Meier and assuming the
model based on the BMW with φ = −0.8 under maximum likelihood estimates
and Bayesian estimates.
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Appendices

The following R function bellow can be used to generate m random samples of size n
from a BWM with parameters α1, β1, λ1, α2, β2 λ2 and φ.

time1 <-matrix(NA,nrow = n,ncol=m)

cens1 <-matrix(NA,nrow = n,ncol=m)

unif1 <-matrix(NA,nrow = n,ncol=m)

for(i in 1:m){

u1 <- runif(n,0,1)

unif1[,i] <-u1

t01 <-c()

for(j in 1:n)

t01[j] <-rwm(u1[j],alpha1,beta1,lambda1)

c01 <- rexp(n,rate = theta)

time1[,i] <- pmin(t01,c01)

cens1[,i] <- as.numeric(c01>=t01)

}

time2 <-matrix(NA,nrow = n,ncol=m)

cens2 <-matrix(NA,nrow = n,ncol=m)

for(i in 1:m){

c02 <- rexp(n,theta)

u2 <- runif(n,0.001,0.999)

t02<-c()

for(j in 1:n){

w <- wunif(u2[j],unif1[j,i],phi)

t02[j] <- rwm(w,alpha2,beta2,lambda2)

}

time2[,i] <- pmin(t02,c02)

cens2[,i] <- as.numeric(c02>=t02)

}

Note that this R-code uses the package ’LambertW’ introduced by Goerg (2016) and
the functions rwm and wunif presented below.

library(LambertW)

rwm <-function(u,alpha,beta,lambda){

v1 <- 1 / beta;
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v2 <- log(1 - u);

v3 <- log(-v2 / alpha);

v4 <- exp(v3 * v1);

v5 <- W(lambda * v1 * v4);

v6 <- exp((-beta * v5 + v3) * v1);

return(v6)

}

and

wunif<-function(u2,u1,phi){

a1 <- u2-phi*u1^2+phi*u1-u1

a2 <- 2*phi*u1*(1-u1)

a3 <- a1/a2

return(a3)

}

This is the OpenBUGS code for the Bayesian model based on the Bivariate modified
Weibull distribution:

model

{

for (i in 1:N)

{

St1[i] <- exp(-alpha1*pow(t1[i],beta1)* exp(lambda1*t1[i]))

ft1[i] <- alpha1*pow(t1[i],(beta1-1))*(beta1+lambda1*t1[i])*

exp(lambda1*t1[i]-alpha1*pow(t1[i],beta1)*

exp(lambda1*t1[i]))

St2[i] <- exp(-alpha2*pow(t2[i],beta2) * exp(lambda2*t2[i]))

ft2[i] <- alpha2*pow(t2[i],(beta2-1))*(beta2+lambda2*t2[i])*

exp(lambda2*t2[i]-alpha2*pow(t2[i],beta2)*

exp(lambda2*t2[i]))

F1[i] <- 1-St1[i]

F2[i] <- 1-St2[i]

S1[i] <- ft1[i] *St2[i] *(1+phi*(F2[i])*(1-2*St1[i]))

S2[i] <- ft2[i] *St1[i] *(1+phi*(F1[i])*(1-2*St2[i]))

S12[i] <- ft1[i] *ft2[i] *(1+phi*(1-2*St1[i])*(1-2*St2[i]))

S[i] <- St1[i] *St2[i] *(1+phi*F1[i]*F2[i])

L[i] <- pow(S12[i],d1[i]*d2[i])*pow(S1[i],d1[i]*(1-d2[i]))*

pow(S2[i],(1-d1[i])*d2[i])*pow(S[i],(1-d1[i])*(1-d2[i]))
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logL[i] <- log(L[i])

zeros[i] <- 0

zeros[i] ~ dloglik(logL[i])

}

alpha1 ~dgamma(1,1)

beta1 ~dgamma(1,1)

lambda1~dgamma(1,1)

alpha2 ~dgamma(1,1)

beta2 ~dgamma(1,1)

lambda2~dgamma(1,1)

k ~ dbeta(1,1)

phi<-1-2*k

}

In this code: N is the sample size, St1[i] is the survival function given in equation (9),
St2[i] is the survival function given in equation (10), ft1[i] is the densities function given
in equation (7), ft2[i] is the densities function given in equation (8), S1[i] is a expression
given in equation (15), S2[i] is a expression given in equation (16), S12[i] is a expression
given in equation (17), S[i] is a joint survival function given in equation (5) and L[i] is
the likelihood function given in equation (14).


