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This paper aims to introduce an estimation algorithm for the joint density
of a circular-circular random variable, which is expressible in the form as
discussed by Fernández-Durán (2007). The performance of the algorithm has
been checked with the help of a simulation study and it is found to perform
efficiently even for small sample sizes. Furthermore, the performance of the
proposed algorithm is compared with that of an existing method of density
estimation and is found to perform better than the existing one, which is
indicated by the higher mean square error values for the estimates obtained
by the latter method. Finally, the application of the algorithm is displayed
by estimating the joint density of a circular-circular random variable arising
in a real-life data set.

keywords: Joint circular-circular density, Circular-circular random vari-
able, Estimation algorithm, Simulation study.

1 Introduction

Often, there arise situations that demand the study of the joint relationship between two
circular variables or the assessment of the effect one circular variable is imposing upon
the other. For example, in environmental studies, a researcher may want to see if the
wind direction during the morning affects that measured during the evening or if there
is any association between the pattern of hourly arrivals of customers at two different
shops (Fernández-Durán, 2007), which can be modeled as a circular random variable.
The estimation of the joint density will enable us to measure the combined effect of the
two variables.
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A circular random variable, say Θ is the one which assumes values in the unit circle
and its density function f (θ) is such that f (θ) = f (θ + p.2π), where p is an integer.
Consequently, for a circular-circular random variable, the support is a unit torus or
any subset of it (Mardia and Jupp, 2000). Wehrly and Johnson (1980) expressed the
possibility of representing the joint density function of a pair of circular random variables,
say (Θ1,Θ2) in the following form:

fΘ1,Θ2 (θ1, θ2) = 2πg [2π {FΘ1 (θ1) + FΘ2 (θ2)}] fΘ1 (θ1) fΘ2 (θ2) (1)

f1 (.) and f2 (.) being the density functions, FΘ1 (θ1) and FΘ2 (θ2), the distribution func-
tions of Θ1 and Θ2 and g (.) being the joining circular density, which is also sometimes
referred to as the binding density. This is a special case of the full Wehrly and Johnson
model (Wehrly and Johnson, 1980), given by

fΘ1,Θ2 (θ1, θ2) = 2πg [2π {FΘ1 (θ1)− qFΘ2 (θ2)}] fΘ1 (θ1) fΘ2 (θ2) (2)

where q ∈ {−1, 1} is non-random. (1) is obtained from (2) by putting q = −1.

2 A brief review of the circular analogue of copula function

The Sklar’s theorem (Sklar, 1959) enables us to write the joint density function f (., .)
of two linear random variables in terms of the copula density c (., .) as

f (x, y) = c (F1 (x) , F2 (y)) f1 (x) f2 (y) x, y ∈ R (3)

Copula functions have found wide applications in finance and econometrics (Giorgia,
2015). In the context of circular statistics, a general bivariate circular density on the
unit torus can be written in terms of the circular copula density, known as the circula
density ‘c’ (Jones et al., 2015) and marginal densities and distribution functions f1, f2,
F1 and F2 respectively as

fΘ1,Θ2 (θ1, θ2) = 4π2fΘ1 (θ1) fΘ2 (θ2) c (2πF1 (θ1) , 2πF2 (θ2)) (4)

Combining equations (1) and (4), we find that the circula density can be linked with the
joining circular density by the relation

c (2πF1 (θ1) , 2πF2 (θ2)) =
1

2π
g [2πF1 (θ1) + 2πF2 (θ2)] (5)

If the binding density in (1) is uniform on the full circle, the joint density reduces to:

fΘ1,Θ2 (θ1, θ2) = fΘ1 (θ1) fΘ2 (θ2)

This implies that the marginal densities are independent. Also, the circula reduces to
the independence circula whose density is:

c (2πF1 (θ1) , 2πF2 (θ2)) = 1
4π2
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Conversely, if Θ1 and Θ2 are independent, then we have

c (2πF1 (θ1) , 2πF2 (θ2)) = 1
4π2

Thus, if Θ1 and Θ2 are independent, we get from (5),

⇒ 1

2π
g [2πF1 (θ1) + 2πF2 (θ2)] =

1

4π2

⇒ g [2πF1 (θ1) + 2πF2 (θ2)] =
1

2π

Thus, if the marginal densities are independent, the binding density is uniform on the
full circle.

3 Estimation Algorithm

Equation (1) shows that for the joint density estimation, three densities require to be
estimated beforehand viz. the marginal densities of Θ1 and Θ2 (and also, the cor-
responding distribution functions) and the joining circular density g (.). Suppose we
have a circular-circular sample consisting of the observations {θ1i, θ2i}ni=1. A simple
and straight-forward procedure for estimating fΘ1,Θ2 (θ1, θ2) is presented through the
following general algorithm:

3.1 Proposed Estimation algorithm of the joint density of two circular
random variables

• Step 1. Estimate the marginal densities f1 (.) and f2 (.) and the respective distri-
bution functions FΘ1 (θ1) and FΘ2 (θ2) of Θ1 and Θ2.

• Step 2. Work out the joint sample of Θ1 and Θ2,
[
2π
{
F̂Θ1 (θ1i) +

F̂Θ2 (θ2i)
}]n

i=1
, followed by estimation of the joining circular density g (.). Here,

F̂Θ1 (.) and F̂Θ2 (.) are the estimated distribution functions of Θ1 and Θ2 obtained
in step 1.

• Step 3. Obtain the joint circular-circular density estimator as

f̂Θ1,Θ2 (θ1, θ2) = 2πĝ
[
2π
{
F̂Θ1 (θ1) + F̂Θ2 (θ2)

}]
f̂Θ1 (θ1) f̂Θ2 (θ2) (6)

where ĝ (.) is the estimator of the joining circular density obtained in step 2 and
f̂Θ1 (θ1), f̂Θ2 (θ2) are the estimated marginal densities of Θ1 and Θ2 as obtained
in step 1.

An advantage of the proposed method is that the joining circular density estimate ĝ (.)
will indicate if Θ1 and Θ2 are associated (or independent). If g (.) is uniform, then Θ1

and Θ2 are independent and vice versa.
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In this paper, the marginal densities fΘ1 (.) and fΘ2 (.) and the joining circular density
g (.) have been estimated by the Maximum Likelihood method, where the estimates are
obtained by maximizing the log-likelihood function of the sample.
The algorithm also embodies the other methods of density estimation such as method
of moments (where the estimates are obtained by equating the sample trigonometric
moments to the population trigonometric moments), method of scoring (where the esti-
mates are obtained by solving the maximum likelihood equations numerically). In case
any of the existing circular distribution fails to fit the data, the non-parametric kernel
density estimation method is taken resort to for estimation of the marginal densities.

3.2 Another (existing) method of circular-circular density estimation

An existing method of estimating the joint density in (1) which is due to Jones et al.
(2015), consists in estimating the parameters of the joint distribution by maximizing the
log-likelihood function with respect to variations in the parameters of the distribution,
followed by substitution of the estimated parameters and the marginal density and dis-
tribution function forms in the density in (1). Therein, the mean direction parameter
of the binding density is set at the value equal to 0. The log-likelihood function of a
random sample (θ11, θ21) , (θ12, θ22) , . . . , (θ1n, θ2n) from the distribution with density (1)
is given by

l (τ) = n log (2π)+
n∑
i=1

log [fΘ1 (θ1i)]+
n∑
i=1

log [fΘ2 (θ2i)]+
n∑
i=1

log [g [2π {FΘ1 (θ1i) + FΘ2 (θ2i)}]]

where τ is the vector containing the parameters of the distribution.

4 Simulation study

The performance of the proposed estimation algorithm and the existing estimation
method of joint circular-circular density will be evaluated using the following two exam-
ples and their performances will be compared.

• Example 1: Let fΘ1 (.) be the von Mises density with parameters µ1 and κ1

and fΘ2 (.) be the von Mises density with parameters µ2 and κ2. Let us take the
joining density g (.) as the von Mises density with parameters µ and κ. Then
assuming that the joint density of Θ1 and Θ2 admits the representation in (1), the
circular-circular density with marginals fΘ1 (.) and fΘ2 (.) is given by

fΘ1,Θ2 (θ1, θ2) =
1

2πI0 (κ) I0 (κ1) I0 (κ2)
exp {κ cos [2πFΘ1 (θ1) +

2πFΘ2 (θ2)− µ] + κ1 cos (θ1 − µ1) + κ2 cos (θ2 − µ2)}
(7)

where FΘ1 (θ1) and FΘ2 (θ2) are the distribution functions of Θ1 and Θ2 respec-
tively.



Electronic Journal of Applied Statistical Analysis 159

• Example 2: Let fΘ1 (.) be the von Mises density with parameters µ1 and κ1 and
fΘ2 (.) be the von Mises density with parameters µ2 and κ2. Let us take the joining
density g (.) as the circular uniform density. Then assuming that the joint density
of Θ1 and Θ2 admits the representation in (1), the circular-circular density with
marginals fΘ1 (.) and fΘ2 (.) is given by

fΘ1,Θ2 (θ1, θ2) =
1

2πI0 (κ1) I0 (κ2)
exp {κ1 cos (θ1 − µ1) +

κ2 cos (θ2 − µ2)}
(8)

Another advantage of expressing the joint density in terms of copula function is that it
facilitates the simulation of random variables from the density. Following the procedure
of random variate generation from the density (2) as discussed in Jones et al. (2015),
random variables are generated from the densities in (7) and (8) as mentioned below:

• Step 1. Θ1 is generated from the circular uniform distribution, followed by gen-
eration of Ω from von Mises distribution with parameters µ and κ for the density
in (7) or from the circular uniform distribution for the density in (8).

• Step 2. Set Θ2 = (Ω−Θ1) (mod 2π). Θ1,Θ2 thus generated are random variates
from the circula density ‘c’.

• Step 3. Given (Θ1,Θ2) generated in Step 2, Θ∗
1 = F−1

Θ1
(Θ1/2π) (mod 2π), Θ∗

2 =

F−1
Θ2

(Θ1/2π) (mod 2π) are random variables from the densities in (7) and (8),

where F−1
Θ1

(.) and F−1
Θ2

(.) are the inverse of the distribution functions FΘ1 (θ1)
and FΘ2 (θ2) of θ1 and θ2 respectively.

Figure (1(a)) and (1(b)) show the contour plots of the densities in (7) and (8) respectively.
The efficiency of the proposed algorithm in estimating the joint circular-circular density
can be adjudged by computing the Mean Square Error (MSE) of the estimator which is
given by the formula

E
{
f̂ (θ1, θ2)− f (θ1, θ2)

}2

where f̂ (θ1, θ2) is the estimated density and f (θ1, θ2) is the true density of (θ1, θ2), the
expectation being with respect to f (θ1, θ2).
The above expectation is approximated with the help of the Monte Carlo technique, by
taking 1000 replicates.
The simulation study, performance analysis of the proposed algorithm and the real-
life data analysis have been carried out using the R software, version 3.3.0, through
the user-contributed packages viz. CircStats (Lund and Agostinelli, 2012) and circular
(Lund and Agostinelli, 2013) with the help of self-programmed codes.
As far as the maximum likelihood estimation of the parameters under the existing
method of joint density estimation is concerned, the Optim function of the R software,
version 3.3.0 has been used, together with L-BFGS-B implementation of the optimisation
method.
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(a) Contour plot of the density in equation (7) with parameters µ1 = π/2, κ1 = 3, µ2 = π/4, κ2 = 5,
µ = π and κ = 2

(b) Contour plot of the density in equation (8) with parameters µ1 = π/2, κ1 = 3, µ2 = π/4 and κ2 = 5

Figure 1: Contour plots

4.1 Performance measures of the proposed algorithm for Example 1
and Example 2

The MSE of the density estimates for five sample sizes have been computed under both
the examples viz. n = 10, 100, 250, 500 and 1000. The set up parameters for the first
example are: µ1 = π/2, κ1 = 3, µ2 = π/4, κ2 = 5, µ = π and κ = 2. The set up
parameters for the second example are µ1 = π/2, κ1 = 3, µ2 = π/4 and κ2 = 5. Tables
(1) and (2) display the MSE values for estimating the joint circular-circular density by
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the proposed algorithm for example 1 and example 2 respectively: It can be seen from

Table 1: MSE values for estimating the joint circular-circular density by the proposed
algorithm for example 1

n MSE

10 5.994× 10−2

100 1.675 × 10−2

250 6.784 × 10−3

500 3.715 × 10−3

1000 2.115 × 10−4

Table 2: MSE values for estimating the joint circular-circular density by the proposed
algorithm for example 2

n MSE

10 9.578 × 10−2

100 3.679 × 10−2

250 7.136 × 10−3

500 4.557 × 10−3

1000 6.991 × 10−4

tables (1) and (2) that the MSE is reduced with an increase in the sample size. Since
the order of magnitude of the MSE in each case is −2 or lower, the proposed algorithm
can be believed to estimate the density values with high accuracy.

4.2 Performance measures of the existing method of density
estimation for Example 1 and Example 2

The MSE of the density estimates using the existing estimation method for five sample
sizes have been computed under both the examples viz. n = 10, 100, 250, 500 and
1000. The set up parameters considered for the first and second example are the same
as considered under section (4.1), except that the mean direction parameter is taken as
0 for both the cases. Tables (3) and (4) display the MSE values for estimating the joint
circular-circular density by the existing estimation method for example 1 and example
2 respectively:
It is observed from tables (3) and (4) that the MSE values for the joint density estimates
calculated using the existing algorithm are higher in comparison to those calculated



162 Bhattacharjee, Das

Table 3: MSE values for estimating the joint circular-circular density by the existing
algorithm for example 1

n MSE

10 7.467 × 10−1

100 2.315 × 10−1

250 9.146 × 10−2

500 2.093 × 10−2

1000 1.283 × 10−2

Table 4: MSE values for estimating the joint circular-circular density by the existing
algorithm for example 2

n MSE

10 8.418 × 10−1

100 3.092 × 10−1

250 1.931 × 10−1

500 6.785 × 10−2

1000 2.351 × 10−2

using the proposed algorithm. This shows that the proposed algorithm is more efficient
in estimating the joint circular-circular density estimates.

5 Applications

In this section, the performance measures of the proposed algorithm for both Example
1 and Example 2 are reported. The joint density of a real-life circular-circular data set
has been estimated using the proposed algorithm. The data set (Data set-I) refers to the
measurements of wind directions at 6.00 am and 12.00 noon, on each of 21 consecutive
days, at a weather station in Milwaukee, published in (Fisher (1993), Appendix B.21)
which has been procured from Johnson and Wehrly (1977).

5.1 Joint density estimation of the data set-I

The wind directions measured at 6.00 am and 12.00 noon, on each of 21 consecutive
days, at a weather station in Milwaukee, arise in terms of angles and so, are circular ran-
dom variables. Consequently, the joint density of these wind directions can be estimated
using the proposed algorithm. The marginal densities of the wind direction measured at



Electronic Journal of Applied Statistical Analysis 163

6.00 am (θ1) and that measured at 12.00 noon (θ2) have been ascertained with the aid
of goodness-of-fit test for circular distribution (Bhattacharjee and Das, 2017).
It is found that the von Mises distribution is the best fitting distribution to both θ1

and θ2. The m.l.e of the parameters µ and κ of vM (µ, κ) are (Jammalamadaka and
SenGupta, 2001):

µ̂ = θ̄, κ̂ = A−1
[
I1(κ)
I0(κ)

]
= A−1

[
1
n

∑n
i=1 cos (θi − µ)

]
where θ̄ is the mean direction of the sample θ1, θ2, . . . , θn and A−1 is the inverse function
of the ratio of the first and zeroth order Bessel functions of the first kind.
Table (5) enlists the maximum likelihood estimate (m.l.e) of the parameters of the best
fitting marginal densities of θ1 and θ2 and the p- value of the goodness-of-fit test.

Table 5: m.l.e of parameters of the best fitting marginal densities of θ1 and θ2 and p-
value of the goodness-of-fit test

Variable Best fitting distribution m.l.e of parameters p-value

θ1 von Mises (µ1, κ1) µ̂1 = −1.105, κ̂1 = 0.504 > 0.05

θ2 von Mises (µ2, κ2) µ̂2 = 0.971, κ̂2 = 0.217 > 0.05

Figure (2(a)) and (2(b)) contain the p-p plot of the best fitting von Mises distribution
to θ1 and θ2 respectively.
Further, θ1 and θ2 are positively associated, i.e., there exists the following relation be-
tween θ1 and θ2 (Fisher, 1993):

θ2 = θ1 + θ0 ( mod 2π)

Therefore, the joining density of θ1 and θ2, given by 2π {FΘ1 (θ1) + FΘ2 (θ2)} which is
not uniform, is estimated. The joining density is found to follow von Mises distribution
with m.l.e of the parameters as µ̂ = 0.208 and κ̂ = 0.210 (p-value of the goodness-of-fit
test > 0.05). Figure (3) shows the p-p plot of the von Mises distribution fitted to the
joining density of θ1 and θ2. Finally, the joint density of θ1 and θ2 is estimated with the
help of the formula given in equation . The estimated joint density obtained from (7) is
given by

f̂Θ1,Θ2 (θ1, θ2) =
1

2πI0 (0.210) I0 (0.504) I0 (0.217)
exp {0.210 cos [2πFΘ1 (θ1) +

2πFΘ2 (θ2)− 0.208] + 0.504 cos (θ1 + 1.105) + 0.217 cos (θ2−
0.971)}

(9)

Figure (4) shows the contour plot of θ1 and θ2.
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(a) p-p plot of the best fitting von Mises distribution to θ1
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von Mises p−p plot of wind direction measured at 12.00 noon at a weather station in Milwaukee
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(b) p-p plot of the best fitting von Mises distribution to θ2

Figure 2: p-p plots

6 Discussion

Circular-circular distributions are studied to assess the joint effect of two circular random
variables. This paper thrives to propose an algorithm for the estimation of the joint
density of two circular random variables, the form of which is as given in Downs (1974).
The expression of the density in terms of circulas copula, known as the circula aided in
simulating from the distribution. The performance analysis of the algorithm showed the
method to be quite efficient, even in case of small samples. Also, the proposed algorithm
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Figure 3: p-p plot of the von Mises distribution fitted to the joint sample of θ1 and θ2

Figure 4: Joint density plot of θ1 and θ2
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gives lower mean square error values for the joint density estimates in comparison to
that provided by an existing method of density estimation, which shows its efficiency
over the existing method. Further, the joining circular density estimate obtained during
estimation by the proposed algorithm enables us to assess the dependence between the
two circular variables, without having to calculate a coefficient of association separately.
Finally, the joint density of a real-life circular-circular data set has been estimated using
the algorithm. In case the form of the marginal densities are difficult to be estimated,
the non-parametric kernel density estimation methods can be taken resort to.
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Wehrly, T. E. and Johnson, R. A. (1980). Bivariate models for dependence of angular
observations and a related Markov process. Biometrika, 67:255–256.


