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In this paper, a new class of distributions, called as normal-power series
(NPS), which contains the normal one as a particular case, is introduced.
This class, which is obtained by compounding the normal and power se-
ries distributions, is presented as an alternative to the class of skew-normal
and Balakrishnan skew-normal distributions, among others. The density and
distribution functions of this family of distributions, are given by a closed
expression which allows us to easily compute probabilities, moments and re-
lated measurements. The maximum likelihood method via an EM-algorithm
is used to estimate the unknown parameters. Finally, some applications are
given to show the flexibility of the new class of distributions.

keywords: Normal distribution, Maximum likelihood, Power series class
of distributions, EM-algorithm.

1 Introduction

Recently, many distributions to model lifetime data have been studied and generalized
by compounding of some discrete and important lifetime distributions. Adamidis and
Loukas (1998), introduced exponential-geometric (EG) distribution by compounding the
exponential and geometric distributions. In the similar manner, exponential-Poisson
(EP), exponential-logarithmic (EL), exponential-power series (EPS), Weibull-geometric
(WG), Weibull-power series (WPS), generalized exponential-power series (GEPS), lin-
ear failure rate-power series (LFRPS), exponentiated extended Weibull-power series
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distributions (EEWPS), quadratic hazard rate power Series (QHRPS) and The com-
plementary exponentiated Burr XII Poisson (CEBXIIP) were introduced by Tahmasbi
and Rezaei (2008), Chahkandi and Ganjali (2009), Barreto-Souza et al. (2011), Morais
and Barreto-Souza (2011), Mahmoudi and Jafari (2012), Mahmoudi and Jafari (2017),
Tahmasbi and Jafari (2015), Roozegar and Nadarajah (2016) and Muhammad (2017),
respectively.

In recent years, techniques for extending the family of normal distributions have been
proposed. The method applied here can be considered as an alternative to the well-
known skew-normal distribution (Azzalin, 1985), whose properties (Azzalini, 1986; Az-
zalini and Chiogna, 2004), estimation (Gupta and Gupta, 2008), diagnostics (Xie et
al., 2009), generalization (Gupta and Gupta, 2004) and multivariate extension (Azza-
lini and Valle, 1996; Azzalini and Capitanio, 1999; Arnold and Beaver, 2002) have been
widely developed. Other ways to obtaining skewed normal distributions have also been
introduced, such as the Balakrishnan skew-normal density (Sharafi and Behboodian,
2008), the variance-gamma process (Fung and Seneta, 2007) and the generalized nor-
mal distribution (Nadarajah, 2005), among others. Whenever the Fisher information
matrix of this skew-normal model is singular for values of the added skew parameter A,
and the maximum likelihood estimate of this parameter can be infinite with a positive
probability, an alternative model would be desirable.

In this paper, we introduce a new generalization of the normal distribution which
is called the NPS class of distributions and is denoted by NPS(u,o,60). The method
used to insert the new shape parameter 6, is described in Marshall and Olkin (1997)
for the first time, where it was applied to the exponential and Weibull families. This
method enables us to obtain explicit expressions for the probability density and survival
functions and allow us to estimate the model parameters via an EM-algorithm.

Note that all of these distributions have support (0,00), but in this paper we intro-
duced the new generalization of normal distribution, which has range on (—o0, 00). To
begin with, we shall use the following notation throughout this paper: ¢(-) for the stan-
dard normal probability density function (pdf), ¢, (- ; u, X) for the pdf of N,(u, %) (n
-variate normal distribution with mean vector g and covariance matrix ), @, (- ; u, X)
for the cdf of N, (p,X) (in both singular and non-singular cases), simply @, (- ;%) for
the case when p = 0.

The rest of the paper is organized as follows. In Section 2, we introduce the NPS
class of distributions. The density, hazard rate and survival functions and some of
their properties are given in this section. In Section 3, we derive moments of NPS by
two methods. In Section 4, we present some special distributions which are studied in
details. Some properties of sub-model of NPS distristributions are studied in Section
5. Estimation of the parameters by maximum likelihood method and inference for large
samples are presented in Section 6. A method for evaluating the standard errors from
the EM-algorithm is presented in Section 7. Simulation study is given in Section 8.
Applications to two real data sets are given in Section 9. Finally, Section 10 concludes
the paper.
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Table 1: Quantities for power series distributions

Distribution anp C(0) C’(0) c'(0) c’’(6) s
Geometric 1 6(1—6)"1 (1—-6)"2 2(1—-6)73 6(1—0)% 1
Poisson n!—1 e? —1 e? e? e oo
Logarithmic n=1 —log(1 —0) (1—6)"1 (1—-0)"2 2(1—-6)"3 1
. . k k k k(k—1) k(k—1)(k—2)
Binomial (_n) (14+6)" -1 RET = ro)i—F Tarei—F oo
. . n—1 ok rkok—1 k(k+260—1) k(k24+6k0+602 —3k—60+2)
Neg. Binomial (k—l) (i-o)F (-6)FF1 92-Fk(1_o)kT2 93—F(1_o)F T3 1

2 The NPS class of distributions

Given N, let X1,.., X be a random sample from normal distribution with mean p and
variance o2. Here the random variable N, independent of X;’s, belongs to a power series
distributions (truncated at zero) with the probability mass function

a, 0™

P(N =n) = o)

where a, > 0 depends only on n, C(0) =3 77, a,0™ and 6 € (0, s) (s can be o) is such
that C'(0) is finite. Table 1 lists some particular cases of the truncated (at zero) power
series distributions (geometric, Poisson, logarithmic, binomial and negative binomial).
Detailed properties of power series distributions can be found in Noack (1950). Here,
C'(6), C"(A) and C"'(0) denote the first, second and third derivatives of C(f) with
respect to 6, respectively.

Let Y = X(y) = max (X3,.., Xx), then the conditional cdf of Y|N = n is given by

Gy|n=n(y) = <‘I) <y ; M>>n7

where ®(-) denotes the cdf of the standard normal distribution.
The cdf of NPS class of distributions is defined by the marginal cdf of Y, i.e.,

" <@ <y0u>>”zcﬂ“g((:)é“)), (21)

ant
C(0)

F(y;p,0,0) =Y
n=1

wherey € R, u € Rand o > 0. We denote a random variable Y follows NPS distributions
by notation NPS(u,o,0). The density function of NPS follows immediately as

flysp,0,0) = §¢ (y ~ M) ¢ (02((9)‘;”- (2.2)

The corresponding survival and hazard rate functions are

c(o2 (*34))
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and
00 (152) C'(6% (*52)
h(y’ H, o, 9) = — ( ) (y_ﬂ ) )
o C(9) — C(OD (££))
respectively.
One can put 4 = 0 and ¢ = 1 and obtains the standard version on NPS class of

distributions denote by notation NPS(0,1,6). Figure 1 shows the probability density
function and hazard rate function of the classical normal distribution and the NPS
distributions proposed in this paper for some choice of C'(6). It can be seen that the new
model is very versatile and that the value of # has a substantial effect on the skewness
of the probability density function.

Proposition 1. Let ¢ = min{n € N: a,, > 0}. As § — 07 we have

C(0 (1)) >t anb™ (@ (5H))"
lim F 0) = lim —— ) Jjy Sn= o
o 0 0) = Jim =gy = T s
o Tl () (@ () T 0l (@ (52)”
6—0+ Sl a,6m Fache+ > 07 g ant”
P (Y=£))c -1 0 nenfc Y—H\\n _ c
_ lim ( ( o )) +a’ 1Zn CJrla ( ( o )) — <(I) <y ,U,>> .
00+ L+ac Y02 . and” o

Proposition 2. The densities of NPS class of distributions can be written as infinite
number of linear combination of density of order statistics. We know that C'(0) =
S0 napd™L, therefore

f(y;u,o,e)zgsb( . >C(0@( Zg(n y;in =n),

where g, (y;n) denotes the density function of X,y = max (X1, .., Xp).

Proposition 3. The vth quantile of the NPS class of distributions is given by

yy = 0@ <0_1(790(9))> + pe

One can use this expression for generating a random sample from NPS distributions
with generating data from uniform distribution.

3 Moments of the NPS

In this section we give two methods to obtain the moments of the NPS distributions.

(i) First method
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Jamalizadeh and Balakrishnan (2010) considered unified skew-elliptical (SUE) distri-
bution which contains unified skew-normal (SUN) distribution as a special case. The
univariate random variable Z, g, 0 = (\v,92),\~ € RF and Q eR**¥ is a positive
definite dispersion matrix, is said to have a unified skew-normal distribution, denoted
by Z,. g ~ SUN (k, 0), if its pdf is given by

0 (2) o Az +7: Q)

ik, 0) =

Furthermore, the moment generating function of Z, g for s € R, is given by

exp (%52) o, ()\s + 7; Q+>\)\T)
P, (v Q+AXT) '

Msun (s;k,0) =

The mean of Z, g can be obtained as the following lemma.

Lemma 1. If Z,_g ~ SUN (k,0), then

k
1 A
E(Z.g) =
( h ) (p (77 Q+>‘)‘T Z1 \/Wu + )\ \/OJ” + )‘2
XDy (’7_,‘ - ﬁ (w—u + Ai A—l) ) (Q+>‘)‘T) —1|z> ’

where, for some 1,

. . . T
2\ = Ai Ly = i Q= Wig Wi ’
A Y w_j; iy

ii+)\iA—i) (w—ii+)\iA7i)T

w_
=Q_ ;i + A2 - ( Wi+ A2

with(Q+AXT)

—i)i
In the special case when v = 0, the moments can be determined rather easily. If in

this case the unified skew-normal is denoted by Zj, o, we then have

1 k A

E(Z =
( k,)\,ﬂ) q)k (0, Q—|—)\)\T) \/ﬂ ; wii + )\12

o (05 (2+ANT)_ )

In this case, a recurrence formula for the moments of Z, y o ~ SN (k, X, Q) was ob-
tained. For simplicity, in the following lemma, this recurrence formula is presented when
2 is the correlation matrix.

Lemma 2. We have, form=1,2,---,

B(z750) = mE(Z15))

1 k )\i(I),Pl (O;Q_i“—i-)\fA;kT)E(
" V2rd, (0; 2+AXT) ; (1+ A%)mTl
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A,
where A] = L.
V1+A?

In addition when X ~ N,, (ul,,0%{(1 — p)I, + p1,11}) |
uweR >0, —ﬁ<p<1,then

X _
2O R SUNMR-1,6),

g

where

0= (o(1-p)Jn-1,0,0°(1 = p){Tu1 + pJu1J}_1})

with J,_1 = (lT IE_T)T and I,_; € Rn—1xn—1,

r—1»

517

(3.1)

We use the above lemmas and equation (3.1), without loss of generality, to obtain the
moment generating function, kth moment and the first moment of NPS(u,o,0), when

1= 0and o =1 in the following proposition.

Proposition 4. IfY ~ NPS(0,1,6), then the moment generating function, kth moment

and mean of Y are given by

My(t) = Zanﬁ

. a, 0™ _
n=1

o0

an 0™ (n — 1)(I)n_2 (0; I,o+ %171_212:_2)

k
X
E <Zn—2,j§1n2,1n2> ’

and

an0"

_ L wt” N : 1 T
E(Y) = 2\/7%21 o n(n —1)®, 5 <0,In_2 + 2171_2171_2> :

respectively.

20O " 2w, (0T, L 1L )
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One can derive the second moment of NPS class of distributions as

[e.e]

1 an, 0™ 1
EYH=1+4— 2 _xnn—-1(n-2)0,_ <O;In_f+1n_f1£_>.
(Y?) /37 2= C(0) ( )( )Pn—3 3 glnsly g

(ii) Second method

In the following proposition, we present another formulation for calculate the kth mo-
ment around the origin of the random variable Y ~ NPS(u,0,0). First, we give two
well-known relationship, which are necessary in the following proposition. If ®(z;u, o)
denotes the cdf of N(u,o?) distribution, then we have

O(x;p,0) = % {1 + erf <Z\_/§>] , (3.2)
and
Ot p,0) = p+ ov2erf (2t — 1). (3.3)

Proposition 5. We have

E(YF) = /01 {u +ov2erf™! (20_1(5(9)“) - 1> }k du.

Proof. We know that E(Y*) = foooo v* f(y; u,0,0)dy. Then, substituting f(y; u, o, 6)

from (2.2) and change of variable ® (y; u, o) = t, gives
k ! 1 k ~
E(YF) = / &1 (t;u,0)]" C'(0t)d.
) =g [ B e o

Now, by changing the variable to u = <T@y e have

EY") = /01 {<I>_1 <Cl(§w>u);#,a> }kdu,

thus, the result follows from the Equation (3.3). O

4 Special cases of NPS class of distributions

In this section four important sub-models of NPS class of distributions are studied
in details. These models are normal-geometric (NG), normal-Poisson (NP), normal-
logarithmic (NL) and normal-binomial (NB) distributions.
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4.1 Normal-geometric distribution

Using Table 1, the NPS distributions contain normal-geometric (NG) distribution when
ap, =1 and C(0) = %(0 < 0 < 1). Using Equation (2.1), the cdf of NG is given by

(1-0)2(*75)
Fly,p,0,0) = —— 2~ 4.1
(y; 1, 0,0) I (k) (4.1)
The pdf and hazard rate function of NG distribution are
(1-0)p(*7")
su,0,0) = <z 4.2
fy;p,0,0) o (1 = 0D (E))? (4.2)
and
(1-0)o(*7")
hy; p,0,0) = (4.3)

o(1 = @(LH)(1 - 02(L4))

respectively, where y € R, u € R, 0 > 0 and 0 < § < 1. We use the notation ¥ ~
NG(u,0,60) when the random variable Y has NG distribution with location pu, scale o
and shape parameter 6.

Remark 1. Even when 6 < 0, Equation (4.2) is also a density function. We can then
define the NG distribution by Equation (4.2) for any 0 < 1. Some special sub-models of
the NG distribution are obtained as follows: If 6 = 0, we have the normal distribution.
When 6 — 17, the NG distribution tends to a distribution degenerated at zero. Hence,
the parameter 6 can be interpreted as a concentration parameter.

Figures 1 and 2 show the NG density function and hazard rate function for selected
values # < 1 where p =0 and 0 = 1.

Theorem 1. Suppose that Y1 ~ NG(0,1,01) and Yo ~ NG(0,1,02). If 01 > 02, then
YQ <LR Yl.

Proof. The logarithm of the likelihood ratio is given by

0
—~ 9; +2log(1 — 29 (y)) — 2log(1 — 6:1D(y)),

v(y) = log
which is an increasing function of y if 81 > 6o, since

’U/(y) _ 2(91 - 02>¢(y)
(1= 6022(y))(1 = 01®(y))

>0,

for all y. Therefore, the NG has the likelihood ratio ordering, which implies it has
the failure rate ordering as well as the stochastic ordering and the mean residual life
ordering. n
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NG Density

— 8=-5
- B=-2

0.8
|

6=0
6=05
--- 0=09

0.6

Density
0.4
|

0.2

Figure 1: Plots of density function of NG distribution for selected parameter values 8 <
1, p=0and o =1.

NG Hazard

— 8=-5
< - 9=-2
6=0

0=0.5

Hazard

Figure 2: Plots of hazard rate function of NG distribution for selected parameter values
0<1l,u=0and o =1.

Proposition 6. The moment generating function, mean and second moment of NG are
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Table 2: The first four moments, variance, skewness and kurtusis of NG distribution for
uw=0 0=1

VAR 0.8781 0.9508  0.9930
SK 0.4821 0.3046 0.1141
KUR  3.5440 3.2104 3.0291

0.9946 09799 0.8995 0.8123
-0.1004 -0.1942 -0.4371 -0.5999
3.0225 3.0846  3.4429  3.8702

0=-5 6=-2 6=-05 0=0 6=03 6=05 6=08 0=09
E(Y) -0.9841 -0.6134 -0.2284 0 0.2010 0.3894 0.8884  1.2445
E(Y?) 1.8465 1.3270  1.0452 1 1.0350 1.1315 1.6887  2.3609
E(Y3) -3.1487 -1.6981 -0.5795 0 0.5083  1.0155 2.7254  4.5206
E(Y*) 72110 4.4974 3.1974 3 3.1526  3.5829  6.3424  10.313
1
0
3

15 _
My(t) = exp <2t2) Zn(l —0)0" '@y (L1t Lq + 1, 1] ),
n=1

 — _ 1
BY) = o= nln=1)(1-0)0"" Py (o; Lo+ 21“15_2) ,
n=1
and
 [— 1
E(Y?) =1+ i > n(n—1)(n—2)(1-60)0"""d,_ 3 <0;In3 + 31n31£_3> ;
n=1
respectively.

Table 2 gives the first four moments, variance, skewness and kurtusis of the NG(0, 1, 6)
for different values 6 < 1.

Figure 3 shows the skewness and kurtusis plot of the NG(0, 1, 6) for different values
0 <1withy=0and oc=1.

4.2 Normal-Poisson distribution

The normal-Poisson (NP) distribution is obtained when a, = 4; and C(0) = ¢’ —1. The
cdf, pdf and hazard rate function of NP distribution are given by

OB g

F(y;p,0,0) = T 1

Flypo0) =2 (1.4
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e

—— Skewness
—— Kurtosis

Figure 3: Plots of skewness and kurtusis of NG distribution for selected parameter values
0 <1withpy=0, c=1.

and

. 0 p()e )
h(y,u,a, 0) - ; 69 B 39‘1’(%)) ’

respectively, where y € R, 4 € R, 0 > 0 and 6 € (0,00). We use the notation
Y ~ NP(u,0,0) when the random variable Y has NP distribution with location g,
scale o and shape parameter 6.

Remark 2. Even when 6 < 0, Equation (4.4) is also a density function. We can then
define the NP distribution by Equation (4.4) for any 0 € R-{0} .

Figures 4 and 5 show the NP density function and hazard rate function for selected
values 6 where =0 and o = 1.

Theorem 2. Suppose that Y1 ~ NP(u,0,601) and Yo ~ NP(u,0,02). If 01 > 03, then
Yo <pr V1.

Proof. The proof is similar to the proof of Theorem 1 and is omitted. O
Proposition 7. The moment generating function, mean and second central moment of

NP are given by

(e 9] n

1
MY(t) = exp <2t2> Z m X nq)nfl(lnflt; I, 1+ 1n711£—1)a

1 &=nn—1)0" 1 T
EY) = Gp 001,20+ 1,01




Electronic Journal of Applied Statistical Analysis 523

NP Density

1.0

® oD 0D

0.8

Density
0.6
|

0.4

0.2

0.0

Figure 4: Plots of density function of NP distribution for selected parameter values 6
with ¢ =0 and 0 = 1.

NP Hazard

4
I
oo

Hazard

Figure 5: Plots of hazard rate function of NP distribution for selected parameter values
0 with y =0 and o = 1.

o0

E(Y?) = 1+ [4\/1377 Z::l n!(;;n_ j =1 =2)

1
XP,_3 <O;In_3 + 31n_3153> .
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Table 3 gives the first four moments, variance, skewness and kurtusis of the NP(0, 1, 6)
for different values 6. Figure 6 shows the skewness and kurtusis plot of the NP(0,1,6)
for different values 6.

Table 3: The first four moments, variance, skewness and kurtusis of NP distribution for
p=0, c=1

0=001 6=03 6=05 06=08 0=1 0=3 0=6 0 =10

E(Y) 0.0028 0.0845 0.1405 0.2236  0.2781  0.7541  1.1997  1.5045
E(Y?) 1.0000 1.0041 1.0114 1.0290 1.0450 1.3477 1.9673  2.6533
E(Y?) 0.0071 0.2114  0.3520 0.5617 0.7003 2.0013 3.5904  5.2127

E(Y?*)  3.0000 3.0179  3.0495 3.1259  3.1954 4.5372 7.4821  11.2262
VAR  1.0000 0.9970 0.9917 09790 0.9677 0.7790 0.5279  0.3898
SK -0.0014  -0.0421 -0.0697 -0.1097 -0.1349 -0.2764 -0.0956 0.1973
KUR  3.0000 3.0074  3.0204 3.0515 3.0792 3.5076  3.6846  3.4236

. /_\
N —— Skewness
—— Kurtosis

Figure 6: Plots of skewness and kurtusis of NP distribution for selected parameter values

6.

4.3 Normal-binomial distribution

When a, = (') and C(0) = (6 + 1)™ — 1(6 > 0), where m (n < m) is the number of
replicas, we obtain the normal-binomial (NB) distribution with cdf

OB(4) +1)™ 1

F(y;p,0,0) = GrDm—1
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The pdf and hazard rate function are

_ m Yy—K m—1
f(y; K, 0, 0) - §¢ <y o M) (9$(+01)2n+_1i ’ (45)

and

| ey m(9® (LH) +1)™
h(y,ﬂam@)g‘?( - )(9+1) — (62 ( “)“)

respectively, where y € R, p € R, 0 > 0 and 6 € (0,00). We use the notation Y ~
NB(p,0,6) when the random variable Y has NB distribution with location u, scale o
and shape parameter 6. Figures 7 and 8 show the NB density and hazard rate function
for selected values 6§ where 4 =0 and o = 1.

Proposition 8. The moment generating function, mean and second central moment of
NB are given by

My(t) = exp <2t ) Z <n> m X nq)nfl(lnflt; Infl + 1n711n_1),

n=1

BY) = 2f2< >9+1n1”(”_1)

1
Xq)n—2 <07 In—2 + 21n—21£—2> 5

s < o[ (1) e

1
Xy, 3 <0, I3+ 31n—31z:—3> :

4.4 Normal-logarithmic distribution

When a, = £ and C() = —log(1 — )(0 < § < 1), we obtain the normal-logarithmic
(NL) distribution with cdf

log(1 — 6@ (%))

F(y;p,0,0) = Tog(1 = 0)

The pdf and hazard rate function are given by

Zo (21
(0% (1) — 1)log(1 —0)’ (46)

fyip,0,0) =
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NB Density

0.8

— 6=-10
---- 8=-5

8=0
6=5
--- 8=10

0.6

Density
0.4

0.2

Figure 7: Plots of density function of NB distribution for selected parameter values 6
with ¢ =0 and 0 = 1.

NB Hazard

— 8=-10

--- 8=10

Hazard

Figure 8: Plots of hazard rate function of NB distribution for selected parameter values
0 with p =0 and o = 1.

and
70 (%)
(0@ (££) — 1) log

[

h(y; p,0,0) =

1-9 )
1-00( &

)
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respectively, where y € R, p € R, 0 > 0 and § € (0,1). We use the notation
Y ~ NL(u,0,0) when the random variable Y has NL distribution with location g,
scale o and shape parameter 6.

Remark 3. Even when 6 < 0, Equation (4.6) is also a density function. We can then
define the NL distribution by Equation (4.6) for any 6 € (—o0,0) U (0,1).

Figures 9 and 10 show the NL density and hazard rate functions for selected values 6
where 4 =0 and o = 1.

NL Density

0.8
1

— 0=-5

- 9=-2
6=0.01
8=0.2

0.6
Il

- 08=09

Density
0.4

0.2
Il

0.0
|

Figure 9: Plots of density function of NL distribution for selected parameter values 6
with 4 =0 ando = 1.

Proposition 9. The moment generating function, mean and second central moment of
NL are given by

1, — 6"
My(t) = exp(§t2) E m X ‘?nfl(lnflt; In71+1n71]-z;_1)a
n=1
1 — o™ 1
E(Y) = — N —1D)®y o (010 + =1, 217 ),
(¥) Qﬁnzlnlog(l—ﬁ)(n ) 2(’ 2t g ln—2ly 2>

1 n(n —1)(n —2)0" 1
2 _ B j : . - T
EYT) =1 [4\/377 ot nlog(l —0) } X P | 0 ln—3 + 31n_31"73 ’

respectively.
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NL Hazard

— 8=-5
- 8=-2

6=0.001
0=0.2
-- 0=09

Hazard

-3 -2 -1 0 1 2 3

Figure 10: Plots of hazard rate function of NL distribution for selected parameter values
0 with p =0 ando = 1.
5 Properties of sub-models of NPS distristributions

In this section we present some additional and useful properties of the sub-models of
NPS distribution.

Proposition 10. For NG, NB and NL distributions we have
0
F(y,O,l,H)zl—F _ya()’l?i )
0—1
and for NP distribution we have
F(y;0,1,0) =1— F(—y;0,1,-0),

Proof. We shall prove for NG distribution. Proofs of other distributions are similar.
From (4.1), it can be found that

) _ Ay 1-a()

0
1—F<—y;0,1, = 1+— =14+ —=
I-1 T R T
(1—-0)2(y)
= =F(y;0,1,0
1 _ 0@(y) (y7 ) b )7
and hence the proof is compeleted. O

In the following proposition we give approximations for first and second moments
around the origin of NG, NP and NB distributions.
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Proposition 11. We have
(i) If Y ~ NG(u,0,0), then E(Y) and E(Y?) are approzimated by

B(Y) ~ #{29%4—@0 (210 (1-6) (1-0) +20 — 6) }

E(Y?) ~ 49(91_1)2{05 <7702 +2u% — Qﬁﬁau)

428062 (\/%,u — 27m) + 16700
180 log (1 — 6) (\/ﬂeu (1—0)+(0(0—3)+2) m) }

(ii) If Y ~ NP(u,0,0), then E(Y) and E(Y?) are approzimated by

E(Y) ~ 290_(619_1) {(2 + 002 — 200 + (201 + (0 — 2)0\/%)&} ,
E(Y?) 0T (1) ( Y [auﬁ (4\/% + 2@0) — 8ro? — 62 (7r02 + 2,u2)

—4mbo? + (292,u2 + 810% + 16262 + 2v216%0

—4”90‘,&)6 } .

(iii) If Y ~ NB(u,0,0), then E(Y) and E(Y?) are approzimated by

1
EY) ~ 29((0+1)m_1)(m+1){2\/ﬂa+(@U—Zu) (I+m)6

. [(2\/%a+ V2ro — 2M> 0 (1+m) —2V2mmo (0 + 1)] (6+1)" }

1 3
E(Y?) ~ {—22 V2rmiou — Srmo? — mo
(¥ @1 —1(m 1 2)(m 1) L2 +V2mmiop = orme” — 7o
1
—3mp® + 3vV2rmop — m?p® — §7rm20’2 + 2270 ) 6>
+(4V2rop 4 2V 2mmop — 2rmo? — 4wa?)0 + [(2u% + 3mp? + o’

1 1
+V2rmop +V2rmPou — 2V 2mopu — §7Tm02 + 57?712202 + m?p?)6?

+4nc? + (4mo? — 2mmo? — 4V 2mopu — 2V 2rmop)0) (0 + 1)™ }
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Proof. For (i), firstly note that
> (1= 0)ysdly; p, 0, 0)
EY)= d
&) /oo (1= 09 (y; 1, 0,0)2 "
After the change of variable u = 1 — 0®(y; 1, 0, 6), we obtain y = ! (%; T8 a) =pu+
V2o erf ™ (2 (45%) — 1). Now because erf ! (2) = Z‘QF +0(2%), we can write erf 7! (z) ~
N

2% Therefore we have

L 0k /R (2(55%) -1
m=-—7 /1 d

u2

u.

the result is obtained by solving the integral. Finally, E(Y?) is derived in the same
manner after simple computation. Parts (ii) and (iii) follow in a same way. O

6 Estimation and inference

In this section, we discuss the estimation of the parameters of NPS class of distri-
butions. let Y1,Ys, ..., Y, be a random sample with observed values y1,ys, ..., ¥ from a
NPS(u,0,0) and ¥ = (u,0,0)" be a parameter vector. The total log-likelihood function
is given by

where t; = ¥—£. The maximum likelihood estimation (MLE) of ¥, say \Il is obtained

by solving the nonlinear system of equations (%lﬁ , %, %) = 0, where

o _ 1 _ 9 ¢ (m))
on Z Z )
)

11

O _ —§+;Zt?—f2 <zc<9<1>< )
1=1

do —  C(02(t))
Oy =®(t)C(0D(t;))  nC (0)
8 0 2 C'(00(t;))  CO)

The solution of this nonlinear system of equation has not a closed form. The observed
information matrix is obtained for approximate confidence intervals and hypothesis tests
of the vector. The 3 x 3 observed information matrix is given by

L Iuo 1Luo

In(‘I’):_ Iua Ioo 16 |,
Ly Ise Ipo
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, o n_ 6% [tio(t)C” (00(1:)) - 0C" (00(1) 8 (1) | €' (0(1:))
T e Ak (€ 0%(1)))°

" 2
20 e b)) o o= P (C0e()
lho = o2 ZQ"‘O- ; (L)) o2 . (C,(Q@(ti)))Q

C'(6
o & (200" (00(1) — 61:0%(1)C" (9%(1)] €' (60 (1)

ot (C'(00(:)))°
1~ 6(1)C” (02(1))
I - -
v 02 C'(0%(t:))
, ” 2
g & ()0 (B (1)C (62 (1)) — (1) (1) (C” (0 (1)
7= (C,(Qq)(tz‘))z 7

_on 3, 0 (= tg(t)CT(02(t)
Iy = ngzfﬁ 2; & B0y

)
n | (Holt) — tio(t:) O (09 (t) — 91262(1)C" (69 (1:)| C' (69 (1)
o Z (€' (09 (1))°

” 2
RN (c"va(t))
= <c’<e<1>< 1))

t; 9(1) t;
L Z ) g0t
g o OB (62(6))C” (00(1) — tio(t)B(t) (€ (60(1))
= (C (62(1) |

b RO (00(1)C (0(1)) — ¥2(1) (€ (0% (1:) )
LA (€' (02(1:)))°

n (C’(@))2

co) ")y

It is well-known that under regularity conditions, the asymptotic distribution of /n (‘fI\l — \Il)
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is N3(0,J,(®)~1), where J,(¥) = lim, oo = n~1L,(¥). Therefore, an 100(1 — )
asymptotic confidence interval for each parameter W, is given by

ACh = (‘i’ ~ ZypVIT ¥, + 27/2\/1?7) ,

where I'" is the (r,r) diagonal element of In(\il)_l for r =1,2,3 and Z, ; is the quantile
1 — /2 of the standard normal distribution.

7 EM-algorithm

The EM-algorithm is one such elaborate technique. The EM-algorithm is a general
method of finding the maximum likelihood estimate of the parameters of an underlying
distribution from a given data set when the data is incomplete or has missing values.
There are two main applications of the EM-algorithm. The first occurs when the data
indeed has missing values, due to problems with or limitations of the observation process.
The second occurs when optimizing the likelihood function is analytically intractable but
when the likelihood function can be simplified by assuming the existence of values for
additional but missing (or hidden) parameters.

We define a hypothetical complete-data distribution with a joint probability density
function in the form

292 - — -
g(z,y;¥) = aaC(e)zd) <y - M) =t <yau> :

where 0 > 0, 0 € (0,s), yeR and z € N. The probability density function of Z given
Y =y is given by

9(z,y; W) a0 120 (L1

g(Z|y): f(y) - C( ( );

After some simple calculation we have

The complete-data log- likelihood has the form

n n
1
I (y,z;p,0,0) o E ziloge—nloga—ﬁi (y; —
=1 =1
n

DMEE (o (252)) - ntoxtcio.
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The components of the score function U.(y,z; ¥) = (%l;;, %l;, %lg), are

ol 1 & 1< ¢ (L2)

= - i — ) — = i — 1) — 55
o = ;(y w- ;(z )% (B
ol no1 , 1L (yi — ) & (“57)
do _EJFEZ(%_M) 2o o (k)
=1 =1 o
oy, 1g~_ (D)
a0 — 9= "0

by

1 « R n, & yi_aﬁ(hﬂ)
LR E= =
3 ~ - (yi — M) ¢ yg—iﬁ(’”
" (3(h+11>))2 2 (yi - “(h))Q + a<h1+1> 2 (’éh) - 1) g (yﬁ(ﬁé} )<h+1> ) o,
Gty
Gih+1) ng’(’fé\(;-l)) ;Egh)’

where 7™, 3+ and 9+ are found numerically. Here, for i = 1,...,n, we have
that

oo (1552) (3 (58)

2~
' ' @me (i)

+

3(’L)

7.1 Evaluation of the standard errors from the EM-algorithm

We use the results of Louis (1982) to obtain the standard errors of the estimators from
the EM-algorithm. The elements of the 3 x 3 observed information matrix I. (¥;y,z) =

B [% ] are given by
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oAl
o2
0%l
oudo

o
Oc?

o2
62
o2
900

Taking the conditional expectation of I, (¥;y,z) = —
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n 1 n yz‘U—M ¢ yiU_M P yi;M +¢2 %
B Yo e LI qu(y(N)) (=)

Pl 2 1 < (yi — 1) ¢ (X=£)
= =3 i — M) — zi—1 —
T =
n vi—p\2  (yi—p Yi— Yim i\ 12 (Yi—pt
+%Z(zi—1)( )"0 (5 )‘I:Dg(;_)ﬂ;r( ) 9% (42 )7
i=1 e

yv:—,u)

n 3 <& 2 o (yi —p) & (¥
= —02+04;(y¢—u)2—03;(zi—1) q)(yi;&)

LN G () 0 () @ (M) — (M54) ¢ (M5)

o2 g P2 (yi;M ’
_ _CMO)C(0) — (C'(0))*
- 922 C2%(0) ’

B 821,’; _ P
T 0pdd  9odb 900l

[W} given y, we obtain

the 3 x 3 matrix

where

C21 =

C2 =

C33 =

e (;y,2) = E(I.(¥;y,2) | y) = [cij] (7.1)

LIRSy (yz ) ) 0 (1) 2 (1

= w2 (57 |
n n _ Yizp

:22 1 e e

L Z B |51 (1o (22) d (()) (454) 6 (%5%)
42_: 023:1 Zily) -1 ;f@jﬁ_gy)ﬂ

+1Z< (Zily) - 1) (454)" e - >U )(% ) - () 6 (54)

9% ; E(Zi|y)+nC”(9)C(gg(9)(C/(0))2, c13 = €31 = Ca3 = c32 = 0,
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and

Moving now to the computation of ,, (¥;y) as

b (W5y) = Var[Uc (y,2 %) | y] = [vij], (7.2)
where
1o 0% (2%
V11 = 02; o2 (yl;#)VaT[Z@ | Y]a
2
" (i — ) o (YE)
m = ( 0 (1) ) Vel
V33 — ?12 Var[Zi|y],
i=1
2
1 Yi—p
V21 = V12 = Ug,;(yz‘ — ) (Z;((y%“))) Var(Z; | yl,
n Yi—p
V13 = V31 :—£ 4 Z((yii“)) VQT[Zi|Y]a
1 P — Yi—p
and
Var(Zi |yl = E(Z%|y) —(E(Z|y))
1~ 3 <Cl(9*)+9*0//(9*)>
= AN z 9* -
T 2 (C'(6.))°

1"

620" (0.) + C'(0.) +30.C (6.)  [C'(8,) +6.C (B.)1
C'(0-) (C'(6.))*

)

in which 0, = 0® (%) .
Applying the Equations (7.1) and (7.2), we obtain the observed information as

I(‘T’;y) =l (‘f';y> =l (‘T’;y)-

The standard errors of the MLEs of the EM-algorithm are the square root of the diagonal
elements of the I (‘T& y) .
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8 Simulation study

This section provides the results of simulation study. Because of time-consuming simu-
lation, it has been performed in order to investigate the proposed estimator of, u, o, 0
of the proposed EM method for NG distribution. We simulate 1000 times under the NG
distribution with different sets of parameters and sample sizes n = 50, 100, 150, 300 and
500. For each sample size, we compute the MLEs by EM-method. We also compute the
root of mean square errors (RMSE), standard errors (SE) and covariances of the MLEs
of the EM-algorithm. The results for the NG distribution are reported in Tables 4.
Some of the points are quite clear from the simulation results: (i) Convergence has been
achieved in all cases and this emphasizes the numerical stability of the EM-algorithm.
(i) The differences between the average estimates and the true values are almost small.
(731) These results suggest that the EM estimates have performed consistently. (iv) As
the sample size increases, the root of mean square errors and the standard errors of the
MLEs decrease.

9 Applications of the NPS class of distributions to two
real data sets

In this section, we try to illustrate the better performance of the proposed model. For this
perpose, we fit NG, NP and NL models to two real data sets. We also fit the Azzalini’s
skew-normal (SN) and normal distributions to make a comparison with the NPS models.
The first data concerning the heights (in centimeters) of 100 Australian athletes. The
data have been previously analyzed in Cook and Weisberg (1994) and are available
for download at http://azzalini.stat.unipd.it/SN/index.html. We estimate parameters
by numerically maximizing the likelihood function. The MLEs of the parameters, the
log-likelihood, the AIC (Akaike Information Criterion) and BIC (Bayesian Information
Criterion) for the NG, NP, NL, normal and SN models are given in Table 5.

As is well known, a model with a minimum AIC value is to be preferred. Therefore
NG distribution provides a better fit to this data set than the other distributions and
hence could be chosen as the best distribution. Also this conclusion is confirmed from
the plots of the densities functions in Figure 11.

The second data represent the Oits IQ Scores for 52 non-White males hired by a large
insurance company in 1971 given in Roberts (1988). Table 6 gives the MLEs of the
parameters, the log-likelihood, the AIC and BIC for the NG, NP, NL, Normal and SN
models for the second data set.

The results for the second data set show that the NG distributions yield the best fit
among the NPS class of distributions and is a proper competitor for the normal and SN
distributions. Also the plots of the densities in Figure 12 confirmed this conclusion.
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Table 5: Parameter estimates, AIC and BIC for AIS data.

Dist. Parameter estimates —log(L) AIC BIC

NG 1=136.001, 0=13.642, §=0.998 348.376 702.752 710.567
NP u=167.106, 0=9.208, §=3.398  349.145 704.291 712.106
NL 7i=169.353, 6=7.947, 6=0.897  350.872  707.745 715.560
Normal | p=174.594, 6=8.209 352.319  708.635 713.846
SN 1=170.320, 0=8.002, 6=0.0016 352.032 710.636 718.451

Figure 11: Histogram of heights of 100 Australian athletes.The lines represent distribu-
tions fitted using maximum likelihood estimation: NG (Black), NP (Red),
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10 Conclusion

In this paper we introduce a new three-parameter class of distributions called the normal-
power series distributions (NPS), which is an alternative to the Azzalini skew-normal
distribution for fitting skewed data. The NPS distributions contain the NG, NP, NB
and NL distributions as special cases. We obtain expressions for the moments. The
estimation of the unknown parameters of the proposed distribution is approached by
the EM-algorithm. Finally, we fitted NPS models to two real data sets to show the

potential of the new proposed class.

200
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Table 6: Parameter estimates, AIC and BIC for OTIS IQ scores data.

Dist. Parameter estimates —log(L) AIC BIC

NG u=112.875, 0=82.313, f=-2.989 182.313  370.628 376.479
NP 1=106.263, 0=8.227, §=0.0000002 182.313  372.850 376.479
NL [i=106.308, 5=7.947, =0.0000002 183.433  372.867 378.719
Normal | ©=106.654, 7=8.230 183.387  370.774 374.676
SN 1=98.790, 7=11.380, 6=1.710 182.436  370.872 376.726

0.03 0.05 0.06
1 |

Density

0.01
1

0.00
L

90 100 110 120 130

OTIS IQ score data set

Figure 12: Histogram of OTIS IQ scores. The lines represent distributions fitted using
maximum likelihood estimation: NG (Black), NP (Red), NL(Green), nor-
mal(pink) and ASN (Blue)
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