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This paper presents a Bayesian approach to estimate the probability that
one random variable exceeds another based on two independent Weibull-
distributed random variables. The proposed methodology utilizes an initial
guess of the reliability through an informative prior, which constitutes the
cornerstone of the model. A Monte Carlo simulation study is conducted to
compare the performance of the new estimators with both the Maximum
Likelihood Estimation (MLE) and the Shrinkage Estimation methods. The
comparison is conducted with respect to the Mean Squared Error (MSE) for
different values of the scale and shape parameters of the Weibull distribution
using small, moderate and large sample sizes. The proposed method outper-
forms the two aforementioned alternative methods. The proposed Bayesian
approach is implemented using a real data regarding survival times of head
and neck cancer patients for illustrative purposes

1 Introduction

Birnbaum et al. (1956) introduced the idea of estimating, R = P (X > Y ), the proba-
bility that one random variable exceeds another, then the idea attracted the attention
of many authors in literature. R has many applications in a variety of different fields
such as reliability analysis, in which R is known as the stress-strength model reliability.
Furthermore, if Y models the strength of the device and X models the stress subjected
on it, then the device fails any time when strength exceeded by the stress applied on it.
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Another interpretation of the parameter R is the effectiveness of a treatment or a drug
when X and Y are the response variables for treatment and control groups respectively,
see Ventura et al. (2011).

Inference on R has received a great amount of attention and it has been studied exten-
sively in various contexts. Including; parametric and non-parametric estimation using
Bayesian and frequentist methods based on different data structures. Enis and Geisser
(1971), Awad et al. (1981), and Tong (1974) discussed the problem of estimating R
when X and Y are either independent or bivariate exponential random variables. When
X and Y are independent normal random variables, estimation of R is considered by
Govindarazulu (1967); Woodward and Kelley (1977). Estimation of R is also considered
by McCool (1991); Kundu and Gupta (2006); Davarzani et al. (2009) for the Weibull
case. Nadarajah (2004b,a, 2005a,b) for logistic, Laplace, beta, and gamma respectively.
Most recently, Samawi et al. (2016) considered the case when X and Y are dependent
random variables with a bi-variate underlying distribution.

Inference on R has been investigated given different contexts of the structure of the
underlying data. Muttlak et al. (2010)used ranked set sampling. Elfattah and Marwa
(2008) considered the case based on censored samples. Abdel-Hady (2014) and Khamnei
(2013) studied the inference on R in the presence of outliers.

In some fields, an expert often possesses some prior information of R based on either
past experience or from the technical structure of the system. Given a prior estimate
R0 of R, we are looking for an estimator that incorporates this information. Thompson
(1968) introduced shrinkage estimators that take advantage of the given prior guess.
Baklizi and Abu Dayyeh (2003) discussed different shrinkage estimators of R when X
and Y are exponential. Chaturvedi and Nandchahal (2016) studied the characteristics
of the shrinkage estimators of the the Reliability of a Family of Lifetime Distributions.
Haghighi and Shayib (2008) considered the shrinkage estimation of R for the Weibull
type of distributions with common shape parameter. In this paper we consider the case
similar to Haghighi and Shayib (2008), but from a Bayesian point of view.

Here is the organization of our paper. The elicitation of prior reflecting the previous
knowledge of R together with the construction of the Bayesian model are presented in
Section 2. The effectiveness of the proposed methodology is demonstrated using Monte
Carlo simulation in section 3. The proposed approach is applied to a real data consisting
of survival times of head and neck cancer patients in section 4.

2 Estimation Methods

A positive random variable X follows a Weibull distribution with shape parameter α > 0
and rate parameter θ

1
α > 0, denoted by W (α, θ), if the probability density function,

fX (x; α, θ) = αθxα−1e−θx
α

for x > 0. The popularity of the Weibull distribution is
mainly due to the versatility of its failure rate function . See Abernethy (2006) for a
complete and through discussion about the advantages of Weibull distribution. In this
study, letX and Y have independent Weibull distributions with the same shape param-
eter α but with different rate parameters θ

1
α and λ

1
α> 0, respectively. The probability
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that X exceeds Y is

R = P (X > Y ) =

∫ ∫
(X>Y )

f (x, y) dxdy =

∞∫
0

fX (x)

 x∫
0

fY (y) dy

 dx =
λ

θ + λ

Let X = X1, . . . , Xn be a random sample from W (α, θ) and Y = Y1, . . . , Ym be
a random sample from W (α, λ), then the likelihood function of the parameter vector

(α, θ, λ) is provided below, where px =
n∏
i=1

Xi and py =
m∏
j=1

Yj

l (α,θ,λ ;X,Y) = θnλmαn+m (pxpy)
α−1 e

−
(
θ
n∑
i=1

Xα
i +λ

m∑
j=1

yαj

)

2.1 Maximum Likelihood Estimation (MLE)

The MLE estimator of R discussed in Haghighi and Shayib (2008) is R̂MLE = λ̂
θ̂+λ̂

,

where λ̂ =

m∑
j=1

yαi

m and θ̂ =

n∑
i=1

xαi

n . For comparative purposes the shape parameter α is
assumed to be known.

2.2 Shrinkage Estimation

Given a the initial guess of R to be R0, then the Shrinkage estimator of R is R̂SHR =
wR̂MLE + (1− w)R0, where 0 ≤ w ≤ 1. The best method, based on Haghighi and
Shayib (2008), is to choose θ such that the mean square error of R̂SHR is minimized.
The aforementioned paper provides explicit formulas to obtain R̂SHR. For comparative
purposes the shape parameter α is assumed to be known.

2.3 Bayesian Estimation

This section presents the building blocks of the Bayesian model; Prior, Likelihood, and
posterior. The Bayesian estimators are developed using the squared error loss function,
so the posterior mean is used to estimate each parameter of interest. Non-informative
priors are used, when appropriate, so that posterior densities would be dominated by
the sample data, Gelman et al. (2014) .

2.3.1 Likelihood

The parameterization of the likelihood l (α,θ,λ ;X,Y) is modified to facilitate the esti-
mation of R. Define S = θ + λ and R = λ

θ+λ , then the new likelihood function of the
parameter vector (α, R, S) is

l (α, R, S ;X,Y) = αn+m (pxpy)
α−1 Sn+m+1 (1−R)nRme

−
(
(1−R)S

n∑
i=1

Xα
i +RS

m∑
j=1

yαj

)
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2.3.2 Prior

The parameters (α, R, S) are assumed to be priori independent, so π (α, R, S) = π (α)π (R)π (S).
Non-informative priors are widely used through the Jeffery’s prior Jeffreys (1961). The
individual priors are considered below:

• Jeffery’s priorπJ (S) is assigned to the parameter S. So,πJ (S) ∝
√
I (S), where

I (S) = −EX
[
∂2logL
∂S2

]
and L is the log-likelihood function per observation given

by L = log (S)− ((1−R)xα +Ryα)S. Differentiating L twice with respect to S,

implies ∂2logL
∂S2 = −2

S2 . Therefore πJ (S) ∝
√
I (S) = 1

S .

• Jeffery’s priorπJ (α) is assigned to the parameter α. So, πJ (α) ∝
√
I (α), where

I (α) = −EX
[
∂2logL
∂α2

]
, and L is the log-likelihood function per observation given by

L = 2log (α)+(α− 1) log (xy)− (1−R)Sxα−RSyα. Differentiating L twice with

respect to α implies ∂2logL
∂α2 = −2

α2 − (1−R)S log2 (x) xα −RS log2 (y) yα . Notice

that, EX
[
(1−R)S log2 (x) xα

]
=
(
(1−R)S

α

)2 ∞∫
0

log2 (u)ue−(1−R)Sudu ∝ Constant
α2 ,

and EX
[
RS log2 (x) xα

]
=
(
RS
α

)2 ∞∫
0

log2 (u)ue−RSudu ∝ Constant
α2 . Since the both

of the aforementioned integrals are convergent, then πJ (α) ∝
√
I (α) = 1

α .

• R is assumed to follow a proper informative prior which incorporates the initial
guess for the reliability value R0. The prior information about R is expressed
in terms of the Beta distribution density π (R; A,B) ∝ (1−R)A−1RB−1. The
hyper-parameters A and B are carefully determined such that:

1. The prior π (R; A,B) should assign a considerable amount of density on the
initial guess R0. Therefore the prior mean of R is set to be R0.

2. The impact of the initial guess value, R0, on the properties of R̂ is reflected
through, σ2R, the prior variance of R. Small values of σ2R implies prominent

influence of the initial guess on R̂, which is preferred with small sample size.
On the other hand, when sample size is large, then large values of σ2R allow

the data to dominate the value of R̂.

Therefore, given both R0 and σ2R. Set R0 = A
A+B and σ2R = AB

(A+B)2(A+B+1)
, then solve

for A and B, as follows:

A =
R2

0(1−R0)

σ2
R

−R0 (1)

B = R0(1−R0)
2

σ2
R

− (1−R0) (2)
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2.3.3 Full Conditional Posterior Densities:

The joint posterior distribution is

π (α, R, S|X,Y) ∝ αn+m−1 (pxpy)
α−1 Sn+m (1−R)A+nRB+me

−
(
(1−R)S

n∑
i=1

Xα
i +RS

m∑
j=1

yαj

)

Clearly, the joint posterior distribution of the parameters of interest is analytically
intractable. So, the Gibbs sampling together with MCMC methods are employed to
obtain the posterior distribution of (α, R, S). Straightforward algebra shows that the
full posterior distributions conditional on the values of the others are shown below

1. π (S | �) ∝ Sn+me
−
(
(1−R)

n∑
i=1

Xα
i +R

m∑
j=1

yαj

)
S

, which is Gamma distribution with shape

n+m+ 1 and rate (1−R)
n∑
i=1

Xα
i +R

m∑
j=1

yαj .

2. π (α | �) ∝ αn+m−1 (pxpy)
α−1 e

−
(
(1−R)S

n∑
i=1

Xα
i +RS

m∑
j=1

yαj

)
.

3. π (R | �) ∝ (1−R)A+nRB+me

(
n∑
i=1

Xα
i −

m∑
j=1

yαj

)
RS

.

Notice that the conditional posterior densities π (α | �) and π (R | �) are uni-modal log-
concave functions. Therefore, we can use the adaptive rejection sampling algorithm
proposed by Gilks and Wild (1992) to sample directly from the their full conditional
distributions.

Define the Bayesian estimator to be posterior mean ofR given by, R̂BAY = E (R |X,Y).
The proposed estimator, R̂BAY , is compared with both alternative estimators, R̂MLE

and R̂SHR, through a simulation study provided in the following section.

3 Simulation Study:

3.1 Simulation Setting

A simulation study is conducted to investigate, based on empirical evidence, the perfor-
mance of R̂BAY compared with both R̂MLE and R̂SHR . Different scenarios, see Table
1, of the parameters of the underlying Weibull distributions are considered to observe
the effect on the performance. α is assigned the value 2 for the simulation. At each sce-
nario, 1000 data sets are simulated from the true Weibull distributions. The Bayesian
estimators, R̂BAY , is obtained from each simulated dataset with an MCMC of length
1000 iterations such that 600 burn-in, while the last 400 draws as the posterior sample
from the target joint posterior distribution, π (R, S|X,Y) . The sample sizes m and n
are assumed to be equal and they are set to equal 5, 10, 15 for each scenario. Since the
sample sizes are small, then the prior variance of R should be set to a small value to
have a considerable impact of the initial guess on R̂BAY . Therefore σR = 0.02.
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Table 1: Simulation Scenario, Parameter Values

Scenario R S λ θ Initial Guess R0
Prior Parameters for R

(A, B)Values for Beta-Distribution

I 0.5 8 4 4 0.45 (277, 339)

II 0.2 10 2 8 0.25 (350, 116)

III 0.8 10 8 2 0.75 (116, 350)

3.2 Results and Discussion

The results of the three scenarios (I, II, and III) are presented in Tables (2, 3, and 4) and
Figures (1, 2, and 3), respectively. The tables and the figures are designed to highlight
two main aspects:

• Aspect One: Understand the effect of varying the initial guess on the performance
of the three estimators, which is provided in Figures 1, 2, and 3.

• Aspect Two: Understand the effect of varying the sample size on the performance
of each estimators, which is summarized in Tables 2, 3, and 4.

3.2.1 Aspect One:

The relative efficiency of R̂BAY with respect to both R̂SHR and R̂MLE are presented, for
each scenario, in Figures 1, 2, and 3, at a sample size=10. In each figure, the solid curve

is MSE(R̂BAY )

MSE(R̂SHR)
while the dashed curve is MSE(R̂BAY )

MSE(R̂MLE)
. The two curves are presented as

functions of the initial guess R0. As the value of the relative efficiency curve exceeds 1,
it implies the out-performance of R̂BAY .

1. As long as the initial guess is within 0.1 of the true value, MSE
(
R̂BAY

)
<

MSE
(
R̂MLE

)
regardless of the scenario. On the other hand, as long as the initial

guess is within 0.05 of the true value, MSE
(
R̂BAY

)
< MSE

(
R̂SHR

)
especially

if R ≥ 0.5.

2. A cursory examination of Figures, especially Figure 2, shows the out-performance
R̂BAY over R̂SHR in the region where the initial guess is about 0.05 above the true
value i.e. when 0 < R0 − R < 0.05. In other words, if there is a belief that the
initial guess is above R then R̂BAY should be preferred over R̂SHR.
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Figure 1: Bayesian Estimate Efficiency for Scenario I

Figure 2: Bayesian Estimate Efficiency for Scenario II



Electronic Journal of Applied Statistical Analysis 301

Figure 3: Bayesian Estimate Efficiency for Scenario III

3.2.2 Aspect Two:

The mean square error for any estimator R̂ of isMSE
(
R̂
)

= E

[(
R̂−R

)2]
= E

[(
R̂− E

[
R̂
])2]

︸ ︷︷ ︸
V ar(R̂)

+

[
E
(
R̂
)
−R

]2
︸ ︷︷ ︸

Bias(R̂)

. Table 2 presents the E
[
R̂
]
, standard deviation

√
V ar

(
R̂
)

, and the

mean square error MSE
(
R̂
)

, respectively, at each sample size for all the considered

scenarios.

1. As generally expected, the mean square error for each estimator decrease as sample
size increases, especially R̂MLE .

2. As ample size decreases, the impact of the initial guess, on reducing the MSE of
both R̂BAY and R̂SHR, is more obvious. This demonstrates the intuition behind
preferring such estimators over MLE especially when sample size is small.

3. Notice that for all sample sizes, within each scenario, MSE(R̂BAY ) ≤MSE(R̂SHR) <

MSE(R̂MLE). Furthermore,

√
V ar

(
R̂BAY

)
is the minimum in all cases, which

implies that R̂BAY is more efficient estimator of R.
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Table 2: Results for Scenario I

Sample size R̂BAY R̂SHR R̂MLE

5

E
[
R̂
]

0.451 0.449 0.516√
V ar

(
R̂
)

, 0.003 0.012 0.167

MSE
(
R̂
)

0.002 0.003 0.028

10

E
[
R̂
]

0.451 0.454 0.502√
V ar

(
R̂
)

0.003 0.015 0.115

MSE
(
R̂
)

0.002 0.002 0.013

15

E
[
R̂
]

0.452 0.460 0.504√
V ar

(
R̂
)

0.004 0.196 0.097

MSE
(
R̂
)

0.002 0.002 0.009

Table 3: Results for Scenario II

Sample size R̂BAY R̂SHR R̂MLE

5

0.248 0.247 0.182

0.005 0.009 0.11

0.002 0.002 0.011

10

0.247 0.25 0.223

0.005 0.016 0.085

0.002 0.003 0.008

15

0.247 0.246 0.203

0.006 0.010 0.065

0.002 0.002 0.004
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Table 4: Results for Scenario III

Sample size R̂BAY R̂SHR R̂MLE

5

0.749 0.736 0.662

0.004 0.044 0.143

0.003 0.006 0.039

10

0.749 0.733 0.654

0.005 0.058 0.110

0.003 0.008 0.033

15

0.751 0.741 0.678

0.007 0.052 0.090

0.002 0.006 0.023

Table 5: Survival Times of Two Treatment Groups of Head and Neck Cancer Patients

Radio (X)

6.53,7,10.42,14.48,16.1,22.7,34,41.55,42,45.28,49.4,53.62,63

64,83,84,91,108,112,129,133,133,139,140,140,146,149,154

157,160,160,165,146,149,154,157,160,160,165,173, 1146,1417

176,218,225,241,248,273,277,297,405,417,420,440,523,583,594,1101,

Radio & Chemo (Y )

12.2,23.56,23.74,25.87,31.98,37,41.35,47.38,55.46,58.36,63.47,68.46,78.26,

74.47,81,43,84,92,94,110,112,119,127,130,133,140,146,155,159,173,

179,194,195,209,249,281,319,339,432,469,519,633,725,817,1776

4 Real Data Analysis

4.1 Data Description

To illustrate our method on real data, we consider a data presented in Singh et al.
(2015), which consists of the survival times of two treatment groups of head and neck
cancer patients from . The first group represents the survival times of 58 head and
neck cancer patients treated with radiotherapy, while the other group represents the
survival times of 45 head and neck cancer patients treated with combined radiotherapy
and chemotherapy. The survival times are provided in Table 5.

4.2 Data Analysis Results

In this section we analyzed 1000 bootstrap samples that were randomly selected with
replacement from the above two groups such that n = 29 and m = 23. The true value
of R is set to be 0.5, using the findings in Singh et al. (2015), based on analyzing the
complete data. The common shape parameter of the two underlying distributions is α =
0.97. Table 6 presents the mean square error of the three estimators using four different
initial guess values. Clearly, R̂BAY outperforms both R̂BAY and R̂SHR especially when
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Table 6: MSE of R Using the Three Methods

Initial Guess R0 MSE
(
R̂BAY

)
MSE

(
R̂SHR

)
MSE

(
R̂MLE

)
0.45 0.0021 0.0014 0.0059

0.48 0.0003 0.0004 0.0047

0.53 0.0008 0.0010 0.0055

0.55 0.0022 0.0019 0.0062

the initial guess is about 0.05 within the true value i.e. when |R0 −R| < 0.05. This
result agrees with findings of the simulation results in section 3.2.

5 Conclusion

The present study proposes a new approach that utilizes an initial guess of the reliability
through an informative prior shrinkage estimation of R based Weibull distributions with
common shape parameter. The results of the simulation study demonstrate that the
Bayesian estimator outperforms the existing shrinkage estimators as long as the initial
guess is about 0.05 above the true value, regardless of the underlying distribution pa-
rameters. The use of the Bayesian estimator is worth considering especially if available
sample size is small. As generally expected, as sample size increases, the precision of
MLE estimator increases, while both Bayesian and shrinkage estimators are still affected
by the prior guess.
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