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There is abundant and increasing evidence that the lognormal distribution
can account for random variation present in the data from many scientific
fields. In the light of this flexibility for modeling, this article deals with
goodness-of-fit tests for the lognormal distribution. Several testing proce-
dures are compared by means of extensive simulation. Lastly, an actuarial
data set is analyzed for illustration.
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1 Introduction

The Gaussian distribution is most often assumed to describe the random variation occur-
ring in the data from many scientific disciplines. Many measurements, however, reveal
a more or less skewed distribution. The lognormal (LN) distribution can be a poten-
tial model if data are non-negative and right skewed, while log-transformed data show
normality properties. The corresponding probability density function (PDF) is given by

f0(x;µ, σ2) =
1√

2πσx
exp

{
−(log(x)− µ)2

2σ2

}
, µ ∈ R, σ > 0;x > 0 (1)

which is simply denoted by X ∼ LN(µ, σ2).
In the sequel, we provide some applications of the distribution in different fields. Koch

(1966, 1969) has discussed the genesis of the LN distribution arising from biological
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and pharmacological mechanisms. For example, he considered the LN distribution for
modeling the metabolic turnover. Applications of this distribution in biochemistry are
given in Masuyama (1984) and references therein. It has also been utilized in medical
studies such as the incubation period of disease, the time to recovery, and duration of
survival (Crow and Shimizu, 1988, pp. 211-266). In the majority of plant and animal
communities, the abundance of species follows a (truncated) LN distribution (Magurran,
1988). Hydrological variables, like low river flows and water quality data, are also often
modelled as LN random variables (Kroll and Stedinger, 1996). In the actuarial context,
models with heavy-tailed distributions have been used to provide adequate descriptions
of claim size distributions. The right tail of a distribution is an important issue in
insurance as it represents the total impact of insurance losses. The LN distribution is a
flexible choice which can be used in modeling claim size (Boland, 2007).

The use of a parametric model needs to be supported by a formal testing procedure
based on the observed data. Otherwise, inferential results under the hypothesized model
could be quite misleading. Thanks to importance of the LN model for data analysis
in many scientific disciplines (as exemplified earlier), goodness-of-fit tests for the LN
distribution deserve more attention. This work provides a comparative power study of
such tests through extensive simulation.

Section 2 presents a review of existing tests. Section 3 contains results of a Monte
Carlo study conducted to compare power of the tests. A data set from the actuarial
literature is analyzed in Section 4. We end in Section 5 with a summary. Figures are
collected in an appendix.

2 Goodness-of-fit tests

Given a random sample X1, . . . , Xn from a population having a continuous density func-
tion f(x), consider the problem of testing H0 : f(x) = f0(x;µ, σ2) for some µ ∈ R and
σ > 0, where f0 is defined in (1). The alternative hypothesis is H1 : f(x) 6= f0(x;µ, σ2)
for any µ ∈ R and σ > 0.

2.1 Tests based on transformed data

Owing to the definition of the LN distribution, the above problem can be reduced to
that of testing normality for the log transformed data. Many statistical procedures rely
on the assumption that the observed data are normally distributed. Consequently, there
exists a vast literature on tests of normality and their statistical properties. In this
subsection, it is assumed that Xi = log(Xi) for i = 1, . . . , n.

Pearson’s chi-squared test can be used to determine whether the population distribu-
tion estimated by a random sample containing n independent observations is identical
to some hypothesized distribution (Kirk, 2008). The test statistic is given by

χ2 =
k∑
i=1

(Oi − Ei)2

Ei
, (2)
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whereOi’s are the observed frequencies in k mutually exclusive categories of a population,
and Ei’s are the expected frequencies under the null hypothesis. The null distribution of
χ2 is approximately chi-squared with k−c−1 degrees of freedom, where c is the number
of estimated parameters for the distribution to be tested. These parameters are used in
computing Ei’s.

It is well known that the most powerful omnibus test of normality in the literature is
the Shapiro-Wilk (SW) which is essentially the squared ratio of the best linear unbiased
estimator for scale to the standard deviation. The test statistic is defined by

SW =

(∑n
i=1 aiX(i)

)2∑n
i=1

(
Xi − X̄

)2 , (3)

where X(i)’s are the sample order statistics and X̄ is the sample mean. The vector
a′ = (a1, . . . , an) is given by

a =
m′V−1

(m′V−1V−1m)1/2
,

where m is the vector of the expected values of the order statistics of a simple random
sample of size n from the standard normal distribution, and V is the covariance matrix
of those order statistics. For n ≤ 50, the values of ai were tabulated by Shapiro and
Wilk (1965).

The Shapiro-Francia (SF) test was described in Shapiro and Francia (1972). It is
obtained through replacing V −1 in the SW test by the identity matrix I, when the
sample size is large. The statistic is then

SF =

(∑n
i=1 biX(i)

)2∑n
i=1

(
Xi − X̄

)2 , (4)

where the vector b′ = (b1, . . . , bn) is given by

b =
m′

(m′m)1/2
.

Royston (1993a, 1993b) proposed an easy-to-calculate approximation to the SF test and
its p-value for sample sizes 5 ≤ n ≤ 5000.

Jarque-Bera (JB) test, introduced by Jarque and Bera (1987), is based on a comparison
of the standardized sample skewness and kurtosis to the skewness and kurtosis of the
standard normal distribution, which are 0 and 3, respectively. The form of the statistic
is given by

JB = n

(√
g1

2

6
+

(g2 − 3)2

24

)
, (5)

where
√
g1 = m3/m

3/2
2 and g2 = m4/m

2
2, with mj =

∑n
i=1(Xi−X̄ )j/n. The JB statistic

asymptotically follows chi-squared distribution with two degrees of freedom.
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Some tests employ measures of discrepancy between the empirical distribution func-
tion (EDF) and a given distribution function. There are two classes of such tests: the
Kolmogorov-Smirnov type and the quadratic type. We now present some EDF-based
tests of normality. To do so, we assume that Zi’s are the standardized data,

Zi =
Xi − X̄√∑n

j=1(Xj − X̄ )2/n
(i = 1, . . . , n),

with ordered values Z(i)’s. Also, the cumulative distribution function of a standard
normal random variable is denoted by Φ(.).

The best-known statistic for tests of fit is that of Kolmogorov-Smirnov given by

D = max
i=1,...,n

[
max

{
i

n
− Φ(Z(i)),Φ(Z(i))−

i− 1

n

}]
. (6)

The famous Cramér-von Mises statistic,

W 2 =

n∑
i=1

(
Φ(Z(i))−

i− 0.5

n

)2

+
1

12n
, (7)

leads to an important goodness-of-fit test. Another powerful test, especially for small
sample sizes, is based on the Anderson-Darling statistic defined as

A2 = − 2

n

n∑
i=1

[
(i− 0.5) log

{
Φ(Z(i))

}
+ (n− i+ 0.5) log

{
1− Φ(Z(i))

}]
− n. (8)

Details about the derivation of the above three statistics are given in Gibbons and
Chakraborti (2011). Kuiper (1960) introduced a statistic related to that of Kolmogorov-
Smirnov to be applied to observations on a circle. The statistic has the form

V = max
i=1,...,n

{
i

n
− Φ(Z(i))

}
+ max
i=1,...,n

{
Φ(Z(i))−

i− 1

n

}
. (9)

Watson (1961) suggested a modification of (7) given by

U2 = W 2 − n

(
1

n

n∑
i=1

Φ(Z(i))− 0.5

)2

. (10)

Information theoretic measures have been widely used in developing tests of fit for
different parametric families. A classical measure of uncertainty for a PDF f(x) is the
differential entropy, also known as the Shannon information measure, defined as

H(f) = −
∫ ∞
−∞

f(x) log f(x)dx.
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The normal distribution possesses the largest entropy among all distributions with the
same variance (Shannon and Weaver, 1949). One can build on this result to construct a
test of normality. Vasicek (1976) introduced a simple entropy estimator given by

HVm,n =
1

n

n∑
i=1

log
{ n

2m

(
X(i+m) −X(i−m)

)}
, (11)

where m (called window size) is a positive integer less than or equal to n/2, X(1) ≤ · · · ≤
X(n) are order statistics based on a random sample of size n, X(i) = X(1) for i < 1, and
X(i) = X(n) for i > n. He showed that (11) is a consistent estimator of the population

entropy. In particular, HVm,n
p→ H(f) as m → ∞, n → ∞ and m/n → 0, where

p→
denotes convergence in probability. Vasicek (1976) suggested using the following statistic
for testing normality

TV =
exp {HVm,n}√∑n
i=1(Xi − X̄ )2/n

. (12)

It is possible to modify (12) by using improved entropy estimators motivated by Va-
sicek’s estimator. Some of these estimators are set out here. Bowman (1992) studied
the estimator

HBn = − 1

n

n∑
i=1

log
{
f̂(Xi)

}
, (13)

where

f̂ (x) =
1

nh

n∑
j=1

K

(
x−Xj
h

)
,

and K(.) is a symmetric kernel function which is chosen to be the standard normal
density function. The bandwidth h is selected based on the normal optimal smoothing
formula, h = 1.06 s n−1/5, where s is the sample standard deviation.

Van Es (1992) considered estimation of functionals of a PDF and entropy in particular.
He proposed the following estimator

HV Em,n =
1

n−m

n−m∑
i=1

log

{
n+ 1

m

(
X(i+m) −X(i)

)}
+

n∑
i=m

1

i
− log

{
n+ 1

m

}
, (14)

where m is a positive integer less than n.
Correa (1995) proposed another entropy estimator defined as

HCm,n = − 1

n

n∑
i=1

log

{∑i+m
j=i−m

(
X(j) − X̄(i)

)
(j − i)

n
∑i+m

j=i−m
(
X(j) − X̄(i)

)2
}
, (15)

where

X̄(i) =
1

2m+ 1

i+m∑
j=i−m

X(j).
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Zamanzadeh and Arghami (2009) modified (15) by assigning different weights at the
boundaries. Their estimator has the form

HZm,n = − 1

n

n∑
i=1

log


∑k2(i)

j=k1(i)

(
X(j) − X̃(i)

)(
j − F̃i

)
n
∑k2(i)

j=k1(i)

(
X(j) − X̃(i)

)2
 , (16)

where

X̃(i) =
1

k2(i)− k1(i) + 1

k2(i)∑
j=k1(i)

X(j),

F̃i =
1

k2(i)− k1(i) + 1

k2(i)∑
j=k1(i)

j,

k1(i) = max{1, i−m} and k2(i) = min{n, i+m}.
Yousefzadeh and Arghami (2008) introduced the following entropy estimator

HYm,n =

n∑
i=1

{
F̂y
(
X(i+m)

)
− F̂y

(
X(i−m)

)∑n
j=1 F̂y

(
X(j+m)

)
− F̂y

(
X(j−m)

)} log

{
X(i+m) −X(i−m)

F̂y
(
X(i+m)

)
− F̂y

(
X(i−m)

)} ,
(17)

where for i = 2, . . . , n− 1,

F̂y
(
X(i)

)
=

n− 1

n(n+ 1)

(
i+

1

n− 1
+
X(i) −X(i−1)

X(i+1) −X(i−1)

)
,

and

F̂y
(
X(1)

)
= 1− F̂y

(
X(n)

)
=

1

n+ 1
.

The test statistics obtained by replacing HVm,n in (12) with HBn, HV Em,n, HCm,n,
HYm,n and HZm,n will be denoted by TB, TV E , TC , TY and TZ , respectively.

Zhang and Wu (2005) developed three tests of normality based on the likelihood ratio
statistic. The corresponding test statistics are

ZK = max
i=1,...,n

[
(i− 0.5) log

{
i− 0.5

nΦ(Z(i))

}
+ (n− i+ 0.5) log

{
n− i+ 0.5

n(1− Φ(Z(i)))

}]
, (18)

ZA = −
n∑
i=1

 log
{

Φ(Z(i))
}

n− i+ 0.5
+

log
{

1− Φ(Z(i))
}

i− 0.5

 , (19)

and

ZC =

n∑
i=1

[
log

{
1/Φ(Z(i))− 1

(n− 0.5)/(i− 0.75)− 1

}]2
. (20)
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2.2 Tests based on original data

To the best of our knowledge, there are few testing procedures employing the original
data. Recently, Batsidis et al. (2016) developed two testing procedures based on the
Kullback-Leibler (KL) distance which is an extended concept of the entropy. The KL
distance between two PDFs f and g is defined to be

I(f, g) =

∫ ∞
−∞

f(x) log

(
f(x)

g(x)

)
dx.

It is well known that I(f, g) ≥ 0 and the equality holds if and only if f(x) = g(x), almost
surely.

Let X be a nonnegative random variable with PDF f such that µr = E(Xr) < ∞.
Then, the r-size weighted distribution fr exists and its PDF is given by

fr(x) =
xr

µr
f(x).

Tzavelas and Economou (2012) established the following characterization of the LN
distribution.
Proposition 1. If X ∼ LN(µ, σ2), then I(f, fr) = I(fr, f), ∀r ∈ R. Conversely, if
I(f, fr) = I(fr, f), ∀r ∈ O for some interval O containing 0, then X ∼ LN(µ, σ2).
Proposition 1 can be equivalently expressed in terms of

δr = I(f, fr)− I(fr, f) = 2 log (E(Xr))− E (log(Xr))− rE (Xr log(X))

E(Xr)
.

Put it another way, if X ∼ LN(µ, σ2), then δr = 0, ∀r ∈ R, while if δr = 0, ∀r ∈ O for
some interval O containing 0, then X ∼ LN(µ, σ2). A test for lognormality therefore
can be based on deviation of an empirical estimator of δr from zero.

Suppose σ̂2 is the maximum likelihood estimator of the shape parameter σ2 in (1)
given by

σ̂2 =
1

n

n∑
i=1

(log(Xi)− µ̂)2 ,

where µ̂ =
∑n

i=1 log(Xi)/n. Based on the transformed data Ŷi = X
1/σ̂
i , an estimator of

δr can be made as

Dn,r = 2 log

(
1

n

n∑
i=1

Ŷi
r

)
− r

n

n∑
i=1

log(Ŷi)− r
∑n

i=1 Ŷi
r

log(Ŷi)∑n
i=1 Ŷi

r . (21)

To set forth the tests based on Dn,r, we borrow two propositions from Batsidis et al.
(2016). The first one deals with the asymptotic null distribution of Dn,r for a fixed r.
Proposition 2. Let X1, . . . , Xn be a random sample from LN(µ, σ2), and Dn,r be as in

(21). Then
√
nDn,r

d→ N(0, σ2r ), where
d→ denotes convergence in distribution, and

σ2r = exp(r2)(r4 − 3r2 + 4)− (r2 + 4). (22)
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Based on Proposition 2, one can test the hypothesis of lognormality by evaluating Dn,r

at a single point r 6= 0, or at a finite grid of points. Following this approach, we may
lose the information given by using the rest of the points. In addition, seeking values
of the argument r which give rise to good power trait is not an easy task. To sidestep
these problems, a different approach needs to be pursued. The next proposition attends
to behavior of Dn,r/σr, and paves the way for introducing the test statistics.
Proposition 3. Let X1, . . . , Xn be a random sample from LN(µ, σ2), and Dn,r and σ2r
be defined as in (21) and (22), respectively. It holds that

√
n sup
r∈R

∣∣∣∣Dn,r

σr

∣∣∣∣
and

n

∫ ∞
−∞

(
Dn,r

σr

)2

dr

are bounded in probability.
In view of the above result, the statistics

T1 =
√
n sup
r∈R

∣∣∣∣Dn,r

σr

∣∣∣∣
and

T2 = n

∫ ∞
−∞

(
Dn,r

σr

)2

dr

are well defined and can be used to test the hypothesis of lognormality. In practice, T1
and T2 are approximated by

T1 ≈
√
n sup
r∈(−5,5)

∣∣∣∣Dn,r

σr

∣∣∣∣ , (23)

and

T2 ≈ n
∫ 5

−5

(
Dn,r

σr

)2

dr, (24)

respectively. As mentioned by Batsidis et al. (2016), these forms lead to a significant
simplification of the test statistics.
Remark 1: The family of LN distribution is invariant under the transformation exp(a)Xb,
for a, b ∈ R. Putting this and Proposition 2 together, it follows that for fixed r, the limit
distributions of T1 and T2 under the hypothesis of lognormality is independent of µ and
σ2. Hence, study under the null hypothesis can be restricted to the case of LN(0,1).

2.3 Determination of critical values

It is generally difficult to derive exact distributions of the test statistics presented in the
previous subsections under the null hypothesis although asymptotic approximations are
available in some cases. Monte Carlo simulation was then employed to determine critical
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Table 1: The optimal window sizes for the tests of size 0.05 based on the KL distance.

Statistic

n TV TV E TC TY TZ

10 3 8 4 5 5

20 3 19 3 10 4

30 4 29 4 15 4

50 5 49 4 25 5

values of a generic test statistic, say T , whose large values imply rejection of H0. To
this end, 20,000 samples of size n were generated from N(0, 1) or LN(0, 1) (depending
on the fact that T is based on transformed data or original data), and the statistic
was computed from each sample. Finally, (1 − α) quantile of the resulting values was
determined which will be denoted by Tn,1−α. The composite null hypothesis is rejected
at level α if the observed value of T exceeds Tn,1−α.
Remark 2: If small values of T support rejection of H0 (this is the case for SW, SF
and the entropy based tests), then Tn,α, α quantile of 20,000 values of T , would be the
appropriate critical value.

To calculate test statistics based on the entropy (with the exception of TB), the window
size m corresponding to a given sample size must be selected in advance. In entropy
estimation based on spacings, choosing optimal m for given n is still an open problem.
For each n, the window size having largest critical value tends to yield greater power.
For sample sizes 10, 20, 30 and 50, window sizes producing the maximum critical values
for different tests are given in Table 1.
Remark 3: In the all entropy estimators which employ spacings of the order statistics,
it is assumed that m is an integer satisfying 1 ≤ m ≤ n/2, unless otherwise stated.

Table 2 contains 0.05 critical points for most of the tests considered in this study.
For the entropy based tests, the above mentioned optimal window sizes are used. These
thresholds will be used in the next section to study the power properties. If a test
statistic is not included in Table 2, it means that the p-value needed to perform the test
is widely accessible through statistical softwares.

3 Numerical results

In this section, performances of the proposed tests are evaluated via Monte Carlo exper-
iments. Toward this end, we considered seven families of alternatives:

• The LN distribution with PDF

f(x) =
1√

2πθx
exp

{
−(log x)2

2θ2

}
, θ > 0;x > 0,
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Table 2: 0.05 critical points of the tests.

n

Statistic 10 20 30 50

D 0.265 0.193 0.160 0.125

W 2 0.124 0.125 0.127 0.126

A2 0.725 0.743 0.765 0.754

V 0.435 0.317 0.263 0.205

U2 0.115 0.116 0.118 0.116

TV 2.195 2.770 3.065 3.361

TB 3.718 3.775 3.825 3.899

TV E 3.491 3.616 3.783 4.022

TC 2.694 3.166 3.429 3.680

TY 3.541 3.593 3.674 3.809

TZ 3.399 3.469 3.660 3.839

ZK 1.048 1.382 1.618 1.861

ZA 3.502 3.451 3.423 3.387

ZC 6.695 9.160 10.849 12.643

T1 1.555 1.854 1.955 2.081

T2 2.697 4.015 4.603 5.690
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denoted by LN(θ).

• The gamma distribution with PDF

f(x) =
1

Γ(θ)
xθ−1 exp(−x), θ > 0;x > 0,

denoted by G(θ).

• The folded normal distribution defined as |Z| with Z ∼ N(0, 1), and denoted by
FN.

• The beta distribution with PDF

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, α, β > 0; 0 < x < 1,

denoted by B(α, β).

• The shifted Pareto distribution with PDF

f(x) = θ(1 + x)−(θ+1), θ > 0;x > 0,

denoted by Pa(θ).

• The generalized exponential distribution with PDF

f(x) = θe−x
(
1− e−x

)θ−1
, θ > 0;x > 0,

denoted by GE(θ).

• Johnson’s distribution defined as

exp
(
Z−θ
θ

)
1 + exp

(
Z−θ
θ

)
with Z ∼ N(0, 1), and denoted by Sb(θ).

The members selected from the above families are LN(0.5), LN(1), LN(2), G(1), G(1.5),
G(2), FN, B(0.5,2), Pa(2), Pa(4), Pa(6), GE(0.5), GE(2), GE(3), Sb(0.5) and Sb(1).
For each alternative, 20,000 samples of sizes n = 10, 30 were generated, and the power
of each test was estimated by the percentages of samples entering the rejection region.
Tables 3-6 present the estimated powers of the twenty tests of size 0.05 described in the
previous section. Given a sample size and alternative, power entry associated with the
best test is in bold.

It is observed that all tests maintain the nominal level satisfactorily. So we may fairly
judge the tests based on their powers. Increasing the sample size usually results in power
improvement for each test. For a fixed alternative, power of the tests are not markedly
different when n = 10, while this is not the case for n = 30.
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Table 3: Power comparison for the tests of size 0.05 for n = 10.

Alternative

Statistic LN(0.5) LN(1) LN(2) G(1) G(1.5) G(2) FN B(0.5,2)

χ2 0.066 0.068 0.067 0.122 0.100 0.096 0.186 0.269

D 0.046 0.053 0.053 0.114 0.092 0.084 0.170 0.223

W 2 0.047 0.048 0.050 0.123 0.099 0.087 0.194 0.271

A2 0.049 0.047 0.050 0.132 0.107 0.094 0.212 0.296

V 0.049 0.049 0.050 0.102 0.084 0.077 0.161 0.230

U2 0.047 0.048 0.051 0.113 0.092 0.082 0.179 0.249

SW 0.049 0.047 0.052 0.146 0.119 0.101 0.232 0.322

SF 0.053 0.051 0.054 0.157 0.129 0.110 0.243 0.321

JB 0.049 0.047 0.049 0.149 0.123 0.105 0.219 0.271

TV 0.048 0.047 0.049 0.104 0.086 0.076 0.176 0.286

TB 0.053 0.052 0.054 0.157 0.128 0.109 0.233 0.304

TV E 0.050 0.046 0.050 0.122 0.103 0.087 0.176 0.233

TC 0.048 0.046 0.052 0.114 0.092 0.083 0.191 0.306

TY 0.048 0.048 0.049 0.105 0.085 0.076 0.170 0.275

TZ 0.050 0.051 0.053 0.144 0.114 0.097 0.228 0.323

ZK 0.046 0.051 0.051 0.108 0.086 0.082 0.163 0.219

ZA 0.050 0.048 0.052 0.155 0.126 0.107 0.244 0.332

ZC 0.052 0.048 0.053 0.152 0.125 0.107 0.241 0.329

T1 0.049 0.047 0.049 0.150 0.123 0.105 0.222 0.276

T2 0.048 0.046 0.048 0.149 0.123 0.105 0.222 0.278
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Table 4: Power comparison for the tests of size 0.05 for n = 10.

Alternative

Statistic Pa(2) Pa(4) Pa(6) GE(0.5) GE(2) GE(3) Sb(0.5) Sb(1)

χ2 0.086 0.105 0.109 0.192 0.088 0.077 0.245 0.097

D 0.075 0.095 0.098 0.181 0.075 0.066 0.182 0.079

W 2 0.076 0.099 0.106 0.209 0.078 0.067 0.217 0.084

A2 0.081 0.106 0.115 0.226 0.084 0.071 0.238 0.089

V 0.069 0.086 0.090 0.171 0.069 0.064 0.194 0.077

U2 0.072 0.092 0.099 0.192 0.073 0.064 0.205 0.080

SW 0.088 0.114 0.124 0.249 0.090 0.075 0.261 0.094

SF 0.103 0.125 0.135 0.257 0.101 0.081 0.241 0.099

JB 0.101 0.121 0.129 0.231 0.097 0.075 0.167 0.087

TV 0.061 0.081 0.088 0.188 0.067 0.060 0.288 0.087

TB 0.101 0.124 0.133 0.248 0.100 0.080 0.212 0.094

TV E 0.083 0.100 0.107 0.187 0.081 0.066 0.189 0.084

TC 0.067 0.086 0.096 0.202 0.074 0.063 0.289 0.090

TY 0.062 0.081 0.088 0.186 0.069 0.060 0.263 0.087

TZ 0.083 0.109 0.118 0.240 0.087 0.073 0.249 0.099

ZK 0.074 0.090 0.096 0.174 0.073 0.064 0.184 0.080

ZA 0.099 0.122 0.132 0.259 0.098 0.078 0.258 0.098

ZC 0.096 0.121 0.130 0.256 0.098 0.078 0.261 0.100

T1 0.101 0.121 0.129 0.233 0.096 0.075 0.172 0.088

T2 0.100 0.121 0.129 0.234 0.096 0.075 0.174 0.088
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Table 5: Power comparison for the tests of size 0.05 for n = 30.

Alternative

Statistic LN(0.5) LN(1) LN(2) G(1) G(1.5) G(2) FN B(0.5,2)

χ2 0.053 0.052 0.051 0.185 0.134 0.108 0.346 0.807

D 0.050 0.045 0.046 0.280 0.201 0.161 0.453 0.716

W 2 0.046 0.046 0.046 0.344 0.247 0.190 0.560 0.858

A2 0.043 0.044 0.043 0.374 0.266 0.206 0.600 0.904

V 0.050 0.048 0.047 0.254 0.180 0.141 0.448 0.831

U2 0.047 0.047 0.046 0.295 0.211 0.163 0.500 0.814

SW 0.050 0.050 0.048 0.462 0.339 0.272 0.693 0.955

SF 0.052 0.051 0.050 0.454 0.337 0.273 0.674 0.929

JB 0.050 0.046 0.051 0.413 0.313 0.254 0.593 0.758

TV 0.048 0.048 0.047 0.301 0.204 0.155 0.546 0.964

TB 0.046 0.045 0.045 0.406 0.298 0.236 0.618 0.872

TV E 0.054 0.050 0.052 0.047 0.050 0.047 0.055 0.186

TC 0.051 0.050 0.048 0.289 0.195 0.147 0.531 0.958

TY 0.053 0.048 0.047 0.110 0.087 0.074 0.217 0.715

TZ 0.050 0.051 0.048 0.299 0.202 0.152 0.544 0.956

ZK 0.044 0.045 0.042 0.342 0.246 0.195 0.550 0.933

ZA 0.046 0.046 0.046 0.465 0.339 0.272 0.704 0.971

ZC 0.047 0.047 0.046 0.451 0.331 0.266 0.677 0.949

T1 0.054 0.051 0.055 0.448 0.338 0.279 0.637 0.805

T2 0.052 0.049 0.055 0.449 0.339 0.280 0.638 0.802
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Table 6: Power comparison for the tests of size 0.05 for n = 30.

Alternative

Statistic Pa(2) Pa(4) Pa(6) GE(0.5) GE(2) GE(3) Sb(0.5) Sb(1)

χ2 0.086 0.116 0.136 0.361 0.096 0.070 0.571 0.113

D 0.120 0.183 0.205 0.468 0.140 0.094 0.485 0.160

W 2 0.142 0.215 0.249 0.577 0.164 0.107 0.640 0.195

A2 0.152 0.234 0.272 0.617 0.177 0.113 0.716 0.217

V 0.114 0.162 0.184 0.466 0.120 0.083 0.608 0.142

U2 0.126 0.187 0.214 0.511 0.140 0.092 0.588 0.169

SW 0.201 0.299 0.345 0.708 0.234 0.155 0.832 0.290

SF 0.222 0.306 0.347 0.687 0.236 0.159 0.757 0.256

JB 0.224 0.295 0.331 0.609 0.227 0.156 0.459 0.197

TV 0.086 0.160 0.197 0.572 0.135 0.086 0.888 0.242

TB 0.199 0.272 0.311 0.631 0.205 0.135 0.641 0.213

TV E 0.029 0.035 0.038 0.057 0.050 0.047 0.279 0.117

TC 0.078 0.151 0.184 0.558 0.127 0.085 0.883 0.246

TY 0.039 0.061 0.071 0.232 0.068 0.056 0.611 0.158

TZ 0.081 0.155 0.194 0.571 0.132 0.086 0.879 0.248

ZK 0.152 0.222 0.255 0.572 0.168 0.113 0.788 0.193

ZA 0.197 0.297 0.342 0.719 0.234 0.152 0.880 0.303

ZC 0.203 0.294 0.340 0.693 0.231 0.153 0.818 0.276

T1 0.234 0.314 0.358 0.648 0.248 0.171 0.522 0.228

T2 0.230 0.315 0.358 0.649 0.249 0.172 0.525 0.232
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Table 7: Indexed hurricane losses, 1949-1980 (000 omitted).

6766 16983 30146 49397 102942 198446 513586

7123 18383 33727 52600 103217 227338 545778

10562 19030 40596 59917 123680 329511 750389

14474 25304 41409 63123 140136 361200 863881

15351 29112 47905 77809 192013 421680 1638000

Although no single test is uniformly superior, the following conclusions can be made.
Among the EDF-based tests, A2 often shows the best performance. Within the class
of entropy based tests, TB is generally powerful against all distributions. Among the
three tests based on the likelihood ratio statistic, ZA commonly outperforms the others.
Also, it emerges that result from T1 and T2 are in good agreement. Overall, SW and ZA
tests are close competitors that nearly achieve the highest powers (compare with bold
entries), given a sample size and alternative.

Figures 1-5 facilitate power comparisons among the tests for n = 10, 20, 30, 50 under
some alternative distributions. To have simpler plots, we only considered four tests A2,
SW, ZA and T1 which revealed good power properties. It is evident that SW and ZA
tests are preferable in many cases.

4 Application

In actuarial sciences, information about the process producing the losses is essential
for setting premiums, evaluating the effects of deductibles and limits, and determining
the impact of inflation. The LN distribution is an adaptable choice for modeling loss
distributions. In this section, we analyze a data set of losses from hurricanes occurring
from 1949 to 1980 as provided by the American Insurance Association. It was also
applied by Hogg and Klugman (1983). Table 7 contains the losses, where all values are
in 1981 dollars and only those greater than 5,000,000 have been included.

It is of interest to check whether the LN model could fit the data. If we find some
positive evidence, then the distribution can be used to estimate the frequency of losses
in excess of a specified amount, or to estimate the expected number of years between
hurricanes causing a specified amount of damage. The LN Q-Q plot appears in Figure
6. The histogram along with the corresponding fitted LN curve is also included. The
maximum likelihood estimates of the parameters are µ̂ = 11.2411 and σ̂ = 1.4271.

The values of all statistics are reported in Table 8, where the numbers in parenthesis
indicate the associated 0.05 critical points. As to χ2, SW, SF and JB tests, the num-
bers in parenthesis show the corresponding p-values. The hypothesis testing is done by
comparing the value of each statistic with the associated critical point, and considering
whether small or large values of the statistic support rejection of H0. Also, if the signif-
icance level is larger than the p-value corresponding to a statistic, then H0 is rejected.
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Table 8: Observed values of the different statistics, where the numbers in parenthesis
indicate either the the associated 0.05 critical points, or p-values.

χ2 D W 2 A2 V U2 SW SF JB TV

2.800 0.095 0.054 0.328 0.171 0.050 0.972 0.980 1.470 3.410

(0.833) (0.148) (0.125) (0.747) (0.245) (0.116) (0.499) (0.673) (0.304) (3.159)

TB TV E TC TY TZ ZK ZA ZC T1 T2

4.066 4.076 3.692 3.864 3.822 0.515 3.323 5.666 0.906 1.034

(3.855) (3.849) (3.511) (3.708) (3.720) (1.665) (3.408) (11.144) (1.993) (4.943)

By using any test, the null hypothesis that the data follow the LN distribution is not
rejected at 0.05 significance level.

5 Conclusion

The LN distribution enjoys desirable flexibility in modeling a variety of phenomena.
It has found applications in many fields including biology, earth sciences, ecology, eco-
nomics, insurance, medicine and software reliability engineering, among others. Statis-
tical inference in parametric setup is prone to violation of distributional assumption.
This, in turn, necessitates developing formal testing procedures for the LN model.

This article aims to provide an exhaustive study of goodness-of-fit tests for the LN
distribution. Twenty tests available in the literature were selected which includes EDF-
based tests, information theoretic tests, tests based on regression or sample moments,
and some tests derived from the likelihood ratio statistic. Extensive simulation study was
conducted to assess finite sample performances of the tests against sixteen alternatives.
A data analysis in the actuarial context is also presented to illustrate application of the
testing procedures.

Appendix
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Figure 1: Powers of the tests against G(1) and G(1.5) alternatives.



Electronic Journal of Applied Statistical Analysis 367

Sample size

P
o
w

e
r

10 20 30 50

0
.2

0
.4

0
.6

0
.8

T1

ZA

SW

A
2

FN

Sample size

P
o
w

e
r

10 20 30 50

0
.2

0
.4

0
.6

0
.8

1
.0

T1

ZA

SW

A
2

B(0.5,2)
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Figure 3: Powers of the tests against Pa(4) and Pa(6) alternatives.
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