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1 Introduction

Burr XII and Weibull distributions are two of the most important and most widely used
distributions for lifetime as well as the wealth data analysis and modeling. Burr Type
XII is a member of a system of continuous distributions introduced by Burr (1942).
The flexibilities of Burr XII distribution were studied by Hatke (1949), Burr and Cislak
(1968), Rodrigues (1977) and Tadikamalla (1980). Burr XII distribution has been used
in many applications such as actuarial science, quantal bio-assay, economics, forestry,
toxicology, life testing and reliability. According to Soliman (2005), this distribution
covers shapes that is characteristic of a large number of distributions. The versatility
and flexibility of the Burr XII distribution makes it quite attractive as a tentative model
for data whose underlying distribution is unknown.

Weibull distribution by Weibull (1951) on the other hand is one of the most important
and widely used lifetime distributions in reliability engineering and lifetime analysis.
This is because of its flexible ability to fit a variety of data. However, it does not exhibit
bathtub shape for its hazard rate function and as a result many researchers have proposed
modifications and generalizations of the Weibull distribution to accommodate bathtub
shaped hazard rates and non-monotone hazard rates in general. Among the various
extension and modified forms of the Weibull distribution are the exponentiated Weibull
family presented by Mudholkar and Srivastava (1993), generalized Weibull by Pham and
Lai (2007), Gurvich et al. (1997), modified Weibull distribution by Lai et al. (2003) and
the gamma generalized modified Weibull distribution given by Oluyede et al. (2015).
The modified Weibull distribution of Lai et al. (2003) is one of the most important
modification of the Weibull distribution. This distribution has increasing or bathtub-
shaped failure rate functions.

The primary motivation for developing this distribution is the versatility and flexibility
obtained from the product of the reliability or survival functions of the Burr XII and
modified Weibull distribution via the use of competing risks to obtain a new model called
the Burr XII modified Weibull distribution with desirable properties including hazard
function that exhibits increasing, decreasing, bathtub and upside down bathtub shapes.

The results in this paper are organized in the following manner. The new model called
Burr XII modified Weibull (BXIIMW or BMW) distribution, its sub-models, quantile
function, hazard and reverse hazard functions are given in section 2. In section 3,
moments, moment generating function and conditional moments are presented. Mean
deviations, Lorenz and Bonferroni curves are given in section 4. Section 5 contain results
on Rényi entropy, density of the order statistics and L-moments. Maximum likelihood
estimates of the model parameters are given in section 6. A Monte Carlo simulation
study to examine the bias and mean square error of the maximum likelihood estimates
is presented in section 7. Section 8 contains applications of the new model to real data
sets. A short concluding remark is given in section 9.



120 Mdlongwa et al.

2 Burr XII Modified Weibull Distribution

In this section, the model, hazard and reverse hazard functions and quantile function are
presented. First, the modified Weibull and Burr XII distributions are presented. The
cumulative distribution function (cdf) of the modified Weibull (MW) distribution of Lai
et al. (2003) is given by

FMW (y;α, β, λ) = 1− exp(−αyβeλy), y ≥ 0, α > 0, β > 0, λ ≥ 0. (1)

Note that α controls the scale of the distribution, β controls the shape, whereas λ can be
considered to be an accelerating factor in the imperfection time and a factor of fragility
in the survival of the individual as time increases. The cdf of Burr XII distribution is
given by

GB (y; c, k) = 1− (1 + yc)−k, y ≥ 0, k > 0, c > 0, (2)

where k and c are shape parameters.

The reliability function of the new distribution called Burr XII Modified Weibull
(BMW) distribution (obtained via the use of competing risk model) is constructed by
combining the reliability functions for both the Burr XII and modified Weibull distribu-
tions. The resulting reliability or survival function is given by

FBMW (y; c, k, α, β, λ) = (1 + yc)−ke−αy
βeλy , c, k, α, β > 0 and λ ≥ 0. (3)

The cdf of the new BMW distribution is given by

FBMW (y; c, k, α, β, λ) = 1− (1 + yc)−ke−αy
βeλy , (4)

for c, k, α, β > 0 and λ ≥ 0. The corresponding probability density function (pdf) is
given by

fBMW (y; c, k, α, β, λ) = (1+yc)−k−1e−αy
βeλy

{
kcyc−1 + (1 + yc)αeλyyβ−1(β + λy)

}
(5)

for c, k, α, β > 0 and λ ≥ 0. Plots of the pdf for selected values of the model parameters
are given in Figure 1. The plots suggests that the pdf can be right skewed or decreasing
among many other shapes for the selected values of the model parameters.

2.1 Quantile Function

In this sub-section, the quantile function of the BMW distribution is presented. The
quantile function can be obtained by inverting FBMW (y) = 1− u, 0 ≤ u ≤ 1, where

FBMW (y) = (1 + yc)−ke−αy
βeλy . (6)

The quantile function is obtained by solving the non-linear equation

k log(1 + yc) + αyβeλy + log(1− u) = 0, (7)
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Figure 1: Plots of BMW PDF

using numerical methods. Consequently, random number can be generated based on
equation (7). Table 1 lists the quantile for selected values of the parameters of the
BMW distribution.

Table 1: BMW Quantile for Selected Values

(c, k, α, β, λ)

u (3.0,3.0,0.5,0.4,2.0) (3.0,3.0,0.5,1.5,2.0) (0.9,2.0,0.5,1.5,5.0) (0.5,2.0,2.0,4.0,1.0) (0.5,0.5,2.0,4.0,1.0) (1.0,0.3,0.1,0.3,0.9)

0.1 0.01853977 0.2141278 0.03726958 0.002951125 0.05499965 0.1469918

0.2 0.08512607 0.2964359 0.08408788 0.01393109 0.2699589 0.4338763

0.3 0.1678449 0.3591675 0.1359876 0.03811902 0.4295427 0.7711961

0.4 0.245917 0.4141029 0.1896706 0.08463554 0.5171622 1.124044

0.5 0.3183341 0.4660199 0.2424022 0.1704162 0.5817035 1.470701

0.6 0.3885882 0.5181238 0.2931962 0.3138966 0.6370646 1.806173

0.7 0.4613197 0.5738216 0.3428492 0.4715588 0.6896507 2.138562

0.8 0.5436832 0.6385877 0.3944155 0.5976683 0.7450474 2.488656

0.9 0.654306 0.7270882 0.4556709 0.716097 0.813945 2.911513

2.2 Hazard and Reverse Hazard Functions

In this sub-section, the hazard and reverse hazard functions of the BMW distribution
are presented. Graphs of the hazard function for selected values of the model parameters
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are also presented. The hazard and reverse hazard functions are given by

hF (y) =
fBMW (y)

FBMW (y)

=
(1 + yc)−k−1e−αy

βeλy
{
kcyc−1 + (1 + yc)αeλyyβ−1(β + λy)

}
(1 + yc)−ke−αyβeλy

= kcyc−1(1 + yc)−1 + αeλyyβ−1(β + λy), (8)

and

τF (y) =
fBMW (y)

FBMW (y)

=
(1 + yc)−k−1e−αy

βeλy
{
kcyc−1 + (1 + yc)αeλyyβ−1(β + λy)

}
1− (1 + yc)−ke−αyβeλy

, (9)

respectively.
The limiting behavior of the hazard function of the BMW distribution, which can be

readily established is as follows:

• Note that,

lim
y→0

hF (y) =



∞ 0 < c < 1, β = 1,

α c > 1, β = 1,

α+ k c = 1, β = 1,

k c = 1, β > 1,

0 c > 1, β > 1.

• For β > 0 and c > 0, limy→∞ hF (y) =∞.

Plots of the hazard function are given in Figure 2. The graphs exhibit decreasing,
increasing, bathtub followed by upside down bathtub, and bathtub shapes for the selected
values of the model parameters. This very attractive flexibility makes the BMW hazard
function useful and suitable for non-monotonic empirical hazard behaviors which are
more likely to be encountered in practice or real life situations.

2.3 Some Sub-models

There are several new as well as well known distributions that can be obtained from the
BMW distribution. The sub-models include the following distributions:

• When α→ 0+, we obtain Burr XII or Burr (B) distribution.

• When λ = 0, we obtain Burr-Weibull (BW) distribution.

• If λ = 0 and β = 1, we obtain the Burr-Exponential (BE) distribution.

• If λ = 0 and β = 2, we have the Burr-Rayleigh (BR) distribution.
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Figure 2: Plots of BMW Hazard Function

• If c = 1, we obtain the Lomax-modified Weibull (LMW) distribution.

• If c = 1, λ = 0 and β = 2, we obtain the Lomax-Rayleigh (LR) distribution.

• If c = 1, λ = 0 and β = 1, we obtain the Lomax-Exponential (LE) distribution.

• If k → 0+ and λ = 0, we obtain Weibull (W) distribution.

• If k → 0+, λ = 0 and β = 2, we obtain Rayleigh (R) distribution.

• If k → 0+, λ = 0 and β = 1, then we have the Exponential (E) distribution.

• If k → 0+, we obtain the modified Weibull (MW) distribution.

• If β = 1, then we obtain the Burr-modified Exponential (BME) distribution with
cdf given by

F (y) = 1− (1 + yc)−ke−αye
λy
, (10)

for c, α, k > 0, λ ≥ 0 and y ≥ 0.

• If β = k = 1 and λ = 0, then the BMW cdf reduces to the two parameter Log-
logistic Exponential (LLoGE) distribution given by

F (y) = 1− (1 + yc)−1e−αy, (11)

for c, α > 0, and y ≥ 0.
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• If λ = 0, k = 1 and β = 2, then the BMW cdf reduces to the two parameter
Log-logistic Rayleigh (LLoGR) model with the cdf

F (y) = 1− (1 + yc)−1e−αy
2
, (12)

for c, α > 0 and y ≥ 0.

• If λ = 0, and k = c = β = 1, then the BMW cdf reduces to the one parameter
model with the cdf

F (y) = 1− (1 + y)−1e−αy, (13)

for α > 0 and y ≥ 0.

3 Moments, Moment Generating Function and
Conditional Moments

Moments are very important and necessary in any statistical analysis, especially in appli-
cations. Moments can be used to study the most important features and characteristics
of a distribution (e.g. central tendency, dispersion, skewness and kurtosis). In this sec-
tion, moments, moment generating function (mgf) and conditional moments are given for
the BMW distribution. Measures of dispersion, skewness and kurtosis, as well as tables
of the first six moments for selected values of the model parameters are also presented.

3.1 Moments

The rth moment of the BMW distribution is given by

E(Y r) =

∫ ∞
0

yrfBMW (y)dy

=

∫ ∞
0

yr(1 + yc)−k−1e−αy
βeλy

{
kcyc−1 + (1 + yc)αeλyyβ−1(β + λy)

}
dy

=

∞∑
m,p=0

(−1)mαm(mλ)pkc

m!p!

∫ ∞
0

yr+c+mβ+p−1 (1 + yc)−k−1 dy

+
∞∑

m,p=0

(−1)mαm+1((m+ 1)λ)pβ

m!p!

∫ ∞
0

yr+mβ+β+p−1 (1 + yc)−k dy

+
∞∑

m,p=0

(−1)mαm+1(m+ 1)pλp+1

m!p!

∫ ∞
0

yr+mβ+β+p (1 + yc)−k dy.
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Let x = (1 + yc)−1 , then

E(Y r) =

∞∑
m,p=0

(−1)mαm(mλ)pk

m!p!

∫ 1

0
xk+3− 1

c
(r+mβ+p)(1− x)

1
c
(r+mβ+p)dx

+
∞∑

m,p=0

(−1)mαm+1β((m+ 1)λ)p

m!p!c

∫ 1

0
xk+3− 1

c
(r+mβ+p)(1− x)

1
c
(r+mβ+β+p)−1dx

+
∞∑

m,p=0

(−1)mαm+1(m+ 1)pλ)p+1

m!p!c

∫ 1

0
xk+3− 1

c
(r+mβ+β+p+1)(1− x)

1
c
(r+mβ+β+p+1)−1dx

=
∞∑

m,p=0

(−1)mαm(mλ)pk

m!p!
B

(
k − 1

c
(r +mβ + p− 4c),

1

c
(r +mβ + p+ c)

)

+
∞∑

m,p=0

(−1)mαm+1β((m+ 1)λ)p

m!p!c
B

(
k − 1

c
(r +mβ + p− 4c) ,

1

c
(r +mβ + β + p)

)

+

∞∑
m,p=0

(−1)mαm+1(m+ 1)pλp+1

m!p!c

× B

(
k − 1

c
(r +mβ + β + p− 4c+ 1) ,

1

c
(r +mβ + β + p+ 1)

)
, (14)

where B(a, b) =
∫ 1
0 t

a−1(1−t)b−1dt is the beta function. The moment generating function

of the BMW distribution is given by E(etY ) =
∑∞

i=0
ti

i!E(Y i), where E(Y i) is given
above.

The coefficients of variation (CV), Skewness (CS) and Kurtosis (CK) can be readily
obtained. The variance (σ2), coefficient of variation (CV), coefficient of skewness (CS)
and coefficient of kurtosis (CK) are given by

σ2 = µ′2 − µ2, CV =
σ

µ
=

√
µ′2 − µ2
µ

=

√
µ′2
µ2
− 1, (15)

CS =
E
[
(X − µ)3

]
[E(X − µ)2]3/2

=
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
, (16)

and

CK =
E
[
(X − µ)4

]
[E(X − µ)2]2

=
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
, (17)

respectively. Table 2 lists the first six moments of the BMW distribution for selected
values of the parameters, by fixing α = β = 1.5 and λ = 0.5. Table 3 lists the first
six moments of the BMW distribution for selected values of the parameters, by fixing
c = 2.0 and k = 1.0. These values can be determined numerically using R and MATLAB.
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Table 2: Moments of the BMW distribution for some parameter values; α = β = 1.5 and
λ = 0.5.

µ′s c = 0.5, k = 0.5 c = 0.5, k = 1.5 c = 1.5, k = 0.5 c = 1.5, k = 1.5

µ′1 0.43766 0.29290 0.48848 0.40979

µ′2 0.29569 0.17537 0.32477 0.23753

µ′3 0.24297 0.13506 0.25999 0.17015

µ′4 0.22732 0.12105 0.23710 0.14145

µ′5 0.23433 0.12088 0.23875 0.13165

µ′6 0.26090 0.13127 0.26028 0.13408

SD 0.32271 0.29929 0.29352 0.26382

CV 0.73735 1.02180 0.60089 0.64378

CS 0.66650 1.16473 0.67919 0.85869

CK 2.92547 3.86304 3.13235 3.56673

Table 3: Moments of the BMW distribution for some parameter values; c = 2.0 and
k = 1.0.

µ′s α = 3.5, β = 1.5, λ = 0.5 α = 3.5, β = 0.8, λ = 0.0 α = 1.0, β = 1.5, λ = 0.2 α = 0.8, β = 3.5, λ = 0.5

µ′1 0.31249 0.21032 0.50889 0.68308

µ′2 0.13308 0.10248 0.36010 0.54319

µ′3 0.06870 0.07905 0.31582 0.47550

µ′4 0.04074 0.08507 0.32470 0.44606

µ′5 0.02689 0.12021 0.37847 0.44154

µ′6 0.01938 0.21511 0.48899 0.45660

SD 0.18823 0.24133 0.31801 0.27675

CV 0.60233 1.14746 0.62491 0.40514

CS 0.74599 2.34797 0.92163 -0.00847

CK 3.36566 11.76067 3.92708 2.45747

3.2 Conditional Moments

For lifetime models, it may be useful to know the conditional moments. The rth condi-
tional moment is defined as E(Y r | Y > t). The rth conditional moment of the BMW
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distribution is given by

E(Y r|Y > t) =
1

FBMW (t)

∫ ∞
t

yrfBMW (y)dy

=
1

FBMW (t)

∫ ∞
t

yr [1 + yc]−k−1
∞∑
m=0

(−1)mαmymβemλy

m!

×
[
kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)

]
dy.

(18)

Let x = (1 + yc)−1, then the rth conditional moment of the BMW distribution is given
by

E(Y r|Y > t) =
1

FBMW (t)

[ ∞∑
m,p=0

(−1)mαm(mλ)pk

m!p!

× B(1+tc)−1

(
k − 1

c
(r +mβ + p− 4c) ,

1

c
(r +mβ + p+ c)

)
+

∞∑
m,p=0

(−1)mαm+1β((m+ 1)λ)p

m!p!c

× B(1+tc)−1

(
k − 1

c
(r +mβ + β + p− 4c) , (r +mβ + β + p)

)
+

∞∑
m,p=0

(−1)mαm+1(m+ 1)pλp+1

m!p!c

× B(1+tc)−1

(
k − 1

c
(r +mβ + β + p− 4c+ 1) ,

1

c
(r +mβ + β + p+ 1)

)]
,

where By(a, b) =
∫ y
0 x

a−1(1−x)b−1dx is the incomplete beta function, and c > r+mβ+
β + p+ 1. The mean residual lifetime function is given by E(Y |Y > t)− t = VF (t)− t,
where VF (t) is called the vitality function of the distribution function F.

4 Mean Deviations, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz
and Bonferroni curves for the BMW distribution are presented in this section. Bonferroni
and Lorenz curves are widely used tool for analyzing and visualizing income inequality.
Lorenz curve, L(p) can be regarded as the proportion of total income volume accumulated
by those units with income lower than or equal to the volume y, and Bonferroni curve,
B(p) is the scaled conditional mean curve, that is, ratio of group mean income of the
population.
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4.1 Mean Deviations

The amount of scatter in a population is measured to some extent by the totality of
deviations from the mean and median. These are known as the mean deviation about
the mean and the mean deviation about the median and are defined by

δ1(y) =

∫ ∞
0
|y − µ|fBMW (y)dy and δ2(y) =

∫ ∞
0
|y −M |fBMW (y)dy, (19)

respectively, where µ = E(Y ) and M =Median(Y ) denotes the median. The measures
δ1(y) and δ2(y) can be calculated using the relationships

δ1(y) = 2µFBMW (µ)− 2µ+ 2

∫ ∞
µ

yfBMW (y)dy, (20)

and

δ2(y) = −µ+ 2

∫ ∞
M

yfBMW (y)dy, (21)

respectively. When r = 1, we get the mean µ = E(Y ). Note that T (µ) =
∫∞
µ yfBMW (y)dy

and T (M) =
∫∞
M yfBMW (y)dy, where

T (µ) =

∫ ∞
µ

yfBMW (y)dy =

[ ∞∑
m,p=0

(−1)mαm(mλ)pk

m!p!

× B(1+µc)−1

(
k − 1

c
(1 +mβ + p− 4c) ,

1

c
(1 +mβ + p+ c)

)
+

∞∑
m,p=0

(−1)mαm+1β((m+ 1)λ)p

m!p!c

× B(1+µc)−1

(
k − 1

c
(1 +mβ + β + p− 4c) , (1 +mβ + β + p)

)
+

∞∑
m,p=0

(−1)mαm+1(m+ 1)pλp+1

m!p!c

× B(1+µc)−1

(
k − 1

c
(mβ + β + p− 4c+ 2) ,

1

c
(mβ + β + p+ 2)

)]
.

Consequently, the mean deviation about the mean and the mean deviation about the
median reduces to

δ1(y) = 2µFBMW (µ)− 2µ+ 2T (µ) and δ2(y) = −µ+ 2T (M),

respectively.
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4.2 Bonferroni and Lorenz Curves

In this sub-section, we present Bonferroni and Lorenz Curves. Bonferroni and Lorenz
curves have applications not only in economics for the study income and poverty, but
also in other fields such as reliability, demography, insurance and medicine. Bonferroni
and Lorenz curves for the BMW distribution are given by

B(p) =
1

pµ

∫ q

0
yfBMW (y)dy =

1

pµ
[µ− T (q)],

and

L(p) =
1

µ

∫ q

0
yfBMW (y)dy =

1

µ
[µ− T (q)],

respectively, where

T (q) =

∫ ∞
q

yfBMW (y)dy =

[ ∞∑
m,p=0

(−1)mαm(mλ)pk

m!p!

× B(1+qc)−1

(
k − 1

c
(1 +mβ + p− 4c) ,

1

c
(1 +mβ + p+ c)

)
+

∞∑
m,p=0

(−1)mαm+1β((m+ 1)λ)p

m!p!c

× B(1+qc)−1

(
k − 1

c
(1 +mβ + β + p− 4c) , (1 +mβ + β + p)

)
+

∞∑
m,p=0

(−1)mαm+1(m+ 1)pλp+1

m!p!c

× B(1+qc)−1

(
k − 1

c
(mβ + β + p− 4c+ 2) ,

1

c
(mβ + β + p+ 2)

)]
,

and q = F−1(p), 0 ≤ p ≤ 1.

5 Order Statistics, L-Moments and Rényi Entropy

The concept of entropy plays a vital role in information theory. The entropy of a random
variable is defined in terms of its probability distribution and can be shown to be a good
measure of randomness or uncertainty. In this section, we present the distribution of the
order statistic, L-moments and Rényi entropy for the BMW distribution.

5.1 Order Statistics

Order statistics play an important role in probability and statistics. In this sub-section,
we present the distribution of the ith order statistic from the BMW distribution. The
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pdf of the ith order statistic from the BMW pdf f(y) is given by

gi:n(y) =
n!fBMW (y)

(i− 1)!(n− i)!
[FBMW (y)]i−1[1− FBMW (y)]n−i

=
n!fBMW (x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
[FBMW (y)]j+i−1,

and is obtained by using the binomial expansion

[1− FBMW (y)]n−i =

n−i∑
m=0

(
n− i
m

)
(−1)m[FBMW (y)]m,

so that

gi:n(y) =
1

B(i, n− i+ 1)

n−i∑
m=0

(
n− i
m

)
(−1)m

m+ i
(m+ i)[FBMW (y)]m+i−1f(y)

=

n−i∑
m=0

wi,mfm+i(y),

where fm+i(y) is the pdf of the exponentiated BMW distribution with parameters c, k, α, β, λ,
and m+ i.

The tth moment of the ith order statistic from the BMW distribution can be derived
via a result of Barakat and Abdelkader (2004) as follows:

E(Y t
i:n) = t

n∑
p=n−i+1

(−1)p−n+i−1
(
p− 1

n− i

)(
n

p

)∫ ∞
0

xt−1[1− FBMW (y)]pdy. (22)

Note that by setting x = (1 + yc)−1, we have∫ ∞
0

xt−1[1− FBMW (y)]pdy =

∞∑
m,s=0

(−1)m(αp)m(mλ)s

m!s!

∫ ∞
0

yt+mβ+s−1(1 + yc)−pkdy

=
∞∑

m,s=0

(−1)m(αp)m(mλ)s

m!s!

1

c

×
∫ 1

0
xpk−

1
c
(t+mβ+s)−1(1− x)

t+mβ+s
c

−1dx

=

∞∑
m,s=0

(−1)m(αp)m(mλ)s

m!s!

1

c

× B

(
pk − 1

c
(t+mβ + s),

t+mβ + s

c

)
. (23)
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Consequently, the tth moment of the ith order statistic from the BMW distribution is
given by

E(Y t
i:n) = t

n∑
p=n−i+1

∞∑
m,s=0

(−1)p−n+i−1
(
p− 1

n− i

)(
n

p

)
(−1)m(αp)m(mλ)s

m!s!

1

c

× B

(
pk − 1

c
(t+mβ + s),

t+mβ + s

c

)
, (24)

where B(a, b) =
∫ 1
0 t

a−1(1− t)b−1dt is the complete beta function.

5.2 L-Moments

The L−moments (Hoskings, 1990) are expectations of some linear combinations of order
statistics and they exist whenever the mean of the distribution exits, even when some
higher moments may not exist. They are relatively robust to the effects of outliers and
are given by

λk+1 =
1

k + 1

k∑
j=0

(−1)j
(
k

j

)
E(Yk+1−j:k+1), k = 0, 1, 2, ....... (25)

The L−moments of the BMW distribution can be readily obtained from equation (24).
The first four L−moments are given by λ1 = E(Y1:1), λ2 = 1

2E(Y2:2 − Y1:2), λ3 =
1
3E(Y3:3 − 2Y2:3 + Y1:3) and λ4 = 1

4E(Y4:4 − 3Y3:4 + 3Y2:4 − Y1:4), respectively.

5.3 Rényi Entropy

In this sub-section, Rényi entropy (Rényi, 1960) of the BMW distribution is derived. An
entropy is a measure of uncertainty or variation of a random variable. Rényi entropy is
an extension of Shannon entropy. Rényi entropy is defined to be

IR(v) =
1

1− v
log

(∫ ∞
0

[fBMW (y; c, k, α, β, λ)]vdy

)
, v 6= 1, v > 0.
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Rényi entropy tends to Shannon entropy as v → 1. Note that [f(y; c, k, α, β, λ)]v =
fvBMW (y) can be written as

fv
BMW

(y) =
[
kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)

]v
× (1 + yc)−kv−v e−vαy

βeλy

=
∞∑

m,r=0

v∑
p=0

(
v

p

)
(−1)m(vα)mαp[λ(m+ p)]r

r!m!
(kc)v−p

× y(r+mβ+pβ+cv−cp−v)(1 + yc)−kv−v+p(β + λy)p

=

∞∑
m,r=0

v∑
p=0

p∑
w=0

(
v

p

)(
p

w

)
(−1)m(vα)mαp[λ(m+ p)]rλwβp−w

r!m!
(kc)v−p

× y(r+mβ+pβ+cv−cp−v+w)(1 + yc)−kv−v+p.

Now,∫ ∞
0

fv
BMW

(y)dy =

∞∑
m,r=0

v∑
p=0

p∑
w=0

(
v

p

)(
p

w

)
(−1)m(vα)mαp[λ(m+ p)]rλwβp−w

r!m!
(kc)v−p

×
∫ ∞
0

y(r+mβ+pβ+cv−cp−v+w)(1 + yc)−kv−v+pdy

=

∞∑
m,r=0

v∑
p=0

p∑
w=0

(
v

p

)(
p

w

)
(−1)m(vα)mαp[λ(m+ p)]rλwβp−w

r!m!c

× (kc)v−pB

(
1

c
a∗, kv + v − p− 1

c
a∗ + 4

)
,

where we have used the substitutions x = (1 + yc)−1 and a∗ = (r +mβ + pβ + cv − cp− v + w + 1) .
Consequently, Rényi entropy is given by

IR(v) =

(
1

1− v

)
log

[ ∞∑
m,r=0

v∑
p=0

p∑
w=0

(
v

p

)(
p

w

)
(−1)m(vα)mαp[λ(m+ p)]rλwβp−w

r!m!c

× (kc)v−pB

(
1

c
a∗, kv + v − p− 1

c
a∗ + 4

)]
,

for v 6= 1 and v > 0.

6 Maximum Likelihood Estimation

Let Y ∼ BMW (c, k, α, β, λ) and ∆ = (c, k, α, β, λ)T be the parameter vector. The
log-likelihood ` = `(∆) for a single observation of y of Y is given by

`(∆) = −αyβeλy − (k + 1) log(1 + yc)

+ log

(
kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)

)
. (26)
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The first derivative of the log-likelihood function with respect to the components of the
parameter vector ∆ = (c, k, α, β, λ)T are given by

∂`

∂c
= −c(k + 1)yc−1

1 + yc
+
kyc−1 (1 + c log(y)) + αyβ−1eλy(β + λx)yc log(y)

kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)
,

∂`

∂k
= − log (1 + yc) +

cyc−1

kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)
,

∂`

∂α
= −yβeλy +

(1 + yc) yβ−1eλy(β + λy)

kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)
,

∂`

∂β
= −αeλyyβ log(y) +

αeλy (1 + yc) (yβ−1 + (β + λy)yβ−1 log(y))

kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)
,

and
∂`

∂λ
= −αyβ+1eλy +

(1 + yc)αyβ−1(yeλy(β + λy + 1))

kcyc−1 + (1 + yc)αyβ−1eλy(β + λy)
,

respectively.

The total log-likelihood function based on a random sample of n observations: x1, x2, ...., xn
drawn from the BMW distribution is given by `∗n =

∑n
i=1 `i(∆), where `i(∆), i =

1, 2, ....., n is given by equation (26). The equations obtained by setting the above
partial derivatives to zero are not in closed form and the values of the parameters
c, k, α, β, λ must be found by using iterative methods. The maximum likelihood esti-
mates of the parameters, denoted by ∆̂ is obtained by solving the nonlinear equation
(∂`

∗
n

∂c ,
∂`∗n
∂k ,

∂`∗n
∂α ,

∂`∗n
∂β ,

∂`∗n
∂λ )T = 0, using a numerical method such as Newton-Raphson pro-

cedure. The Fisher information matrix is given by I(∆) = [Iθi,θj ]5X5 = E(− ∂2`
∂θi∂θj

),

i, j = 1, 2, 3, 4, 5, can be numerically obtained by MATLAB or R software. The total
Fisher information matrix nI(∆) can be approximated by

J(∆̂) ≈
[
− ∂2`∗n
∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, 2, 3, 4, 5. (27)

For a given set of observations, the matrix given in equation (27) is obtained after the
convergence of the Newton-Raphson procedure in MATLAB or R software.

7 Simulation Study

In this section, we examine the performance of the BMW distribution by conducting
various simulations for different sizes (n=25, 50, 100, 200, 400, 800) via the R package.
We simulate 1000 samples for the true parameters values I : c = 2, k = 5, α = 3, β =
4, λ = 2 and II : c = 0.5, k = 0.6, α = 0.4, β = 2, λ = 1. Table 4 lists the means MLEs of
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the five model parameters along with the respective root mean squared errors (RMSE).
The bias and RMSEs are given by:

Bias(θ̂) =

∑n
i=1 θ̂i
n

− θ, and RMSE(θ̂) =

√∑n
i=1(θ̂i − θ)2

n
,

respectively. From the results, we can readily verify that as the sample size n increases,
the mean estimates of the parameters tend to be closer to the true parameter values,
since RMSEs decay toward zero.

Table 4: Monte Carlo Simulation Results

(2,5,3,4,2) (0.5,0.6,0.4,2,1)

Parameter Sample Size Mean RMSE Bias Mean RMSE Bias

c 25 2.064011 0.6574089 0.064011344 0.6198985 0.33424985 0.11989847

50 1.987646 0.5394971 -0.012353789 0.5666287 0.20913064 0.06662871

100 1.998268 0.4381318 -0.001731681 0.5554174 0.13150152 0.05541743

200 1.994114 0.368368 -0.005886012 0.5383476 0.08491854 0.03834756

400 1.964774 0.3077718 -0.035226137 0.5363581 0.06557844 0.0363581

800 1.9954 0.192545 -0.004600092 0.5297441 0.04887756 0.02974413

k 25 6.686042 5.5355356 1.686041854 0.7540626 0.43450896 0.15406256

50 5.88308 4.0400779 0.883079865 0.6676759 0.29135272 0.06767593

100 5.669251 3.1769968 0.669250619 0.640382 0.20754712 0.04038197

200 5.431808 2.6291927 0.431807777 0.6250959 0.14756323 0.02509593

400 4.91291 2.0769845 -0.087089516 0.631652 0.11393034 0.03165203

800 4.934186 1.5458762 -0.065814208 0.6203353 0.0868708 0.02033529

α 25 24.426851 50.3145461 21.426851188 0.5962957 0.5742553 0.19629573

50 16.567506 31.5421246 13.567505535 0.5896418 0.50291512 0.18964181

100 14.692613 26.4758735 11.692612555 0.5334652 0.42369271 0.13346519

200 11.893248 18.7538517 8.89324764 0.5684291 0.4086208 0.16842914

400 10.302287 14.2708566 7.302287044 0.5484378 0.36112655 0.14843781

800 8.966029 11.8409376 5.966029444 0.5153346 0.28969162 0.11533459

β 25 26.791509 73.8957413 22.7915085 2.6309001 1.65853707 0.6309001

50 13.359338 32.6575501 9.359337906 2.2839632 1.32742815 0.28396315

100 8.404221 15.3638763 4.404220766 2.0982607 1.13824399 0.09826073

200 5.416987 4.968963 1.416986899 2.1830113 0.97925435 0.18301127

400 4.32704 2.253199 0.327039519 2.217929 0.8385417 0.21792904

800 3.981956 1.7651961 -0.018043559 2.1953171 0.703408 0.19531713

λ 25 19.063334 55.1118464 17.063333807 1.2979795 1.48080935 0.2979795

50 8.997401 25.5950541 6.997401121 1.1350924 1.24977805 0.13509237

100 5.011334 10.7838647 3.011333885 1.1181211 1.05886226 0.11812109

200 3.095257 4.2421011 1.09525717 0.9362896 0.86937335 -0.06371041

400 2.39227 2.5980651 0.392270229 0.8759433 0.72212842 -0.12405666

800 2.404533 2.3832869 0.404533042 0.8725937 0.57230195 -0.12740626
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8 Applications

In this section, we present examples to illustrate the applicability and flexibility of the
BMW distribution and its sub-models for data modeling. Estimates of the parameters of
BMW distribution (standard error in parentheses), Akaike Information Criterion (AIC),
Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC),
Sum of Squares (SS, described in this section), Cramer Von Mises and Anderson-Darling
statistics (W ∗ and A∗) are presented for each dataset. We compared the BMW distri-
bution with the gamma-Dagum (GD) (Oluyede et al., 2014) and beta modified Weibull
(BetaMW) (Nadarajah et al., 2011) distributions. The GD and BetaMW pdfs are given
by

gGD(x) =
λβδx−δ−1

θαΓ(α)
(1 + λx−δ)−β−1(− log[1− (1 + λx−δ)−β])α−1,

× [1− (1 + λx−δ)−β]
1
θ
−1, x > 0,

and

gBetaMW (x) =
αxγ−1(γ + λx) exp(λx)

B(a, b)
e−bαx

γ exp(λx)(1− e−αxγ exp(λx))a−1, x > 0,

respectively. We also compared the BMW distribution with the exponentiated Ku-
maraswamy Dagum (EKD) by (Huang and Oluyede, 2014), beta Weibull-geometric
(BWG) (Bidram et al., 2013) and beta Weibull-Poisson (BWP) (Percontini et al., 2013)
distributions. The pdf of EKD distribution is given by

gEKD(x) = αλδφθx−δ−1(1 + λx−δ)−α−1[1− (1 + λx−δ)−α]φ−1

× {1− [1− (1 + λx−δ)−α]φ}θ−1, (28)

for α, λ, δ, φ, θ > 0, and x > 0. The BWG and BWP pdfs are given by

gBWG(x) =
(1− p)bαβαxα−1e−b(βx)α(1− e−(βx)α)a−1

B(a, b)(1− pe−(βx)α)a+b
(29)

for a, b, α, β > 0, p ∈ (0, 1), and x > 0, and

gBWP (x) =
αβλxα−1eλe

−βxα−λ−βxα(eλ − 1)2−a−b(eλ − eλe−βx
α

)a−1(eλe
−βxα − 1)b−1

B(a, b)(1− e−λ)
(30)

for a, b, α, β, λ > 0, and x > 0, respectively.
The maximum likelihood estimates (MLEs) of the BMW model parameters ∆ =

(c, k, α, β, λ) are computed by maximizing the objective function via the subroutine mle2
in R. The estimated values of the model parameters (standard error in parenthesis), -
2log-likelihood statistic, Akaike Information Criterion, AIC = 2p − 2 ln(L), Bayesian
Information Criterion, BIC = p ln(n) − 2 ln(L), and Consistent Akaike Information

Criterion, AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(∆̂) is the value of the likelihood
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function evaluated at the parameter estimates, n is the number of observations, and p is
the number of estimated parameters are presented in Tables 5 and 6. The goodness-of-fit
statistics W ∗ and A∗, described by Chen and Balakrishnan (1995) are also presented in
the tables. These statistics can be used to verify which distribution fits better to the
data. In general, the smaller the values of W ∗ and A∗, the better the fit. The BMW
distribution is fitted to the datasets and these fits are compared to the fits using the
Burr XII Weibull (BW), Burr XII exponential (BE), Burr-XII Rayleigh (BR), Lomax
modified Weibull (LMW), Lomax Rayleigh (LR), Lomax exponential (LE), Log-logistic
Rayleigh (LLoGR), Log-logistic exponential (LLoGE), modified Weibull (MW), Weibull
(W) and exponential (E) distributions.

We also maximized the likelihood function using NLmixed in Statistical Analysis Sys-
tem (SAS) as well as the function nlm in R (Team (2011)). These functions were applied
and executed for a wide range of initial values. This process often results or lead to more
than one maximum, however, in these cases, we take the MLEs corresponding to the
largest value of the maxima. In a few cases, no maximum was identified for the selected
initial values. In these cases, a new initial value was tried in order to obtain a maximum.

The issues of existence and uniqueness of the MLEs are theoretical interest and has
been studied by several authors for different distributions including Seregin (2010), San-
tos Silva and Tenreyro (2010), Zhou (2009), and Xia et al. (2009).

We can use the likelihood ratio test (LRT) to compare the fit of the BMW distribution
with its sub-models for a given data set. For example, to test β = 1, the LRT statistic is
ω = 2[ln(L(ĉ, k̂, α̂, β̂, λ̂))− ln(L(c̃, k̃, α̃, 1, λ̃))], where ĉ, k̂, α̂, β̂ and λ̂ are the unrestricted
estimates, and c̃, k̃, α̃ and λ̃ are the restricted estimates. The LRT rejects the null
hypothesis if ω > χ2

ε
, where χ2

ε
denote the upper 100ε% point of the χ2 distribution with

1 degrees of freedom.

Plots of the fitted densities, the histogram of the data and probability plots by Cham-
bers et al. (1983) are given in Figure 3, Figure 4, Figure 5 and Figure 6. For the proba-

bility plot, we plotted F (y(j); ĉ, k̂, α̂, β̂, λ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where y(j)

are the ordered values of the observed data. The measures of closeness are given by the
sum of squares

SS =

n∑
j=1

[
F (y(j))−

(
j − 0.375

n+ 0.25

)]2
.

8.1 Aarset Data

The data contains the times to failure of 50 devices put on life test at time 0, Aarset
(1987). The parameter estimates, goodness-of-fit statistics and results for this data are
given in Table 5. The estimated variance-covariance matrix for the BMW distribution
is given by:



Electronic Journal of Applied Statistical Analysis 137

Table 5: Estimates of Models for Aarset Data
Estimates Statistics

Model c k α β λ −2 log L AIC AICC BIC W ∗ A∗ SS

BMW 0.7890 0.3732 0.0028 0.4695 0.6326 205.57 215.57 216.93 225.13 0.0963 0.8497 0.1114

(0.1716) (0.0994) (0.0063) (1.6129) (0.2601)

BW 0.7320 0.3510 0.0030 2.9162 0 219.98 227.98 229.34 235.63 0.1916 1.3603 0.2230

(0.1883) (0.1085) (0.0113) (1.7461) -

BE 0.4578 0.1442 0.1885 1 0 248.13 254.13 255.50 259.87 0.4515 2.7775 0.5082

(0.1910) (0.0974) (0.0341) - -

BR 0.5431 0.3177 0.0214 2 0 228.54 234.54 235.91 240.28 0.2725 1.7761 0.2807

(0.1387) (0.0949) (0.0042) - -

LMW 1 0.4244 0.0026 0.1648 0.7108 209.75 217.75 219.11 225.40 0.1368 1.0863 0.2854

- (0.1065) (0.0067) (0.5077) (0.2995)

LR 1 0.2679 0.0194 2 0 235.99 239.99 241.36 243.82 0.3337 2.1380 0.3735

- (0.0755) (0.0041) - -

LE 1 0.0316 0.2088 1 0 251.84 255.84 257.20 259.66 0.4931 2.9907 0.5235

- (0.1098) (0.0458) - -

W 0 0 0.2404 0.9490 0 251.75 255.75 257.11 259.57 0.4964 3.0079 0.5289

- - (0.0626) (0.1196) -

E 0 0 0.2189 1 0 251.92 253.92 255.28 255.83 0.4877 2.9622 0.5190

- - (0.0310) - -

MW 0 0 0.1413 0.3548 0.2332 224.05 230.05 231.42 235.79 0.2344 1.6043 0.2660

- - (0.0458) (0.1127) (0.0484)

LLoGE 0.4869 1 0.1117 1 0 277.53 281.53 282.89 285.35 0.5104 3.0740 2.8117

(0.1252) - (0.0344) - -

LLoGR 0.4250 1 0.0180 2 0 251.87 255.87 257.24 259.70 0.2638 1.7458 2.3218

(0.0952) - (0.0040) - -

λ β δ α θ

GD 52.6990 0.0046 2.1508 17.9287 0.2807 245.14 255.14 256.50 264.70 0.4114 2.5517 0.4281

(0.0055) (0.0073) (0.5231) (0.0311) (0.1120)

a b α γ λ

BetaMW 0.2315 0.3073 0.0030 1.2938 0.5534 211.51 221.51 222.87 231.07 0.1580 1.2042 0.1662

(0.1504) (0.4498) (0.0045) (0.8827) (0.1588)

α λ δ φ θ

EKD 2.8805 57.1359 1.4989 19.7414 0.1684 238.97 248.97 250.33 258.53 0.3713 2.3385 0.5964

(3.7807) (47.1848) (1.0292) (10.6947) (0.3297)

a b α β p

BWG 0.0861 0.0692 5.3428 0.2150 0.1571 207.43 217.43 218.79 226.99 0.1044 0.9059 0.0985

(0.0227) (0.0240) (0.7859) (0.0174) (0.0723)


0.0295 −0.0060 0.0000 −0.0277 0.0081

−0.0060 0.0099 −0.0002 0.0303 0.0003

0.0000 −0.0002 0.0000 −0.0080 0.0003

−0.0277 0.0303 −0.0080 2.6014 −0.3224

0.0081 0.0003 0.0003 −0.3224 0.0677

 ,

and the 95% confidence intervals for the model parameters are given by c ∈ (0.7890 ±
1.96× 0.1716), k ∈ (0.3732± 1.96× 0.0994), α ∈ (0.0028± 1.96× 0.0063), β ∈ (0.4695±
1.96× 1.6129) and λ ∈ (0.6326± 1.96× 0.2601), respectively.

The LRT statistic for testing H0: BW against Ha: BMW and H0: BR against Ha:
BMW are 14.41 (p-value = 0.00015) and 22.9736 (p-value < 0.0001), respectively. We
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Figure 3: Fitted Densities for Aarset Data

Figure 4: Probability Plots for Aarset Data

conclude that there is a significant difference between the BW and the BMW distri-
butions, and also between the BR and the BMW distributions. The LRT statistic for
testing H0: LMW against Ha: BMW is 4.18 (p-value=0.0409 < 0.05). We conclude that
there is a significant difference between the LMW and the BMW distribution at the 5%
level. There is indeed clear and convincing evidence based on the goodness-of-fit statis-
tics W ∗ and A∗ that the BMW distribution is far better than the sub-models, and the
non-nested models. Also, the values of AIC and BIC shows that the BMW distribution
is better than the non-nested GD, EKD, BetaMW and BWG distributions.
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Table 6: Estimates of Models for Kevlar Failure Data
Estimates Statistics

Model c k α β λ −2 log L AIC AICC BIC W ∗ A∗ SS

BMW 66.8117 0.0016 0.0067 1.4615 0.1204 277.53 287.53 288.93 296.99 0.0318 0.2215 0.0314

0.0005 0.0009 0.0106 1.0006 0.0937

BW 0.9402 0.0013 0.0103 1.9953 0 284.74 292.74 294.14 300.31 0.0736 0.4808 0.0806

0.0309 0.0023 0.0062 0.2358 -

BR 36.4457 0.0016 0.0091 2 0 282.01 288.01 289.40 293.68 0.0665 0.4228 0.1077

5.1E-08 0.0012 0.0015 - -

LR 1 0.0048 0.0101 2 0 284.72 288.72 290.11 292.50 0.0711 0.4644 0.0795

- 0.0344 0.0016 - -

W 0 0 0.0104 1.9940 0 284.74 288.74 290.14 292.53 0.0746 0.4875 0.0810

- - 0.0064 0.2412 -

E 0 0 0.1136 1 0 311.19 313.19 314.58 315.08 0.1410 0.9161 0.8446

- - 0.0162 - -

MW 0 0 0.0225 1.1986 0.0952 281.85 287.85 289.25 293.53 0.0330 0.2371 0.0334

- - 0.0154 0.4783 0.0539

LLoGR 0.1049 1 0.0091 2 0 349.79 353.79 355.19 357.58 0.0720 0.5349 4.4770

0.0774 - 0.0016 - -

λ β δ α θ

GD 3.3401 3.2101 0.4143 3.7627 0.0167 294.62 304.62 306.01 314.07 0.2143 1.3772 0.2321

1.9539 2.4007 0.1627 6.3883 0.0185

α λ δ φ θ

EKD 3.5492 955.03 1.8521 1175.93 0.2163 281.08 291.08 292.48 300.54 0.0306 0.2308 0.0290

3.0301 0.0040 0.5944 0.0008 0.2758

a b α β λ

BetaWP 1.6464 1.5997 1.4400 0.0048 7.9336 289.09 299.09 300.48 308.55 0.1325 0.8604 0.1277

3.4322 1.3842 1.7706 0.0245 0.4675

8.2 Kevlar 49/Epoxy Strands Failure Data

The 49 data points represent the stress-rupture life of kevlar 49/epoxy strands which were
subjected to constant sustained pressure at the 70% stress level until all had failed, as in
the previous example, we have complete data with exact times of failure, Andrews and
Herzberg (1985). The estimate results for this data is given in Table 6. The estimated
variance-covariance matrix for the BMW distribution is given by:

2.3E − 07 6.9E − 08 −4.7E − 06 4.8E − 04 −4.0E − 05

6.9E − 08 7.8E − 07 −3.5E − 06 1.4E − 04 5.9E − 06

−4.7E − 06 −3.5E − 06 1.1E − 04 −9.7E − 03 6.4E − 04

4.8E − 04 1.4E − 04 −9.7E − 03 1.0E + 00 −8.4E − 02

−4.0E − 05 5.9E − 06 6.4E − 04 −8.4E − 02 8.8E − 03

 ,

and the 95% confidence intervals for the model parameters are given by c ∈ (66.8117±
1.96× 0.0005), k ∈ (0.0016± 1.96× 0.0009), α ∈ (0.0067± 1.96× 0.0106), β ∈ (1.4615±
1.96× 1.0006) and λ ∈ (0.1204± 1.96× 0.0937), respectively.

The LRT statistic for testingH0: LR againstHa: BMW andH0: W againstHa: BMW
are 7.1878 (p-value = 0.06615) and 7.2124 (p-value = 0.06543), respectively. We conclude
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Figure 5: Fitted Densities for Kevlar Failure Data

Figure 6: Probability Plots for Kevlar Failure Data

that there is a significant difference between the LR and the BMW distributions, and
also between the W and the BMW distributions at the 10% level. We conclude that there
is a significant difference between the BW and the BMW distributions (LRT statistic
ω = 7.21, p-value-0.00725). There is also a significant difference between the LLoGR and
the BMW distributions based on the LRT. There is no significant difference between the
MW and the BMW distributions based on the LRT, however, there is indeed clear and
convincing evidence based on the goodness-of-fit statistics W ∗ and A∗ that the BMW
distribution is far better than the sub-models, and the non-nested models. Also, the
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values of AIC and BIC shows that the BMW distribution is better than the sub-models
and the non-nested GD, EKD, and BetaWP distributions.

9 Concluding Remarks

In this paper, a new distribution called Burr XII modified Weibull (BMW) distribu-
tion was introduced. The statistical properties of the BMW distribution including the
hazard and reverse hazard functions, quantile function, moments, incomplete moments,
generating functions, mean deviations, Bonferroni and Lorenz curves, order statistics,
Rényi entropy and maximum likelihood estimation for the model parameters are given.
Simulation studies was conducted to examine the performance of the new BMW distri-
bution. We also presented applications of this new model to real life datasets in order
to illustrate the usefulness of the distribution.
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Appendix

R Algorithms

#### d e f i n e BMW pdf
BMW pdf=func t i on ( c , k , alpha , beta , lambda , x ){
(1+xˆc )ˆ(−k−1)∗( exp(−alpha ∗xˆ beta ∗exp ( lambda∗x ) ) )∗
( k∗c∗x ˆ( c−1)+(1+xˆc )∗ alpha ∗exp ( lambda∗x )∗x ˆ( beta −1)∗( beta+lambda∗x ) )
}

#### d e f i n e BMW cdf
BMW cdf=func t i on ( c , k , alpha , beta , lambda , x ){

1−(1+xˆc )ˆ(−k )∗ ( exp(−alpha ∗( xˆ beta )∗ exp ( lambda∗x ) ) )
}

#### d e f i n e BMW q u a n t i l e
BMW quantile=func t i on ( c , k , alpha , beta , lambda , u){
f=func t i on ( x ){
k∗ l og (1+xˆc)+alpha ∗xˆ beta ∗exp ( lambda∗x)+ log (1−u)
}
x=un i root ( f , c ( 0 , 100 ) ) $root
re turn ( x )
}

#### d e f i n e BMW hazard
BMW hazard=func t i on (y , c , k , alpha , beta , lambda ){
BMW pdf(y , c , k , alpha , beta , lambda)/(1−BMW cdf(y , c , k , alpha , beta , lambda ) )
}

#### d e f i n e moments o f BMW
BMW moments=func t i on ( c , k , alpha , beta , lambda , r ){
f=func t i on (y , c , k , alpha , beta , lambda , r ){
( yˆ r )∗ (BMW pdf(y , c , k , alpha , beta , lambda ) )
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}
y=i n t e g r a t e ( f , lower =0,upper=Inf , s u b d i v i s i o n s =1000000 ,
c=c , k=k , alpha=alpha , beta=beta , lambda=lambda , r=r )
re turn ( y$value )
}

#### d e f i n e s imu la t i on proce s s o f BMW
BMW simulation=func t i on ( s i z e=c (25 ,50 ,100 ,200 ,400 ,800) , samp , par1 ){
Mean=vecto r ( )
RMSE=vector ( )
Bias=vecto r ( )
f o r ( i t e r s i z e in 1 : l ength ( s i z e ) ){
coe f 1=matrix (NA, samp , 5 )
colnames ( coe f 1 )=c ( ’ c ’ , ’ k ’ , ’ alpha ’ , ’ beta ’ , ’ lambda ’ )
f o r (nsamp in 1 : samp){
tryCatch (
{
x1 BMW=NULL
q=r u n i f ( s i z e [ i t e r s i z e ] , 0 , 1 )
x1=sapply (q , BMW quantile ,
c=par1 [ 1 ] , k=par1 [ 2 ] , alpha=par1 [ 3 ] , beta=par1 [ 4 ] , lambda=par1 [ 5 ] )
### BMW f o r x1
x1 BMW<−mle2 ( BMW neglogl ,
s t a r t=l i s t ( c=par1 [ 1 ] , k=par1 [ 2 ] , alpha=par1 [ 3 ] , beta=par1 [ 4 ] , lambda=par1 [ 5 ] ) ,
method=”L−BFGS−B” , data=l i s t ( x=x1 ) ,
lower=c ( c=0,k=0, alpha =0, beta =0,lambda=0) ,
upper=c ( c=Inf , k=Inf , alpha=Inf , beta=Inf , lambda=I n f ) , use . g inv=TRUE)
coe f 1 [ nsamp , ]= c o e f (x1 BMW)
} , e r r o r=func t i on ( e ){}
)
}
Mean [ l ength ( s i z e )∗ (0 :4)+ i t e r s i z e ]= apply ( coe f1 , 2 , mean , na . rm=TRUE)
RMSE[ l ength ( s i z e )∗ (0 :4)+ i t e r s i z e ]= apply ( ( coe f1−matrix ( rep ( par1 , nsamp ) ,
nco l =5,byrow=T))ˆ2 , 2 , f unc t i on ( x ){ s q r t (mean(x , na . rm=TRUE) )} )
}

Bias=as . vec to r ( sapply ( 1 : 5 , f unc t i on ( x ){Bias [ ( l ength ( s i z e )∗ ( x−1)+1):
( l ength ( s i z e )∗x)]=Mean [ ( l ength ( s i z e )∗ ( x−1)+1):( l ength ( s i z e )∗x)]−par1 [ x ] } ) )
sample s i z e=as . vec to r ( t ( mapply ( rep , s i z e , 5 ) ) )
re turn ( cbind ( samples i ze , Mean ,RMSE, Bias ) )
}

# func i t on to c a l c u l a t e Cramer−von and Anderson−Darl ing s t a t i s t i c s
WABMW=func t i on ( f i t , x , s i gn ){
i f ( ! i s . n u l l ( get0 ( paste0 ( s ign , ’ cd f ’ ) ) ) ) {
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u=get ( paste0 ( s ign , ’ cd f ’ ) )
( c o e f ( f i t ) [ 1 ] , c o e f ( f i t ) [ 2 ] , c o e f ( f i t ) [ 3 ] , c o e f ( f i t ) [ 4 ] , c o e f ( f i t ) [ 5 ] , x )
}

e l s e {
u=BMW cdf( c o e f ( f i t ) [ 1 ] , c o e f ( f i t ) [ 2 ] , c o e f ( f i t ) [ 3 ] , c o e f ( f i t ) [ 4 ] , c o e f ( f i t ) [ 5 ] , x )
}
y=qnorm(u)
v=pnorm ( ( y−mean( y ) ) / ( as . numeric ( s q r t ( var ( y ) ) ) ) )
W2=sum ( ( v−((2∗ seq (1 , l ength ( x ))−1)/(2∗ l ength ( x ))) )ˆ2)+1/(12∗ l ength ( x ) )
A2=−l ength ( x)−sum ( ( ( 2∗ seq (1 , l ength ( x ))−1)∗( l og ( v)))+
((2∗ l ength ( x)+1−2∗ seq (1 , l ength ( x ) ) ) ∗ ( l og (1−v ) ) ) ) / l ength ( x )

W=W2∗(1+0.5/ l ength ( x ) )
A=A2∗(1+0.75/ l ength ( x)+2.25/ l ength ( x )/ l ength ( x ) )
r e s u l t=l i s t (W=W,A=A)
return ( r e s u l t )
}

# d e f i n e the func t i on to c a l c u l a t e SS value
SS BMW=func t i on ( f i t , x , s i gn ){
pp=(seq (1 , l ength ( x ) ,1) −0 .375)/( l ength ( x )+0.25)
i f ( ! i s . n u l l ( get0 ( paste0 ( s ign , ’ cd f ’ ) ) ) ) {
op=get ( paste0 ( s ign , ’ cd f ’ ) ) ( c o e f ( f i t ) [ 1 ] , c o e f ( f i t ) [ 2 ] , c o e f ( f i t ) [ 3 ] ,
c o e f ( f i t ) [ 4 ] , c o e f ( f i t ) [ 5 ] , s o r t ( x ) )
}
e l s e {
op=BMW cdf( c o e f ( f i t ) [ 1 ] , c o e f ( f i t ) [ 2 ] , c o e f ( f i t ) [ 3 ] , c o e f ( f i t ) [ 4 ]
, c o e f ( f i t ) [ 5 ] , s o r t ( x ) )
}

SS=0
f o r ( i in 1 : l ength ( x ) ){

SS=SS+(op [ i ]−pp [ i ] ) ˆ 2
}
r e s u l t=l i s t (pp=pp , op=op , SS=SS)
return ( r e s u l t )

}

# BMW Fit
mysample BMW<−mle2 ( BMW neglogl ,
s t a r t=l i s t ( c=1,k=1, alpha =1, beta =1,lambda=1) ,
method=”L−BFGS−B” , data=l i s t ( x=mysample ) ,
lower=c ( c=0,k=0, alpha =0, beta =0,lambda=0) ,
upper=c ( c=Inf , k=Inf , alpha=Inf , beta=Inf , lambda=I n f ) , use . g inv=TRUE)


