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Stacking (Wolpert, 1992; Breiman, 1996) is known to be a successful way
of linearly combining several models. We modify the usual stacking method-
ology when the response is binary and predictions highly correlated, by com-
bining predictions with PLS-Logistic Regression instead of ordinary least
squares. For small data sets we develop a strategy based on repeated split
samples in order to select relevant variables and ensure the reproductibility of
the final model. Five base (or level-0) classifiers are combined in order to get
an improved rule which is applied to a classical benchmark of UCI Machine
Learning Repository. Our methodology is then applied to the prediction of
dangerousness of 165 chemicals used in the cosmetic industry, described by
35 in vitro and in silico characteristics, since faced to safety constraints, one
cannot rely on a single prediction method, especially when the sample size
is low.

keywords: Stacking, PLS-DA, Boosting, Naive Bayes, SVM, Safety eval-
uation.

1 Introduction

The data analytical strategy presented in this paper has been motivated by the following
industrial context: L’ORÉAL wished to have an alternative approach to the animal
experimentation which is now banned, in order to estimate the safety of its chemicals
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coded as a binary response with two categories: “danger” or “no danger” using using all
chemical’s information.

Many supervised classification techniques are available in the statistical literature, be-
longing to various families of prediction models which handle the problem from different
ways (linear, non-linear, probabilistic). In this paper, which extends Gomes et al. (2012),
we decided to select 5 methods representing 5 broad families of statistical models; though
very different, all these models provide membership probabilities.

In order to avoid any bias induced by the use of a specific statistical method, we
have preferred to use an appropriate combination of all of them. In other words, the
methodology used can be seen as a battery of statistical methods and instead of selecting
the best one in terms of AUC (Area Under Curve), misclassification rate or whatsoever,
the solution consists in combining their predictions with optimally chosen weights, which
leads to a meta-model.

This meta-model is obtained by the stacking methodology of Wolpert (1992) and
Breiman (1996). Stacking has been chosen since it needs no specific assumption unlike
Bayesian Model Averaging, is very simple for it is a linear combination of base or level
0 models. Stacking proved its efficiency in many contexts and machine learning com-
petitions such as the Netflix prize (http://www.netflixprize.com/) under the name of
”blending”. For a recent review cf (Sesmero et al., 2015).

We bring the following improvement to stacking: weights are found thanks to a PLS
(Partial Least Square) logistic regression since the outcome is categorical and the pre-
dictions highly correlated.

The paper is organized as follows: After a short survey of the main approaches to
combine predictors (section 2), we focus on stacking for binary classification (section 3).
In section 4 we present the five classifiers we use in applications, with an experiment on a
data set from the UCI Machine Learning repository. In section 5, we develop an heuris-
tic process for small data sets aiming at variable selection, based on cross-validation,
avoiding that some categories become empty. Section 6 presents the application to the
industrial context of cosmetics. We conclude by some perspectives.

2 Combining predictions: a short overview

Let us consider the following situation of predicting a response variable y (continuous
or binary) with the help of p predictors, either continuous or categorical. When one
does not know the generative true model of the data, it is a common use, especially in
machine learning or pattern recognition to try several predictive algorithms ŷm = fm(x)
m = 1, ...,M each algorithm is called a base or level-0 learner.

Given some criterion, (eg the sum of squared residuals or R2 for a continuous re-
sponse, the AUC for a binary response), we may choose the best model, provided we
compute the criterion on a validation set or with some cross validation technique, since
the more complex model will fit the best on the training data and there is no guarantee
of generalization.

Instead of choosing the best algorithm among the M in competition, we may also
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combine them in order to get a better prediction model.
There are several ways of combining models (see Hastie et al., 2009, Kuncheva, 2014).

2.1 Model averaging

For a continuous response it consists in averaging the predictions according to the fol-
lowing formula :

ŷ =
M∑
m=1

wmfm(x). (1)

Bayesian model averaging (BMA) provides the following conceptual framework: Given
a training set T , let P (m/T ) be the posterior probability of model m given T . Then the
posterior mean is E(y/T ) =

∑M
m=1E(y/m, T )P (m/T ) =

∑M
m=1 fm(x)P (m/T ). The

bayesian prediction is a weighted average of the individual predictions with weights
proportional to the posterior probability of each model (Hastie et al., 2009).

However, we will see in part 3 that formula (1) may also be used in a non Bayesian
context.

2.2 Committee and ensemble methods

For a categorical response, ie a classification problem between K classes, the majority
rule consists in assigning an observation x to the label k which is the most frequent
among the M classifiers. This may be seen as a special case of model averaging with
equal weights, hence the possibility of generalizing this method to unequal weights.

Committee methods are part of the vast literature on ensemble learning. For a com-
prehensive survey, see Zhou, 2012.

2.3 Local versus global learning

Model choice and model combinations stay the same for the entire space. If enough data
are available, it becomes possible to find simultaneously a partition of the descriptor
space into ”competence regions” as Kuncheva (2014), and for each competence region
(c) a combination with specific weights wcm. It means that the first step consists in
assigning a new observation x to its competence region, and then to apply the adequate
formula. This kind of approach is a generalization of clusterwise classification, itself an
extension of clusterwise regression (Späth, 1979), but without the restriction of using
only local linear models.

3 Stacking for a binary response

3.1 Stacked regressions

Originally developed by Wolpert (1992) in a machine learning context, stacking or
stacked generalization is an ensemble method which has also been studied by Breiman
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(1996) from a statistician’s point of view. Let fm(xi) be the prediction of a numerical
response y at point xi using some regression model m. Each model (m = 1, ...,M) may
be of any kind: linear or non-linear, nonparametric, tree, neural nets etc. These base
models are called level-0 models. At level-1, stacking combines linearly the M level-0
predictors, with optimal weights wm according to a modified least squares criterion. It
leads to a predictor which is better than any of a single level-0 model fm(x).

A naive solution would consist in minimizing
∑n

i=1(yi −
∑M

m=1wmfm(xi))
2 directly

on a training set: where yi is the observed response at point xi.
However this is not a good idea since ”we have not put each of the models on the

same footing by taking into account their complexity” (Hastie et al., 2009). The more
complex a model is, the higher will be its weight and over-fitting occurs.

Instead of standard predicted values, stacking uses f−im (xi) the cross-validated predic-
tion at xi, not using xi. This means that the weights minimize:

n∑
i=1

(
yi −

M∑
m=1

wmf
−i
m (xi)

)2

. (2)

The final model is given by ŷ =
∑M

m=1wmfm(x).
If the weights are constrained to be positive and to sum to 1 (which is often rec-

ommended) stacking looks like a frequentist version of BMA. However unlike BMA,
stacking does not need that all level-0 models be of the same kind, nor that the true
model belongs to the family. Experiments proved that stacking outperforms BMA in a
large number of cases (Clarke, 2003) involving much simpler computations.

Leblanc and Tibshirani (1996) compared stacking with 3 other methods : least squares,
bootstrap and Generalized Cross Validation (GCV). They conclude that stacking and
bootstrap with non negativity constraints performed the best and that constraining
the coefficients to have a sum to one was not efficient. In our opinion the fact that
the non-negative estimators of the weights improves strongly stacking, is due to the
high correlation between predictions of level-0 models (multicollinearity) : in this case
weights are unstable and may become negative. Imposing non-negativity realizes some
regularization, but we will advocate another solution in part 3.3.

3.2 Stacked classifiers

The previous methodology may be adapted to supervised binary classification where the
response variable is categorical: y has two values 1 and 0 (or 1 and −1). Level-0 models
may be any kind of classifiers: Linear Discriminant Analysis (LDA), logistic regression,
classification trees, Support Vector Machines (SVM) etc.

At level-1, the outcome being binary, the final combination of level-0 predictors may
be achieved by logistic regression, though Ting and Witten (1999) advocate the use
of MLR, a linear machine which is a multi-response linear regression algorithm, which
they compare to C4.5 and IB1, a modified k -nearest-neighbour technique. Surprisingly
they did not compare MLR to the simple logistic regression which has the advantage of
providing directly class probabilities, which we decided to use.
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Note that the extension of stacking to generalized linear models at level-1 is straight-

forward : ŷ = φ

(∑M
m=1wmfm(x)

)
where φ is some link function. Though it is com-

putationally feasible, it is not recommended to combine class predictions ŷm where ŷm
takes values 1 and 0 (or 1 and −1) for the following reasons: class predictions depend
on many choices like thresholds, prior class probabilities etc. Unbalanced categories for
the response may lead to trivial solutions (100% predicted in one class). It is much
more efficient to combine estimated membership probabilities pm(x) of class 1, in other
terms fuzzy membership instead of crisp membership. In their comparative study, Ting
and Witten (1999) demonstrated the effectiveness of stacked generalization. They found
that the use of class probabilities was crucial for classification tasks rather than class
predictions, but that non negativity constraints did not improve the performance in their
examples. However non-negative weights are easier to interpret. See also Jacobs (1995).

3.3 Improving stacking methodology with PLS regression

We did not find any reference about the stability of stacking weights, though there is
obviously a strong positive multicollinearity between level-0 predictors as long as they
are good predictors. This may be checked with a Principal Component Analysis (PCA)
which usually shows a large first eigenvalue.

If we were in the regression case (y numerical) we would to replace the cross-validated
Ordinary Least Squares (OLS) estimation of the weights wm by a cross-validated regu-
larized regression such as Principal Component Regression (PCR), ridge or PLS (Wold
et al. (1983)). We advocate here the use of a single component PLS regression for its
simplicity and the property that the weights will never be negative if all predictions
fm(x) are positively correlated with y.

Since we deal with the classification case, PLS logistic regression as defined by Bastien
et al. (2005) will be used with the R implementation PlsRglm (Bertrand et al., 2014).
We made this choice which ensures to get probabilities instead of PLS-DA which may
give a result out of the [0, 1] interval. Like for a numeric response, there is no need to
impose non-negativity to the weights: they will be naturally positive as long as there is
a positive link between the response and the probabilities fm(x).

4 Combining five families of models

Prediction methods for binary outcome belong to the wide set of supervised classifica-
tion techniques. Among well-known statistical methods are Fisher’s linear discriminant
function and logistic regression, which have both proved their efficiency in many cases.
However for complex phenomenon (e.g. biologics), these methods doesn’t take easily
into account some issues such as non-linearity, multicollinearity .... In order to counter-
act these problems, many other models have been developed as well by statisticians as
by Machine Learning specialists such as: expert based scoring, decision trees, Bayesian
networks, SVM.
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Five prediction families have been retained here for level-0 classifiers, covering a wide
range of methods: linear models, classification trees, expert systems, nonlinear kernel
machines, bayesian classifiers. Within each family we selected a specific technique: sparse
PLS discriminant analysis among linear models, tree boosting among decision trees, an
internally developed expert scoring, a radial based SVM among kernel machines and a
modified naive Bayes classifier.

4.1 Sparse PLS discriminant analysis

Partial Least Squares Discriminant Analysis (PLS-DA) is derived from PLS regression
for a categorical response in presence of multicollinearity; it has been proposed by Barker
and Rayens (2003) and further studied by Noçairi et al. (2005).

Like PLS regression, PLS-DA is based on the iterative computation of ”latent vari-
ables” which are linear combinations of the original descriptors. The first PLS-DA
component is the solution of:

max
u,v

Cov(Xu, Y v), (3)

where X is the matrix of predictors and Y the indicator matrix of the categories. u
and v are the vectors of coefficients to be applied respectively to X and Y . Higher order
components are obtained by deflations of X and Y under orthogonality constraints.

The right number of components is obtaining by cross validation in order to get the
best prediction of the response variable in terms of R-square.

When the response has two categories, PLS-DA provides a rather good linear classifier
but which is a combination of all original predictors. It is an advantage when the number
of predictors is low, but lead to uninterpretable results for high-dimensional data. Some
selection becomes necessary. We have adapted to a categorical predictor context the
Sparse-PLS regression proposed by (Chun and Keles, 2010), hence the name Sparse
PLS-DA:

In the same spirit as the Lasso, (Tibshirani, 1996) S-PLS adds a L1 constraint to the
regression coefficients which gives sparse loadings (ie many zero coefficients):

max
u

(
u′X ′Y Y ′Xu

)
with ||u||2 = 1 and

p∑
j=1

|uj | < λ. (4)

Chun and Keles (2010) reformulates the previous criterion by imposing L1 penalty onto
a surrogate direction vector c instead of the original direction vector u, while keeping u
and c close to each other:

min
α,c

(
− ku′X ′Y Y ′Xu+ (1− k)(c− u)′X ′Y Y ′X(c− u) + λ1||c||1 + λ2||c||2

)
(5)

with u′u = c′c = 1.
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The solution is obtained by alternatively iterating between solving for c after fixing u
and solving for u with fixed c ; the initial value of c being given by usual PLS. k is an
extraneous parameter controlling the local character of the solution.

4.2 Boosting

Boosting is a supervised classification method based on an approach developed by
Shapire (1990) highlighting that combining weak learners may generate a single strong
learner.

Several approaches were developed. Freund and Schapire (1997) proposed Adaboost,
the first algorithm of boosting. This method allows increasing the quality of the predic-
tion from a linear combination of simple but moderately precise rules.

Among the possible weak learners, Friedman et al. (2000) showed that those based on
CART decision trees at two levels (Breiman, 1996) give good results. See also (Bühlmann
and Hothorn, 2007).

Using boosting is interesting in case of small samples in comparison to decision trees,
which needs more data as soon as levels increase in tree, in order to avoid a weak number
of data in a terminal node.

For example, in case of 40 samples at 4 levels, with one balanced disjunction, we will
only have 2 or 3 observations in the terminal nodes, while the boosting method based
on decision trees at two levels, will have 10 observations in the terminal nodes (with one
balanced disjunction).

Like classification trees, boosting allows nominal as well as continuous predictors and
realizes a selection among them.

4.3 Support Vector Machines (SVM)

Support Vector Machines (Cortes and Vapnik, 1995) is widely used in machine learning
for binary decision. This approach takes into account the fact that the predictors are
potentially non-linearly related with the response variable. When data are linearly
separable, the primary idea consists in finding the ”thick” hyperplane which separates
the data perfectly with a maximal margin (distance between the boundary and the
closest observation).

When data are not separable by an hyperplane, they may be linearly separated after a
transformation, which maps the data into an extended ”feature space”. An hyperplane
in the feature space corresponds to a non-linear boundary in the input space. SVM uses
the ”kernel trick” which consists in defining the scalar product in the feature space by
a transformation of the scalar product of the input space, which avoids computations in
a high dimensional space. In this article, we use the gaussian kernel:

K(xi, xj) = exp(−γ||xi − xj ||2),

where γ > 0 is a regularization parameter which is usually optimized by cross-
validation.
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In theory, Support Vector Machines allow only continuous predictors. In case of a
mixture of continuous and categorical predictors, the technique which consists in replac-
ing each categorical predictor by the set of the indicator variables of its categories is
generally not efficient. It is thus advised to perform a dimension reduction technique
(multiple correspondence analysis) before applying the SVM methodology.

4.4 Naive Bayes classifier

Let Xj be a binary predictor of a binary outcome and p0 the frequency of the event Y = 0
(prior probability). Bayes formula relates the posterior probability P (Y = 0/Xj = 0) to
the sensitivity Sej and specificity Spj of Xj .

P (Y = 0/Xj = 0) =
p0P (Xj=0/Y=0)

p0P (Xj=0/Y=0)+(1−p0)P (Xj=0/Y=1) =
p0Sej

p0Sej+(1−p0)(1−Spj)

Conversely, we have: P (Y = 0/Xj = 1) =
p0(1−Sej)

p0(1−Sej)+(1−p0)Spj
For p predictors the naive Bayes classifier consists in computing the posterior prob-

ability P (Y = 0/X1, ..., Xp) by
∏p
j=1 P (Y = 0/Xj) as if independence was true. A

more appropriate term for this probabilistic model could be a ”model for statistically
independent features”. Despite the fact that this model is generally wrong, the naive
Bayes classifier performs often quite well (Hand and Yu, 2001).

Note that naive Bayes method allows only binary predictors. We select only variables
with large enough specificity and sensitivity.

4.5 Expert Scoring

A specific score method has been developed for the needs of L’ORÉAL R&D (Gomes
et al., 2014). Without going into details, the principle is the following: each predictor
is converted into a partial score on a seven positions scale from -3 to +3, and the final
score is the sum of partial scores. For instance, if a predictor is categorical, we assign a
score equal to 3 to a category m if the ratio nAm/nBm > 3 where nAm is the number of
observations of the category of interest A within category m, and B is the complement
of A. A symmetric rule nBm/nAm > 3 gives a negative value -3. A similar rule is applied
to numerical predictors which are also split into 7 ordered categories according to the
overlapping of box-plots of A and B like for naive Bayes we select predictors with large
enough specificity and sensitivity. This simple scoring technique has been found effective
in a large number of cases and is well understood by users (dermatologists, biologists),
though it is not based on a theoretical background.

4.6 Synthesis

Instead of choosing one particular technique, a meta model combining several of them
(efficient and complementary in terms of performance) will lead to an improved decision
rule.
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Table 1: Properties of the 5 techniques

Ease of Accept Accept Accept

Techniques interpretation nonlinearity numerical categorical

predictors predictors

Sparse PLS-DA yes no yes no

Boosting no yes yes yes

SVM no yes yes no

Naive Bayes yes yes no yes

Expert Scoring yes yes yes yes

4.7 Example

In order to show the performances of this methodology, we used Heart Disease Data
Set1 (n=270), as an example. This database contains 76 attributes, but all published
experiments refer to using a subset of p=14 of them. The heart disease score has been
transformed into a binary outcome (0 = Absence; 1-4 = Presence of heart disease). All
five models have been trained on n=189 units and evaluated on the same validation set
(n=81). As expected the five probabilities of presence are highly correlated, see table
2; thus PLS regularization was fully justified. The stacking weights of the five models

Table 2: Correlations between level-0 outputs

Expert Sparse Naive

Models Boosting SVM Scoring PLSDA Bayes Stacking

Boosting 1

SVM 0.92 1

Expert Scoring 0.86 0.89 1

Sparse PLS-DA 0.89 0.97 0.88 1

Naive Bayes 0.88 0.93 0.90 0.94 1

Stacking 0.92 0.98 0.92 0.98 0.97 1

are given by Table 3. They are positive, without having imposed non-negativity as a

1Heart Disease Data Set: Bache, K. & Lichman, M. (2013). -UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Com-
puter Science.
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constraint.

Table 3: stacking weights

Models wj

Boosting 1.8031

SVM 1.4561

Expert Scoring 1.8522

Sparse PLS-DA 1.2225

Naive Bayes 1.2321

Table 4: Performance comparisons on the validation set (n=81). Best one in bold.

Performances Boosting SVM
Expert Sparse Naive Stacking all Stacking Score

Scoring PLS-DA Bayes models SPLS-DA

True positives 29 29 30 29 29 29 30

False positives 12 8 8 7 11 7 6

False negatives 7 7 6 7 7 7 6

True negatives 33 37 37 38 34 38 39

Sensitivity 80.6 80.5 83.3 80.6 80.6 80.5 83.3

Specificity 73.3 82.2 82.2 84.4 75.6 84.4 86.6

Concordance 76.5 81.5 82.7 82.7 77.8 82.7 85.2

Kappa 0.53 0.62 0.65 0.65 0.55 0.65 0.7

AUC 0.862 0.909 0.896 0.880 0.884 0.909 0.909

The best models on the training set are not necessarily the best models on the vali-
dation set. The stacking based on the five models in this example is not better than the
best of the five sub-models but has a better specificity.

Here, we can improve the result by selecting only two models instead of five : less
complexity, better generalization. In terms of Cohen’s kappa, the two best models are
the Score and the Sparse PLS DA (kappa = 0.65) which are complementary: Score
model is the best one in terms of sensitivity, and sparse PLS-DA is the best one for
specificity.

Indeed the stacked model based only on combining score and sparse PLS DA shows
higher performances than all the models taken separately. It provides the highest re-
sponse rate (85.2% of validation set) and the best balance between sensitivity (83.3%)
and specificity (86.6%).
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5 A heuristic learning process in case of small data set

In our specific applications we were faced to two critical issues: the weak number of
observations and the presence of categorical data. For a small sample, the choice of the
learning set may bring some bias in the choice of pertinent variables, thus it is necessary
to perform repeated sampling. Regarding the second issue, it is necessary to avoid
during each random sub-sampling that some categories become empty. We present the
implementation of the solutions.

5.1 Robust variable selection

According to a standard process, we create two sub samples (step 1): learning L and
validation V.

In learning set L, each model is calibrated (step 3) by cross-validation (for example,
figure 1 shows in details the calibration process for the boosting model) and provides its
own choice of variables. Since boosting, sparse PLS-DA, Naive Bayes and Expert Scoring
provide four possibly different selection of variable. However this choice of variables is
not robust because it may strongly depend on the sample L drawn.

Figure 1: Model parametrization process

So, in order to avoid any bias induced by this choice, we proceed (Step 2) in the
following way: we draw s subsets of L to obtain a hard core of variables common to
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different sampling and the four methods. We keep at the end the predictors which are
selected more than 3s times.

The final model F is estimated on the sample L (step 4) with all the common variables
retained from the s samples, and its performance is measured on V .

The following figure represents the process used to build a meta-model and compute
its performances on a learning/test split data set (see figure 2).

Figure 2: Process of validation rules

5.2 Construction of the learning and test samples in case of
categorical predictors

In the case of a small data set, sampling into a learning and a test subsets may lead to
some empty categories of both the response (rarely) and (frequently) of the predictors.
In this case it is impossible to estimate some parameters. In any case, it is suitable to
have a minimum number of observations in each category of each variable.

Our solution relies on a specific stratification technique:
First a balanced stratification according to the categories of the outcome y is necessary

to keep constant their proportions. But some categories of the predictors may become
empty or with not enough observations. A theoretical solution would consist in a fully
balanced sampling scheme (Deville and Tillé (2004)) but is not feasible for a small data
set.

The following heuristics is then used:

• Perform a random split into learning and test data sets with a stratified sampling



352 Noçairi et al.

upon both categories of the outcome

• Reject a sample if a category of a predictor has not enough representatives in both
the learning and the test samples

• Repeat until acceptance

• Repeat until getting 6 balanced samples.

6 Application to cosmetics tolerance data

6.1 Statutory context

The 7th Amendment of the European Cosmetic Directive has banned the in vivo tests
on animals for the safety evaluation of ingredients. L’ORÉAL has thus developed sev-
eral types of in vitro, in silico methods and collected other kinds of information on its
chemicals like physico-chemical data. Due to the complexity of the skin sensitization (or
irritation) process, it is now agreed that it is necessary to use all these informations to
predict safety.

We will focus on a specific end-point: the skin sensitization i.e, if a chemical is a
sensitizer or not (danger/non danger). The statistical objective in this case is to predict
the in vivo tests results realized before their ban, by using in vitro and in silico data.

The data set was composed of N=165 chemicals characterized by p=35 variables, rep-
resenting the results from in silico predictions, in vitro tests, assays as well as numerous
physico-chemical experimental or calculated parameters. The list of these variables being
industry confidential will not be detailed here.

The prediction model is based on the stacking methodology described in the previous
parts of this paper and summarized in figure 3. In addition, we propose a decision system
based on the construction of intervals (”traffic light” zones ”red”, ”green”, and ”orange”
for no decision) in order to have a robust conclusion.
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Figure 3: Visualization of the methodology

7 The Klimisch score

In the context of cosmetics tolerance data, we use a modified version of the naive Bayes
classifier in order to take into account a prior information on the reliability of each test
Xj known as the Klimisch score (Klimisch et al., 1997). Klimisch score is a method of
assessing the reliability of toxicological studies, mainly for regulatory purposes.

Based on the Klimisch score, we define a quality factor QF which is used to correct
the sensitivity and specificity of each test as follows (Gomes et al., 2014):

Klimisch score 1: “reliable result” → QF =1
Klimisch score 2: “doubtful result” → QF =0.8
Klimisch score 3: “unreliable result”→ QF =0.2

If the data is missing then QF is equal to 0.
Corrected sensitivity = 0.5 + QF * (Sensitivity - 0.5)
Corrected specificity = 0.5 + QF * (Specificity - 0.5)

7.1 Results

Each model, including stacking, provides a probability to be dangerous.
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In this safety application, the variable selection procedure of part 5 retains only 10
variables, among the 35.

As expected, the predictions provided by the five models are clearly highly positively
correlated, see tables 5, 6 figure 4 and 5:

Table 5: Correlations between predicted probabilities

Models Boosting SVM
Expert Sparse Naive

Scoring PLS-DA Bayes

Boosting 1

SVM 0.88 1

Expert Scoring 0.88 0.92 1

Sparse PLS-DA 0.87 0.99 0.91 1

Naive Bayes 0.85 0.89 0.93 0.87 1

Figure 4: Eigenvalues by components
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Figure 5: Correlations with principal components

The stacking meta-model has been computed by Logistic PLS-DA: optimal weights are
given in table 6. Once again, we note that weights are positive. Figure 6 presents ROC
curves of the five models plus the stacking meta-model on the learning set. Stacking
appears to be the most efficient (blue curve) with the highest area under the curve
(0.949).

Table 6: stacking weights

Models wj

Boosting 1.656

SVM 1.609

Expert Scoring 2.281

Sparse PLS-DA 1.311

Naive Bayes 1.188
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Figure 6: ROC curves for the training set

As described in the methodology in figure 1, we split data into training and validation
sets (N = 115 of data will be for training and N = 50 to use for validation sets). Then,
we repeated this partition 10 times. We have evaluated the performances on the 10
validation sets.

Table 7 shows that the stacking model provides the highest response rate (90% average
of 10 validation set) and the best balance between average sensitivity (89.7%) and average
specificity (95.94%). However naive Bayes performs quite well.
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Table 7: Performance comparisons on the validation set (N=50)

Performances Boosting SVM
Expert Sparse Naive

Stacking
Scoring PLSDA Bayes

Nbr-Concl. 23.5 ± 2.2 37.3 ± 1.8 22.4 ± 1.9 37.8 ± 1.6 40.8 ± 1.5 44.9 ± 1.4

TP 13.1 ± 2.1 19.4 ± 1.0 13.1 ± 2.0 19.3 ± 0.9 21.7 ± 1.2 23.3 ± 0.7

FP 0.0 ± 0.0 1 ± 0.9 0.2 ± 0.3 1.0 ± 0.9 0.9 ± 0.4 1 ± 0.9

FN 0.8 ± 0.5 1.5 ± 0.38 0.2 ± 0.3 1.5 ± 0.4 1.5 ± 0.4 2.7 ± 0.5

TN 9.6 ± 1.4 15.3 ± 1.0 8.9 ± 1.9 16.0 ± 1.2 16.7 ± 0.8 17.9 ± 0.8

Sensitivity 94.1 ± 3.3 92.8 ± 1.9 98.6 ± 2.1 92.7 ± 1.9 93.5 ± 1.4 89.7 ± 1.4

Specificity 100 ± 0.0 94.2 ± 4.6 97.8 ± 3.3 94.2 ± 4.9 94.9 ± 2.3 95.9 ± 0.6

Concordance 96.53 ± 2.0 93.4 ± 1.7 98.2 ± 2.2 93.5 ± 1.7 94.1 ± 1.1 92.0 ± 1.2

Kappa 0.93 ± 0.23 0.87 ± 0.24 0.94 ± 0.34 0.86 ± 0.26 0.86 ± 0.23 0.86 ± 0.15

AUC 0.87 ± 0.01 0.89 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.85 ± 0.02 0.92 ± 0.01

Another way to assess the efficiency of stacking is the following:

• Instead of giving a unique threshold for the danger probability (eg 0.5), we use a
partition with two thresholds into 3 intervals corresponding respectively to ”dan-
ger”, ”no danger” and ”no decision” (unconclusive) defined as follows:

– Chemicals with a probability >= 85% are predicted Danger,

– Chemicals with a probability <= 15% are predicted Non Danger,

– Chemicals with a probability between those two thresholds are inconclusive.

This approach defines a kind of ”reliability area”. For example for a one learning
sample and validation, Boosting is conclusive on only 40% (67/165) of chemicals while
stacking is conclusive on 82% (135/165) of chemicals as shown in figure 7. This reliability
area, or in other words the ”response rate”, is an important indicator in order to evaluate
the stacking performance. Here stacking leads to a conclusion over more chemicals.
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Figure 7: Reliability areas

Furthermore, we observe that the distribution of the ”danger” probabilities provided
by stacking look more bimodal than all other models, see Figure 8 which compares
probabilities provided by stacking and boosting.

Figure 8: Danger probabilities
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8 Conclusion and perspectives

We have presented some modifications to stacking methodology for a binary outcome,
taking into account the correlations between predictions.

We have proposed an heuristic methodology based on sample stratification to overcome
the problem of a too small number of units, which makes difficult to split the data into
learning/test subset.

By combining five known classifiers of very different kinds, we obtained a prediction
model with better performances than each of the five initial models taken separately.
This result is important for the development of alternative approaches in safety evalua-
tion of chemicals in cosmetic industry.

Various extensions are possible : adding other level-0 models such as Decision Trees
like C4.5 (Quinlan, 1993), Neural Networks (Anderson, 1995), Multiblock Redundancy
Analysis (Bougeard et al., 2006), partitioning around medoids (PAM: Kaufman and
Rousseeuw, 1987) . . .

Extensions to the multi-class response case are in progress, either for ordered or non
ordered categories.

Nota: All computations have been done in the R environment combined with a web
interface where most of these methods were already available. We used the following R
packages: pls , spls , rpart , plsRglm , adabag , e1071 , penalizedSVM. Figure 5 was
realized with IBM-SPSS 19.
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Deville, J.C. and Tillé ,Y. (2004). Efficient balanced sampling : The cube method.
Biometrika, 91 (4) : 893-912.

Freund, Y. and Schapire, R. (1997). A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sciences,
55, 1, 119-139.

Friedman, J. H., Hastie, T. and Tibshirani, R. (2000). Additive Logistic Regression: a
Statistical View of Boosting. The Annals of Statistics, Vol. 28, No. 2, 337-407.
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