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A new four parameter distribution called the Dagum-Poisson (DP) distri-
bution is introduced and studied. This distribution is obtained by compound-
ing Dagum and Poisson distributions. The structural properties of the new
distribution are discussed, including explicit algebraic formulas for its sur-
vival and hazard functions, quantile function, moments, moment generating
function, conditional moments, mean and median deviations, Bonferroni and
Lorenz curves, distribution of order statistics and Rényi entropy. Method of
maximum likelihood is used for estimating the model parameters. A Monte
Carlo simulation study is conducted to examine the bias, mean square error
of the maximum likelihood estimators and width of the confidence interval
for each parameter. A real data set is used to illustrate the usefulness, ap-
plicability, importance and flexibility of the new distribution.

keywords: Dagum distribution, Dagum Poisson distribution, Poisson dis-
tribution, Moments, Maximum Likelihood Estimation.

1. Introduction

There are several new distributions in the literature for modeling lifetime data obtained
by compounding distributions, including work by Barreto-Souza et al. (2011) on the
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Weibull-geometric distribution, and Lu and Shi (2012) on the Weibull-Poisson distribu-
tion, among others. These new families of probability distributions that extend well-
known families of distributions are very useful in modeling lifetime data and are of
tremendous practical importance in several areas including economics, finance, reliabil-
ity and medicine. Flexibility and applications have been key to the study of generalized
distributions in recent years. Simplicity, extensions and applicability are are also impor-
tant components in the derivations of these new distributions. Of particular importance
are models that can be applied to various settings including size distribution of personal
income and lifetime data, where Dagum distribution and its various extensions could be
very useful. In a recent note, Huang and Oluyede (2014), developed a new class of dis-
tribution called the exponentiated Kumaraswamy Dagum distribution and applied the
model to income and lifetime data. Oluyede et al. (2014) also developed and presented
results on the gamma-Dagum distribution with applications to income and lifetime data.

The class of distributions generated by compounding well-known lifetime distributions
such as exponential, Weibull, generalized exponential, exponentiated Weibull, inverse
Weibull, logistic and log-logistic with some discrete distributions such as binomial, geo-
metric, zero-truncated Poisson, logarithmic and the power series distributions in general
are part of the recent developments in generating useful distributions. In this setting,
the non-negative random variable X denoting the lifetime of such a system is defined
by X = min1≤i≤N Xi or X = max1≤i≤N Xi, where the distribution of Xi follows one of
the lifetime distributions and the random variable N follows some discrete distribution
mentioned above. This new class of distributions has received considerable attention
over the past several years.

In the literature on statistical distributions, several authors have proposed new dis-
tributions that are far more flexible in modeling monotone or unimodal failure rates
but they are not useful for modeling bathtub shaped or non-monotone failure rates.
Adamidis and Loukas (1998) introduced a two-parameter exponential-geometric (EG)
distribution by compounding an exponential distribution with a geometric distribution.
Adamidis et al. (2005) proposed the extended exponential-geometric (EEG) distribu-
tion which generalizes the EG distribution and discussed its various statistical properties
along with its reliability features. The exponential Poisson (EP) and exponential loga-
rithmic (EL) distributions were introduced and studied by Kuş (2007), and Tahmasbi
and Rezaei (2008), respectively. Recently, Chahkandi and Ganjali (2009) proposed the
exponential power series (EPS) family of distributions, which contains as special cases
these distributions. Barreto-Souza et al. (2011), and Lu and Shi (2012) introduced the
Weibull-geometric (WG) and Weibull-Poisson (WP ) distributions which are extensions
of the EG and EP distributions, respectively. Barreto-Souza and Cribari-Neto (2009)
presented a generalization of the exponential-Poisson distribution. Morais and Barreto-
Souza (2011) developed and presented a compound class of Weibull and power series
distributions.

The primary motivation for the development of the Dagum-Poisson distribution is the
modeling of size distribution of personal income and lifetime data with a diverse model
that takes into consideration not only shape, and scale but also skewness, kurtosis and
tail variation. Also, motivated by various applications of Poisson and Dagum distribu-
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tions in several areas including reliability, exponential tilting (weighting) in finance and
actuarial sciences, as well as economics, where Dagum distribution plays an important
role in size distribution of personal income, we construct and develop the statistical prop-
erties of this new class of generalized Dagum-type distribution called the Dagum-Poisson
distribution and apply it to real lifetime data in order to demonstrate the usefulness of
the proposed distribution. In this regard, we propose a new four-parameter distribution,
called the Dagum-Poisson (DP ) distribution.

1.1. Dagum Distribution

Dagum distribution was proposed by Camilo Dagum (see Dagum (1977) for details).
Dagum distribution is used to fit empirical income and wealth data, that could accom-
modate both heavy tails in empirical income and wealth distributions, and also permit
interior mode. Dagum distribution is a special case of generalized beta distribution of
the second kind (GB2), McDonald (1984), McDonald and Xu (1995), when the parame-
ter q = 1, where the probability density function (pdf) of the GB2 distribution is given
by:

fGB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (yb )a]p+q
for y > 0.

Note that a > 0, p > 0, q > 0, are shape parameters and b > 0 is a scale parameter, and
B(p, q) = Γ(p)Γ(q)

Γ(p+q) is the beta function. Kleiber (2008) traced the genesis of Dagum dis-
tribution and summarized several statistical properties of this distribution. See Kleiber
and Kotz (2003) for additional results on income and size distributions. Domma et al.
(2011) obtained the maximum likelihood estimates of the parameters of Dagum dis-
tribution for censored data. Domma and Condino (2013) presented the beta-Dagum
distribution. Huang and Oluyede (2014) presented the exponentiated Kumaraswamy
Dagum distribution and applied the model to income and lifetime data. Oluyede et al.
(2014) developed a generalized gamma-Dagum distribution with applications to income
and lifetime data.

The probability density function (pdf) and cumulative distribution function (cdf) of
Dagum distribution are given by:

fD(x;λ, β, δ) = βλδx−δ−1(1 + λx−δ)−β−1 (1)

and
FD(x;λ, β, δ) = (1 + λx−δ)−β, (2)

for x > 0, where λ is a scale parameter, δ and β are shape parameters. Dagum (1977)
refers to his model as the generalized logistic-Burr distribution. The survival and haz-
ard rate functions of Dagum distribution are GD(x;λ, δ, β) = 1 − (1 + λx−δ)−β and

hD(x;λ, δ, β) = βλδx−δ−1(1+λx−δ)−β−1

1−(1+λx−δ)−β
, respectively. The rth raw or non central moments

of Dagum distribution are given by

E (Xr) = βλ
r
δB
(
β +

r

δ
, 1− r

δ

)
, (3)
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for δ > r, and λ, β > 0, where B(·, ·) is the beta function. The qth percentile of the
Dagum distribution is

xq = λ
1
δ

(
q
−1
β − 1

)−1
δ
. (4)

Dagum distribution has positive asymmetry, and its hazard rate can be monotonically de-
creasing, upside-down bathtub and bathtub followed by upside-down bathtub (Domma,
2002). This behavior has led several authors to study the model in different fields. In
fact, recently, the Dagum distribution has been studied from a reliability point of view
and used to analyze survival data (see Domma et al. (2011)). For the proposed model
in this paper, it is possible to verify that the hazard rate function is more flexible than
that of Dagum distribution. Actually when β = 1; Dagum distribution is referred to as
the log-logistic distribution. Burr type III distribution is obtained when λ = 1.

This paper is organized as follows. In section 2, we define the DP distribution, its
probability density function (pdf) and cumulative distribution function (cdf). In section
3, some properties of the new distribution including the expansion of the density, quantile
function, moments and moment generating function are presented. Mean and median
deviations, Bonferroni and Lorenz curves are derived in section 4. The distribution of
order statistics and Rényi entropy are given in section 5. Maximum likelihood estimates
of the unknown parameters are presented in section 6. A simulation study is conducted
in order to examine the bias, mean square error of the maximum likelihood estimators
and width of the confidence interval for each parameter of the model in section 7. Section
8 contains an application of the model to real data, followed by concluding remarks.

2. Dagum-Poisson Distribution, Sub-models and
Properties

Suppose that the random variable X has the Dagum distribution where its cdf and pdf
are given in equations (1) and (2), respectively. Given N, let X1, ..., XN be independent
and identically distributed random variables from Dagum distribution. Suppose N is
a discrete random variable with a power series distribution (truncated at zero) and
probability mass function (pmf) given by

P (N = n) =
anθ

n

C(θ)
, n = 1, 2, .....,

where an ≥ 0 depends only on n, C(θ) =
∑∞

n=1 anθ
n and θ ∈ (0, b) (b can be∞) is chosen

such that C(θ) is finite and its three derivatives with respect to θ are defined and given
by C ′(.), C ′′(.) and C ′′′(.), respectively. The power series family of distributions includes
binomial, Poisson, geometric and logarithmic distributions Johnson et al. (1994). See
Table 1 for some useful quantities including an, C(θ), C(θ)−1, C ′(θ), and C ′′(θ) for the
Poisson, geometric, logarithmic and binomial distributions.

The general form of the cdf and pdf of the Dagum-power series distribution are given
by

FDPS(x;λ, δ, β, θ) =
C(θ[1 + λx−δ]−β)

C(θ)
, (5)
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Table 1: Useful Quantities for Some Power Series Distributions

Distribution C(θ) C ′(θ) C ′′(θ) C(θ)−1 an Parameter Space

Poisson eθ − 1 eθ eθ log(1 + θ) (n!)−1 (0,∞)

Geometric θ(1− θ)−1 (1− θ)−2 2(1− θ)−3 θ(1 + θ)−1 1 (0, 1)

Logarithmic − log(1− θ) (1− θ)−1 (1− θ)−2 1− e−θ n−1 (0, 1)

Binomial (1 + θ)m − 1 m(1 + θ)m−1 m(m− 1)(1 + θ)m−2 (θ − 1)1/m − 1
(
m
n

)
(0, 1)

and

fDPS(x;λ, δ, β, θ) =
βλδθx−δ−1(1 + λx−δ)−β−1C ′(θ[1 + λx−δ]−β)

C(θ)
, (6)

where C(y) =
∑∞

n=1 any
n with an > 0 depends only on n. Using Table 1, we can obtain

Dagum-Poisson, Dagum-geometric, Dagum-logarithmic and Dagum-binomial distribu-
tions. In this note, we consider and study Dagum-Poisson distribution in detail. Let N
be distributed according to the zero truncated Poisson distribution with pdf

P (N = n) =
θne−θ

n!(1− e−θ)
, n = 1, 2, ..., θ > 0.

Let X=max(X1, ..., XN ), then the cdf of X|N = n is given by

GX|N=n(x) =
[
1 + λx−δ

]−nβ
, x > 0, λ, δ, β > 0,

which is the Dagum distribution with parameters λ, δ and nβ. The Dagum-Poisson (DP)
distribution denoted by DP(λ, δ, β, θ) is defined by the marginal cdf of X, that is,

FDP (x;λ, δ, β, θ) =
1− exp(θ[1 + λx−δ]−β)

1− eθ
, (7)

for x > 0, λ, β, δ, θ > 0. The DP density function is given by

fDP (x;λ, δ, β, θ) =
βλδθx−δ−1(1 + λx−δ)−β−1 exp(θ[1 + λx−δ]−β)

eθ − 1
. (8)

A series representation of the DP cdf is given by

FDP (x;λ, δ, β, θ) =
1− exp(θ[1 + λx−δ]−β)

1− eθ

=
1

eθ − 1

[ ∞∑
k=0

θk(1 + λx−δ)−kβ

k!
− 1

]

=
1

eθ − 1

[ ∞∑
k=1

θk(1 + λx−δ)−kβ

k!

]

=

∞∑
k=0

θk+1

(eθ − 1)(k + 1)!
(1 + λx−δ)−β(k+1)

=

∞∑
k=0

ω(k, θ)FD(x;λ, δ, β(k + 1)), (9)
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Figure 1: DP Density Functions

where ω(k, θ) = θk+1

(k+1)!(eθ−1)
, and FD(x;λ, β(k+ 1), δ) is the Dagum cdf with parameters

λ, β(k + 1), δ > 0.

2.1. Hazard and Reverse Hazard Functions

In this subsection, hazard and reverse hazard functions of the DP distribution are pre-
sented. The plots of DP pdf and hazard rate function for selected values of the model
parameters λ, δ, β and θ are given in Figure 1 and Figure 2, respectively. The hazard
and reverse hazard functions are given by

hDP (x;λ, δ, β, θ) =
fDP (x;λ, δ, β, θ)

1− FDP (x;λ, δ, β, θ)

=
λδβθ(1 + λx−δ)−β−1eθ(1+λx−δ)−β

eθ − eθ(1+λx−δ)−β
(10)

and

τDP (x;λ, δ, β, θ) =
fDP (x;λ, δ, β, θ)

FDP (x;λ, δ, β, θ)

=
λδβθ(1 + λx−δ)−β−1eθ(1+λx−δ)−β

eθ(1+λx−δ)−β − 1
, (11)

respectively. The plots of the hazard rate function show various shapes including mono-
tonically decreasing, monotonically increasing, unimodal, upside down bathtub and
bathtub followed by upside down bathtub shapes for the combinations of the values
of the parameters. This flexibility makes the DP hazard rate function suitable for both
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Figure 2: Plots of the DP Hazard Function

monotonic and non-monotonic empirical hazard behaviors that are likely to be encoun-
tered in real life situations. Unfortunately, the analytical analysis of the shape of both
the density (except for zero modal when βδ ≤ 1, and unimodal if βδ > 1, both for
θ → 0+) and hazard rate function seems to be very complicated.

2.2. Some Sub-models of the DP Distribution

DP distribution is a very flexible model that has different sub-models when its param-
eters are changed. DP distribution contains several sub-models including the following
distributions.

• If β = 1, then DP distribution reduces to a new distribution called log-logistic
Poisson (LLoGP) or Fisk-Poisson (FP) distribution with pdf given by

fLLOGP (x;λ, δ, θ) = λθδx−δ−1 (1 + λx−δ)−2 exp(θ(1 + λx−δ)−1)

exp(θ)− 1
, x > 0.

If in addition to β = 1, we have θ ↓ 0, then the resulting distribution is the
log-logistic or Fisk distribution.

• When θ ↓ 0 in the DP distribution, we obtain Dagum (D) distribution.

• The Burr-III Poisson (BIIIP) distribution is obtained when λ = 1. If in addition,
θ ↓ 0, Burr-III distribution with parameter δ, β > 0 is obtained.
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3. Some Statistical Properties

In this section, some statistical properties of DP distribution including expansion of
density function, quantile function, moments, conditional moments, mean and median
deviations, Lorenz and Bonferroni curves are presented.

3.1. Expansion of DP Density

In this subsection, we provide an expansion of the DP distribution. Note that, applying
the fact that Maclaurin series expansion of ex =

∑∞
k=0 x

k/k!, the DP pdf can be written
as follows:

fDP (x;λ, δ, β, θ) =
βλδθx−δ−1(1 + λx−δ)−β−1 exp(θ(1 + λx−δ)−β)

exp(θ)− 1

=
∞∑
k=0

θk

k!(eθ − 1)
λβδθx−δ−1(1 + λx−δ)−β(k+1)−1

=

∞∑
k=0

ω(k, θ)fD(x;λ, δ, β(k + 1)), (12)

where ω(k, θ) = θk+1

(k+1)!(eθ−1)
, and fD(x;λ, β(k+ 1), δ) is the Dagum pdf with parameters

λ, β(k + 1), δ, > 0. Equation (12) also follows directly from equation (9). The above
equation shows that the DP density is indeed a linear combination of Dagum densities.
Hence, most of its mathematical properties can be immediately obtained from those of
the Dagum distribution.

3.2. Quantile Function

In this subsection, we present the qth quantile of the DP distribution. The qth quantile
of the DP distribution is obtained by solving the nonlinear equation

eθ(1+λx−δ)−β − 1

eθ − 1
= U,

where U is a uniform variate on the unit interval [0, 1]. It follows that the qth quantile
of the DP distribution is given by

Xq =

(
1

λ

([
ln(U(eθ − 1) + 1)

θ

]−1/β

− 1

))−1/δ

. (13)

Consequently, random number can be generated based on equation (13).

3.3. Moments

In this subsection, we present the rth moment ofDP distribution. Moments are necessary
and crucial in any statistical analysis, especially in applications. Moments can be used to
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study the most important features and characteristics of a distribution (e.g., tendency,
dispersion, skewness and kurtosis). If the random variable X has a DP distribution,
with parameter vector Θ = (λ, δ, β, θ), then the rth moment of X is given by

µ
′
r =

∫ ∞
0

xrfDP (x;λ, β, δ, θ)dx

=
∞∑
k=0

ω(k, θ)

∫ ∞
0

xrfD(x;λ, β(k + 1), δ)dx

=
∞∑
k=0

ω(k, θ)λ
r
δB

(
r

δ
+ β(k + 1), 1− r

δ

)
, δ > r. (14)

Note that the rth non-central moment follows readily from the fact that DP pdf can be
written as a linear combination of Dagum densities with parameters λ, β(k + 1), δ > 0.
Based on the first four moments of the DP distribution, the measures of skewness CS
and kurtosis CK of the DP distribution can obtained from

CS =
µ3 − 3µ1µ2 + 2µ3

1[
µ2 − µ2

1

] 3
2

and CK =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1[

µ2 − µ2
1

]2 ,

respectively. Plots of the skewness and kurtosis for selected choices of the parameter β
as a function of δ, as well as for some selected choices of δ as a function of β are displayed
in Figures 3, 4, 5, and 6. These plots clearly indicate that the skewness and kurtosis
depend on the shape parameters δ and β. Table 2 lists the first six moments of the DP
distribution for selected values of the parameters, by fixing δ = 6.5. Table 3 lists the
first six moments of the DP distribution for selected values of the parameters, by fixing
λ = 0.3 and β = 0.8, and Table 4 lists the first six moments of the DP distribution for
selected values of the parameters, by fixing δ = 8.5 and β = 1.5. These values can be
determined numerically using R and MATLAB.

Table 2: Moments of the DP distribution for some parameter values; δ = 6.5.

µ′s λ = 0.5, β = 2.5, θ = 2.5 λ = 2.0, β = 0.5, θ = 0.5 λ = 3.0, β = 1.5, θ = 3.5 λ = 0.1, β = 0.2, θ = 0.3

µ′1 1.30548 1.01330 1.65702 0.45015

µ′2 1.81639 1.15863 2.93049 0.26502

µ′3 2.74198 1.49281 5.62721 0.18674

µ′4 4.65550 2.22301 12.15746 0.15704

µ′5 9.74269 4.16566 32.37752 0.16950

µ′6 38.13338 14.84150 161.26470 0.35254

SD 0.33484 0.36311 0.42985 0.24977

CV 0.25649 0.35835 0.25941 0.55485

CS 2.07731 1.07708 2.00161 0.72369

CK 15.69083 8.48089 15.25227 5.09487
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Figure 3: Skewness of DP distribution as a function of β for some values of δ with λ = 0.5
and θ = 1.5.

Figure 4: Kurtosis of DP distribution as a function of β for some values of δ with λ = 0.5
and θ = 1.5.
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Figure 5: Skewness of DP distribution as a function of δ for some values of β with λ = 0.5
and θ = 1.5.

Figure 6: Kurtosis of DP distribution as a function of δ for some values of β with λ = 0.5
and θ = 1.5.
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Table 3: Moments of the DP distribution for some parameter values; λ = 0.3 and β =
0.8.

µ′s δ = 7.0, θ = 1.0 δ = 10.5, θ = 0.3 δ = 7.5, θ = 0.1 δ = 6.5, θ = 3.0

µ′1 0.89281 0.88817 0.84321 1.01339

µ′2 0.85993 0.81665 0.76169 1.10774

µ′3 0.90057 0.77797 0.74088 1.32478

µ′4 1.04747 0.76984 0.78724 1.79292

µ′5 1.42600 0.79537 0.94477 3.00491

µ′6 2.69499 0.86581 1.40007 9.45480

SD 0.25065 0.16674 0.22515 0.28424

CV 0.28074 0.18773 0.26702 0.28049

CS 1.31050 0.70110 1.15070 1.67466

CK 9.60878 5.71218 8.24167 12.95428

Table 4: Moments of the DP distribution for some parameter values; δ = 8.5 and β =
1.5.

µ′s λ = 1.5, θ = 1.5 λ = 1.5, θ = 0.5 λ = 0.5, θ = 1.5 λ = 0.5, θ = 0.5

µ′1 1.24022 1.17897 1.08985 1.03602

µ′2 1.60034 1.44651 1.23580 1.11701

µ′3 2.16080 1.85768 1.46628 1.26059

µ′4 3.08248 2.52160 1.83811 1.50366

µ′5 4.72733 3.68135 2.47717 1.92907

µ′6 8.07349 5.98802 3.71766 2.75735

SD 0.24939 0.23780 0.21915 0.20897

CV 0.20108 0.20170 0.20108 0.20170

CS 1.40204 1.40918 1.40197 1.40905

CK 8.97403 8.95440 8.97488 8.95504

Similarly, the moment generating function (mgf) of X is given by

MX(t) =
∞∑
k=0

ω(k, θ)MY (t)

=
∞∑
k=0

∞∑
j=0

ω(k, θ)
tj

j!
λ
j
δB

(
j

δ
+ β(k + 1), 1− j

δ

)
, δ > j.

This follows from the well known definition of the moment generating function given by
MX (t) = E(etX) =

∫∞
0 etxf(x; Θ)dx. Since

∑∞
j=0

tj

j!x
jf(x) converges and each term is

integrable for all t close to 0, then we can rewrite the moment generating function as
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MX (t) =
∑∞

j=0
tj

j!E(Xj) by replacing E(Xj) by the right side of Equation (14) to obtain
the desired result.

3.4. Conditional Moments

For income and lifetime distributions, it is of interest to obtain the conditional moments
and mean residual life function. The rth conditional moment for DP distribution is given
by

E(Xr|X > t) =
1

FDP (t)

∫ ∞
t

xrfDP (x)dx

=
1

FDP (t)

∞∑
k=0

ω(k, θ)

[
B

(
β(k + 1) +

r

δ
, 1− r

δ

)
− B

t(a)

(
β(j + 1) +

r

δ
, 1− r

δ

)]
, (15)

where t(a) = (1 + λa−δ)−1, δ > r, and B
t(a)

(c, d) =
∫ t(a)

0 uc−1(1 − u)d−1du. The mean
residual life function is E(X|X > t)− t.

4. Mean and Median Deviations, Bonferroni and Lorenz
Curves

In this section, mean and median deviations, as well as Bonferroni and Lorenz curves of
the DP distribution are presented.

4.1. Mean and Median Deviations

The amount of dispersion in a population can be measured to some extent by the totality
of deviations from the mean and the median. If X has the DP distribution, we can derive
the mean deviation about the mean µ = E(X) and the mean deviation about the median
M from

δ1 =

∫ ∞
0
|x− µ|fDP (x)dx and δ2 =

∫ ∞
0
|x−M |fDP (x)dx,

respectively. The mean µ is obtained from equation (14) with r = 1, and the median M
is given by equation (13) when q = 1

2 . The measure δ1 and δ2 can be calculated by the
following relationships:

δ1 = 2µFDP (µ)− 2µ+ 2T (µ) and δ2 = 2T (M)− µ,

where T (a) =
∫∞
a x · fDP (x)dx follows from equation (15), that is,

T (a) =

∞∑
k=0

ω(k, θ)

[
B

(
β(k + 1) +

1

δ
, 1− 1

δ

)
−Bt(a)

(
β(k + 1) +

1

δ
, 1− 1

δ

)]
.
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4.2. Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves are widely used tools for analyzing and visualizing income
inequality. Lorenz curve, L(p) can be regarded as the proportion of total income volume
accumulated by those units with income lower than or equal to the volume q, and
Bonferroni curve, B(p) is the scaled conditional mean curve, that is, ratio of group mean
income of the population.

Let I(a) =
∫ a

0 x · fDP (x)dx and µ = E(X), then Bonferroni and Lorenz curves are
given by

B(p) =
I(q)

pµ
and L(p) =

I(q)

µ
,

respectively, for 0 ≤ p ≤ 1, and q = F−1
DP (p). The mean of the DP distribution is

obtained from equation (14) with r = 1 and the quantile function is given in equation
(13). Consequently,

I(a) =

∞∑
k=0

ω(k, θ)B
t(a)

(
β(k + 1) +

1

δ
, 1− 1

δ

)
, (16)

for δ > 1, where t(a) = (1 + λa−δ)−1, and BF (x)(c, d) =
∫ F (x)

0 tc−1(1 − t)d−1dt for
0 < F (x) < 1 is incomplete beta function.

5. Order Statistics and Rényi Entropy

In this section, the distribution of the kth order statistic and Rényi entropy for the DP
distribution are presented. The entropy of a random variable is a measure of variation
of the uncertainty.

5.1. Order Statistics

The pdf of the kth order statistics from a pdf f(x) is

fk:n(x) =
f(x)

B(k, n− k + 1)
F k−1(x)[1− F (x)]n−k

= k

(
n

k

)
f(x)F k−1(x)[1− F (x)]n−k. (17)

We apply the series expansion

(1− z)b−1 =
∞∑
j=0

(−1)jΓ(b)

Γ(b− j)j!
zj , (18)

for b > 0 and |z| < 1, to obtain the series expansion of the distribution of order statistics
from DP distribution. Using equations (18), the pdf of the kth order statistic from DP
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distribution is given by

fk:n(x) =

∞∑
s=0

k

(
n

k

)
(−1)sf(x)Γ(n− k + 1)

s!Γ(n− k + 1− s)
[F (x)]s+k−1

=
∞∑

s,t,w=0

k

(
n

k

)
(−1)s+t+1θw(t+ 1)wΓ(n− k + 1)Γ(s+ k)

(1− eθ)s+ks!t!(w + 1)!Γ(n− k + 1− s)Γ(s+ k − t)

× λβ(w + 1)δx−δ−1(1 + λx−δ)−β(w+1)−1.

That is,

fk:n(x) =

∞∑
s=0

∞∑
t=0

∞∑
w=0

H(s, t, w, k) · fD(x;λ, β(w + 1), δ),

where H(s, t, w, k) = k
(
n
k

) (−1)s+t+1θw(t+1)wΓ(n−k+1)Γ(s+k)
(1−eθ)s+ks!t!(w+1)!Γ(n−k+1−s)Γ(s+k−t) . Thus, the pdf of the kth

order statistic from the DP distribution is a linear combination of Dagum pdfs with
parameters λ, β(w + 1) and δ > 0. The rth moment of the distribution of the kth order
statistic is given by

E(Xr
k:n) =

∞∑
s,t,w=0

H(s, t, w, k)β(w + 1)λ
r
δB
(
β(w + 1) +

r

δ
, 1− r

δ

)
, δ > r.

5.2. Rényi Entropy

Rényi entropy of a distribution with pdf f(x) is defined as

IR(τ) = (1− τ)−1 log

{∫
R
f τ (x)dx

}
, τ > 0, τ 6= 1.

Note that by using equation (18), we have

f τ
DP

(x) =
∞∑
k=0

(τθ)k(λβδθ)τ

k!(eθ − 1)τ
x−δτ−τ (1 + λx−δ)−βτ−βk−τ .

Consequently, Rényi entropy of DP distribution is given by

IR(τ) =
1

1− τ
log

[ ∞∑
k=0

(τθ)k(λβδθ)τ

k!(eθ − 1)τ
λ1/δ

δ
B

(
β(k + τ)− τ − 1

δ
, τ +

τ − 1

δ

)]
.

for β(k+τ)− τ−1
δ > 0 and τ + τ−1

δ > 0. Rényi entropy for the sub-models can be readily
obtained.
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6. Maximum Likelihood Estimators

In this section, we consider the maximum likelihood estimators (MLE’s) of the param-
eters of the DP distribution. Let x1, ..., xn be a random sample of size n from DP
distribution and Θ = (λ, δ, β, θ)T be the parameter vector. The log-likelihood function
can be written as

L = n log θ + n log β + n log δ + n log λ− (δ + 1)
n∑
i=1

log xi

− (β + 1)

n∑
i=1

log(1 + λx−δi ) + θ

n∑
i=1

(1 + λx−δi )−β. (19)

The associated score function is given by

Un(Θ) =

(
∂L

∂λ
,
∂L

∂δ
,
∂L

∂β
,
∂L

∂θ

)T
,

where

∂L

∂λ
=
n

λ
− (β + 1)

n∑
i=1

x−δi
(1 + λx−δi )

−
n∑
i=1

βθx−δi (1 + λx−δi )−β−1,

∂L

∂δ
=
n

δ
−

n∑
i=1

log xi + (β + 1)
n∑
i=1

λxδi log xi

(1 + λx−δi )

+
n∑
i=1

θλβ(1 + λx−δi )−β−1x−δi log xi,

∂L

∂β
=
n

β
−

n∑
i=1

log(1 + λx−δi ) +
n∑
i=1

θ(1 + λx−δi )−β log(1 + λx−δi ), and

∂L

∂θ
=
n

θ
+

n∑
i=1

(1 + λx−δi )−β.

The maximum likelihood estimate (MLE) of Θ, say Θ̂, is obtained by solving the non-
linear system Un(Θ) = 0. The solution of this nonlinear system of equations is not in a
closed form. These equations cannot be solved analytically, and statistical software can
be used to solve them numerically via iterative methods. We can use iterative techniques
such as a Newton-Raphson type algorithm to obtain the estimate Θ̂.

6.1. Fisher Information Matrix

In this subsection, we present a measure for the amount of information. This information
can be used to obtain bounds on the variance of estimators, approximate the sampling
distribution of an estimator and obtain an approximate confidence interval in the case
of a large sample.
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Let X be a random variable with the DP pdf fDP (x; Θ), where Θ = (θ1, θ2, θ3, θ4)T =
(λ, δ, β, θ)T . Then, Fisher information matrix (FIM) is the 4× 4 symmetric matrix with
elements:

Iij(Θ) = EΘ

[
∂ log(fDP (X; Θ))

∂θi

∂ log(fDP (X; Θ))

∂θj

]
.

If the density fDP (x; Θ) has a second derivative for all i and j, then an alternative
expression for Iij(Θ) is

Iij(Θ) = −EΘ

[
∂2 log(fDP (X; Θ))

∂θi∂θj

]
.

For the DP distribution, all second derivatives exist; therefore, the formula above is
appropriate and most importantly significantly simplifies the computations. Elements
of the FIM can be numerically obtained by R or MATLAB. The total FIM In(Θ) can
be approximated by

Jn(Θ̂) ≈
[
− ∂2 logL

∂θi∂θj

∣∣∣∣
Θ=Θ̂

]
4×4

. (20)

For real data, the matrix given in Equation (20) is obtained after the convergence of the
Newton-Raphson procedure in MATLAB or R software.

6.2. Asymptotic Confidence Intervals

In this subsection, we present the asymptotic confidence intervals for the parameters
of the DP distribution. The expectations in the Fisher Information Matrix (FIM) can
be obtained numerically. Let Θ̂ = (λ̂, δ̂, β̂, θ̂) be the maximum likelihood estimate of
Θ = (λ, δ, β, θ). Under the usual regularity conditions and that the parameters are in

the interior of the parameter space, but not on the boundary, we have:
√
n(Θ̂−Θ)

d−→
N4(0, I−1(Θ)), where I(Θ) is the expected Fisher information matrix. The asymptotic
behavior is still valid if I(Θ) is replaced by the observed information matrix evaluated at
Θ̂, that is J(Θ̂). The multivariate normal distribution with mean vector 0 = (0, 0, 0, 0)T

and covariance matrix I−1(Θ) can be used to construct confidence intervals for the
model parameters. That is, the approximate 100(1− η)% two-sided confidence intervals
for λ, δ, β and θ are given by

λ̂± Zη/2
√

I−1
λλ (Θ̂), δ̂ ± Zη/2

√
I−1
δδ (Θ̂), β̂ ± Zη/2

√
I−1
ββ (Θ̂),

and θ̂ ± Zη/2
√

I−1
θθ (Θ̂), respectively, where I−1

λλ (Θ̂), I−1
δδ (Θ̂), I−1

ββ (Θ̂), and I−1
θθ (Θ̂) are di-

agonal elements of I−1
n (Θ̂) = (nIΘ̂))−1 and Zη/2 is the upper (η/2)th percentile of a

standard normal distribution.
We can use the likelihood ratio (LR) test to compare the fit of the DP distribution

with its sub-models for a given data set. For example, to test θ = 0, the LR statistic
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is ω = 2[ln(L(λ̂, δ̂, β̂, θ̂)) − ln(L(λ̃, δ̃, β̃, 0))], where λ̂, δ̂, β̂, and θ̂, are the unrestricted
estimates, and λ̃, δ̃, and β̃ are the restricted estimates. The LR test rejects the null
hypothesis if ω > χ2

ε
, where χ2

ε
denote the upper 100ε% point of the χ2 distribution with

1 degrees of freedom.

7. Monte Carlo Simulation Study

In this section, a simulation study is conducted to assess the performance and exam-
ine the mean estimate, average bias, root mean square error of the maximum likeli-
hood estimators and width of the confidence interval for each parameter. We study
the performance of the DP distribution by conducting various simulations for dif-
ferent sample sizes and different parameter values. Equation (13) is used to gener-
ate random data from the DP distribution. The simulation study is repeated for
N = 5, 000 times each with sample size n = 25, 50, 75, 100, 200, 400, 800 and parame-
ter values I : λ = 3.0, δ = 1.2, β = 0.2, θ = 0.3 and II : λ = 3.5, δ = 1.0, β = 0.2, θ = 0.4.
Simulation results for various other parameters sets including when the shape parame-
ters δ < 1 and β > 1 are available upon request from the authors. An R algorithm for
the simulations is given in the appendix of this paper. Five quantities are computed in
this simulation study.

(a) Mean estimate of the MLE ϑ̂ of the parameter ϑ = λ, δ, β, θ :

1

N

N∑
i=1

ϑ̂.

(b) Average bias of the MLE ϑ̂ of the parameter ϑ = λ, δ, β, θ :

1

N

N∑
i=1

(ϑ̂− ϑ).

(c) Root mean squared error (RMSE) of the MLE ϑ̂ of the parameter ϑ = λ, δ, β, θ :√√√√ 1

N

N∑
i=1

(ϑ̂− ϑ)2.

(d) Coverage probability (CP) of 95% confidence intervals of the parameter ϑ =
λ, δ, β, θ, i.e., the percentage of intervals that contain the true value of parame-
ter ϑ.

(e) Average width (AW) of 95% confidence intervals of the parameter ϑ = λ, δ, β, θ.
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Table 5 presents the Average Bias, RMSE, CP and AW values of the parameters λ, δ, β
and θ for different sample sizes. From the results, we can verify that as the sample size
n increases, the RMSEs decay toward zero. The average biases for the parameter θ are
all positive and slightly larger for small to moderate sample sizes but tend to get smaller
as the sample size n increases. We also observe that for all the parametric values, the
biases decrease as the sample size n increases. Also, the table shows that the coverage
probabilities of the confidence intervals are quite close to the nominal level of 95% and
that the average confidence widths decrease as the sample size increases. Consequently,
the MLE’s and their asymptotic results can be used for estimating and constructing
confidence intervals even for reasonably small sample sizes.

Table 5: Monte Carlo Simulation Results: Average Bias, RMSE, CP and AW

I II

Parameter n Mean Average Bias RMSE CP AW Mean Average Bias RMSE CP AW

λ 25 4.8530 1.8530 7.2589 0.8132 44.1472 5.9531 2.4531 9.1470 0.8146 55.0576

50 4.2227 1.2227 5.6644 0.8214 27.9452 5.4153 1.9153 7.4619 0.8358 37.5203

75 3.9258 0.9258 4.8932 0.8286 21.7068 4.9140 1.4140 6.3977 0.8372 27.8844

100 3.5974 0.5974 4.1241 0.8278 16.7771 4.5233 1.0233 5.2756 0.8378 22.3011

200 3.0985 0.0985 2.5313 0.8330 10.0894 3.7666 0.2666 3.0828 0.8480 12.6877

400 2.8628 -0.1372 1.4204 0.8570 6.5562 3.5132 0.0132 2.0123 0.8640 8.3644

800 2.8558 -0.1442 1.0060 0.8882 4.6937 3.4562 -0.0438 1.2749 0.8954 5.8443

δ 25 1.4116 0.2116 0.5876 0.9606 2.5486 1.1663 0.1663 0.4842 0.9676 2.0609

50 1.3148 0.1148 0.4152 0.9628 1.7464 1.1036 0.1036 0.3433 0.9642 1.4579

75 1.2825 0.0825 0.3494 0.9628 1.4374 1.0681 0.0681 0.2795 0.9622 1.1698

100 1.2580 0.0580 0.2989 0.9592 1.2210 1.0498 0.0498 0.2477 0.9594 1.0090

200 1.2143 0.0143 0.2085 0.9456 0.8563 1.0140 0.0140 0.1718 0.9528 0.7063

400 1.1944 -0.0056 0.1468 0.9468 0.6080 0.9973 -0.0027 0.1226 0.9468 0.5021

800 1.1909 -0.0091 0.1052 0.9488 0.4356 0.9967 -0.0033 0.0878 0.9488 0.3607

β 25 0.1600 -0.0400 0.1253 0.8940 0.5016 0.1635 -0.0365 0.1425 0.9132 0.5677

50 0.1558 -0.0442 0.0803 0.8822 0.3540 0.1565 -0.0435 0.0827 0.8914 0.3546

75 0.1605 -0.0395 0.0702 0.8760 0.2937 0.1610 -0.0390 0.0706 0.8858 0.2981

100 0.1646 -0.0354 0.0638 0.8836 0.2581 0.1640 -0.0360 0.0631 0.8884 0.2613

200 0.1782 -0.0218 0.0470 0.9104 0.1858 0.1793 -0.0207 0.0464 0.9142 0.1876

400 0.1895 -0.0105 0.0314 0.9392 0.1291 0.1900 -0.0100 0.0321 0.9414 0.1316

800 0.1950 -0.0050 0.0219 0.9452 0.0902 0.1953 -0.0047 0.0224 0.9472 0.0914

θ 25 1.7827 1.4827 1.9319 0.9788 10.2716 1.8219 1.4219 1.8842 0.9794 10.4265

50 1.6338 1.3338 1.8923 0.9788 8.4984 1.6645 1.2645 1.8594 0.9824 8.5670

75 1.4764 1.1764 1.8148 0.9810 7.2930 1.5348 1.1348 1.7991 0.9778 7.3682

100 1.3709 1.0709 1.7215 0.9772 6.3903 1.4247 1.0247 1.6870 0.9782 6.4487

200 1.0276 0.7276 1.3219 0.9816 4.4662 1.0617 0.6617 1.2299 0.9854 4.4305

400 0.7053 0.4053 0.7313 0.9794 2.9341 0.7702 0.3702 0.7428 0.9798 2.9895

800 0.5335 0.2335 0.4320 0.9754 2.0481 0.5935 0.1935 0.4372 0.9488 2.0669

8. Application

In this section, we present an example to illustrate the flexibility of the DP distribution
and its sub-models for data modeling. Estimates of the parameters of DP distribution
(standard error in parentheses), Akaike Information Criterion (AIC), Bayesian Informa-
tion Criterion (BIC), sum of squares (SS) from the probability plots, Cramér-von Mises
and Andersen Darling goodness-of-fit statistics W ∗ and A∗ are presented for the data
set. The command NLP in SAS and nlm in R are used here.
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The table in the example contain the goodness-of-fit statistics W ∗ and A∗, and are
described by Chen and Balakrishnan (1995). These statistics can be used to verify which
distribution fits better to the data. In general, the smaller the values of W ∗ and A∗,
the better the fit. Let G(x; Θ) be the cdf, where the form of G is known but the k-
dimensional parameter vector, say Θ is unknown. We can obtain the statistics W ∗ and
A∗ as follows: (i) Compute ui = G(xi; Θ̂), where the xi’s are in ascending order; (ii)
Compute yi = Φ−1(ui), where Φ(.) is the standard normal cdf and Φ−1(.) its inverse; (iii)
Compute vi = Φ((yi − y)/sy), where y = n−1

∑n
i=1 yi and s2

y = (n− 1)−1
∑n

i=1(yi − y)2;
(iv) Calculate W 2 =

∑n
i=1{vi−(2i−1)/(2n)}2 +1/(12n) and A2 = −n−n−1

∑n
i=1{(2i−

1) log(vi) + (2n+ 1− 2i) log(1− vi)}; (v) Modify W 2 into W ∗ = W 2(1 + 0.5/n) and A2

into A∗ = A2(1 + 0.75/n+ 2.25/n2). In order to compare the models, we use the criteria
stated above. Note that for the value of the log-likelihood function at its maximum (`n),
larger value is good and preferred, for AIC, AICC and BIC, smaller values are preferred
and for the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics, smaller values
are preferred.

We also compared the DP distribution with other distributions including exponen-
tiated Weibull-Poisson (EWP) by Mahmoudi and Sepahdar (2013) and exponentiated
power Lindley Poisson (EPLP) by Pararai et al. (2014) distributions. The cdf of the
EWP distribution is given by

FEWP (x; δ, β, γ, θ) =

(
eθ(1−e

−(βx)γ )δ − 1

eθ − 1

)
, x > 0. (21)

The cdf and pdf of the EPLP distribution, denoted by EPLP(α, β, ω, θ) are given by

FEPLP (y;α, β, ω, θ) =
exp

{
θ
[
1−

(
1 + βyα

β+1

)
e−βy

α
]ω}
− 1

eθ − 1
, (22)

and

fEPLP (y;α, β, ω, θ) =
αβ2ωθ

(β + 1)(eθ − 1)
(1 + yα)yα−1e−βy

α

[
1−

(
1 +

βyα

β + 1

)
e−βy

α

]ω−1

× exp

{
θ

[
1−

(
1 +

βyα

β + 1

)
e−βy

α

]ω}
(23)

for x > 0, α > 0, β > 0, ω > 0, θ > 0, respectively.
Plots of the fitted densities and the histogram of the data are given in Figure 3. The

probability plots (Chambers et al., 1983) are also presented in Figure 4. For the proba-

bility plot, we plotted GDP (x(j); λ̂, δ̂, β̂, θ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j)

are the ordered values of the observed data. We also computed a measure of closeness of
each plot to the diagonal line. This measure of closeness is given by the sum of squares

SS =
∑n

j=1

[
GDP (x(j); λ̂, δ̂, β̂, θ̂)−

(
j − 0.375

n+ 0.25

)]2

.
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Table 6: Failure times data of Kevlar 49/epoxy strands with pressure at 90%

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07

0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20

0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40 0.42 0.43 0.52

0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73

0.79 0.79 0.80 0.80 0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01

1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33

1.34 1.40 1.43 1.45 1.50 1.51 1.52 1.53 1.54 1.54 1.55 1.58

1.60 1.63 1.64 1.80 1.80 1.81 2.02 2.05 2.14 2.17 2.33 3.03

3.03 3.34 4.20 4.69 7.89

8.1. Kevlar 49/Epoxy Strands Failure Times

This data set consists of 101 observations corresponding to the failure times of Kevlar
49/epoxy strands with pressure at 90%. The failure times in hours were originally given
in Barlow et al. (1984), Andrews and Herzberg (2012) and analyzed by Cooray and
Ananda (2008). The data is presented in Table 6.

Estimates of the parameters of the distributions, standard errors (in parentheses),
−2log-likelihood statistic, Akaike Information Criterion (AIC), Corrected Akaike Infor-
mation Criterion (AICC) and Bayesian Information Criterion (BIC) are given in the
table below. The results obtained from fitting the DP distribution and its sub-models
FP and BIIIP distributions and other alternatives including EWP and EPLP distri-
butions are presented for the data set. We also use the LR test to compare the DP
distribution and its sub-models.

The estimated variance-covariance matrix for the DP distribution is given by:
46.2099 3.8087 −0.1424 −4.3109

3.8087 0.4739 −0.0268 −0.1673

−0.1424 −0.0268 0.0036 −0.0296

−4.3109 −0.1673 −0.0296 1.1016


and the 95% two-sided asymptotic confidence intervals for λ, δ, β and θ are given by
7.2834± 13.3269, 3.3711± 1.3493, 0.2015± 0.11799, and 0.3744± 2.0572, respectively.

Plots of the fitted densities and the histogram, observed probability vs predicted
probability are given in Figures 3 and 4, respectively.

The LR test statistics of the hypothesis H0 : FP vs Ha : DP and H0 : BIIIP vs
Ha : DP are 61.31 (p-value < 0.0001) and 7.40 (p-value = 0.0065). The DP distribution
is significantly better than FP and BIIIP distributions. The DP distribution is also sig-
nificantly better than Fisk and Burr-III distributions. There is no difference between DP
and Dagum distribution based on the LR test, however the goodness of fit statistics W ∗
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Table 7: Estimates of Models for Kevlar Strands Failure Times Data
Estimates Statistics

Model λ δ β θ −2 log L AIC AICC BIC W ∗ A∗ SS

DP 7.2834 3.3711 0.2015 0.3744 200.09 208.09 208.51 218.55 0.0657 0.4632 0.0699

(6.7978) (0.6884) (0.0602) (1.0496)

FP 0.0108 0.6444 1.0000 39.4781 261.40 267.40 267.82 275.24 1.1126 6.0129 1.0084

(0.0015) (0.0455) - (4.09E-05)

BIIIP 1.0000 2.1278 0.3085 1.7423 207.48 213.48 213.90 221.33 0.2039 1.1841 0.2319

- (0.2470) (0.0920) (0.8605)

Dagum 9.0357 3.4267 0.2110 200.21 206.21 206.46 214.06 0.0742 0.4980 0.0809

(6.9969) (0.6904) (0.0548)

Fisk 0.6240 1.2705 1.0000 225.37 229.37 229.49 234.60 0.5654 3.0709 0.3893

(0.0850) (0.1069) -

c k

Burr III 1.1737 1.6327 217.10 221.10 221.22 226.33 0.4401 2.3866 0.4741

(0.0983) (0.1637)

α β ω θ

EPLP 0.7894 1.7952 0.9385 1.1684 204.44 212.44 212.86 222.90 0.1349 0.8141 0.1292

(0.2025) (0.6112) (0.3829) (1.2585)

δ β γ θ

EWP 0.8588 1.3030 0.8717 1.2662 204.62 212.62 213.03 223.08 0.1408 0.8415 0.1347

(0.3679) (0.7394) (0.2408) (1.2007)

and A∗ and the SS statistic from the probability plots clearly show that DP distribution
is better than Dagum distribution for the data. We also compared the DP distribution
to non-nested EWP and EPLP distributions using the AIC, AICC, BIC, W ∗, A∗ and
SS statistics. The model with the smallest value for each of the statistics will be the
best one to be used in fitting the data. When the DP distribution is compared to the
non-nested EWP and EPLP distributions, it is clear that it is superior based on the
AIC, AICC and BIC values. The DP distribution has the smallest goodness of fit statis-
tic W ∗ and A∗ values as well as the smallest SS value among all the models that were
fitted. Clearly, the DP model has points closer to the diagonal line corresponding to
the smallest SS value for the probability plots when compared to the non-nested EWP
and EPLP distributions. Hence, the DP distribution is the “best” fit for the data when
compared to all the other models that were considered.

9. Conclusion

A new class of generalized Dagum distribution called the Dagum-Poisson (DP) distribu-
tion is proposed and studied. The DP distribution has the Fisk or log-logistic Poisson,
Fisk or log-logistic, Burr III-Poisson, Burr III and Dagum distributions as special cases.
The DP distribution is flexible for modeling various types of lifetime and reliability data.
We also obtain closed form expressions for the moments, conditional moments, mean de-
viations, Lorenz and Bonferroni curves, distribution of order statistics and Rényi entropy.
Maximum likelihood estimation technique was used to estimate the model parameters.
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Figure 7: Fitted Densities for Kevlar Strands Failure Times Data

A simulation study was conducted to examine the bias and mean square error of the
maximum likelihood estimators. Finally, the DP model was fitted to a real data set in
order to illustrate the applicability and usefulness of the distribution.
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A. R Code: Simulations

l i b r a r y ( numDeriv )
l i b r a r y ( Matrix )

d e l t a =1.0
beta =0.2
lambda=3.5
theta =0.4

#Def ine the q u a n t i l e o f DP
q u a n t i l e=func t i on ( de l ta , beta , lambda , theta , u){
r e s u l t <−(((( l og (u∗( exp ( theta )−1)+1))/ theta )ˆ(−1/ beta )−1)/ lambda)ˆ(−1/ d e l t a )
}

DP LL<−f unc t i on ( par){−sum( log ( par [ 2 ] ∗ par [ 3 ] ∗ par [ 1 ] ∗ par [ 4 ]
∗( xˆ(−par [1 ]−1))∗((1+ par [ 3 ] ∗ xˆ(−par [1 ] ) )ˆ ( − par [2 ] −1))∗ exp ( par [ 4 ]
∗(1+par [ 3 ] ∗ xˆ(−par [1 ] ) )ˆ ( − par [ 2 ] ) ) / ( exp ( par [ 4 ] ) −1 ) ) )}

n1=c (25 ,50 ,75 ,100 ,200 ,400 ,800)
# I f you want to check one sample at a time then use n1<−c ( sample s i z e )

f o r ( j in 1 : l ength ( n1 ) ){
n=n1 [ j ]
N=5000
mle lambda<−c ( rep (0 ,N) )
mle beta<−c ( rep (0 ,N) )
mle de l ta<−c ( rep (0 ,N) )
mle theta<−c ( rep (0 ,N) )

LC lambda<−c ( rep (0 ,N) )
UC lambda<−c ( rep (0 ,N) )
LC beta<−c ( rep (0 ,N) )
UC beta<−c ( rep (0 ,N) )
LC delta<−c ( rep (0 ,N) )
UC delta<−c ( rep (0 ,N) )
LC theta<−c ( rep (0 ,N) )
UC theta<−c ( rep (0 ,N) )

count lambda=0
count beta=0
count de l t a=0
count theta=0
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temp=1
HH1<−matrix ( c ( rep ( 2 , 1 6 ) ) , nrow=4, nco l =4)
HH2<−matrix ( c ( rep ( 2 , 1 6 ) ) , nrow=4, nco l =4)
f o r ( i in 1 :N)
{
#pr in t ( i )
#f l u s h . conso l e ( )
repeat {
x<−c ( rep (0 , n ) )

#Generate a random v a r i a b l e from uniform d i s t r i b u t i o n
u<−0
u<−r u n i f (n , min=0,max=1)

f o r ( k in 1 : n){
x [ k]<−q u a n t i l e ( de l ta , beta , lambda , theta , u [ k ] )
}

#Maximum l i k e l i h o o d es t imat i on
mle . r e s u l t<−nlminb ( c ( de l ta , beta , lambda , theta ) ,DP LL , lower =0,upper=I n f )

temp=mle . r e su l t $ conve rg ence
i f ( temp==0){
temp lambda<−mle . r e s u l t $ p a r [ 3 ]
temp beta<−mle . r e s u l t $ p a r [ 2 ]
temp delta<−mle . r e s u l t $ p a r [ 1 ]
temp theta<−mle . r e s u l t $ p a r [ 4 ]

HH1<−hes s i an (DP LL , c ( temp delta , temp beta , temp lambda , temp theta ) )
i f ( ( rcond (HH1)>1e−8) & sum( i s . nan (HH1))==0 & ( diag (HH1) [1 ] >0)\\
& ( diag (HH1) [2 ] >0) & ( diag (HH1) [3 ] >0) & ( diag (HH1) [4 ] >0) ){

HH2<−s o l v e (HH1)
#pr in t ( det (HH1) )
}
e l s e {
temp=1}
}

i f ( ( temp==0) & ( diag (HH2) [1 ] >0) & ( diag (HH2) [2 ] >0)\\
& ( diag (HH2) [3 ] >0) & ( diag (HH2) [4 ] >0) & (sum( i s . nan (HH2))==0)){

break
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}
}
#pr in t ( temp )
temp=1
mle lambda [ i ]<−mle . r e s u l t $ p a r [ 3 ]
mle beta [ i ]<−mle . r e s u l t $ p a r [ 2 ]
m le de l ta [ i ]<−mle . r e s u l t $ p a r [ 1 ]
mle theta [ i ]<−mle . r e s u l t $ p a r [ 4 ]

HH<−hes s i an (DP LL , c ( mle de l ta [ i ] , mle beta [ i ] , mle lambda [ i ] , mle theta [ i ] ) )
H<−s o l v e (HH)
LC lambda [ i ]<−mle lambda [ i ]−1.96∗ s q r t ( diag (H) [ 3 ] )
UC lambda [ i ]<−mle lambda [ i ]+1.96∗ s q r t ( d iag (H) [ 3 ] )
i f ( ( LC lambda [ i ]<=lambda ) & ( lambda<=UC lambda [ i ] ) ) {
count lambda=count lambda+1
}

LC beta [ i ]<−mle beta [ i ]−1.96∗ s q r t ( diag (H) [ 2 ] )
UC beta [ i ]<−mle beta [ i ]+1.96∗ s q r t ( diag (H) [ 2 ] )
i f ( ( LC beta [ i ]<=beta ) & ( beta<=UC beta [ i ] ) ) {
count beta=count beta+1
}

LC delta [ i ]<−mle de l ta [ i ]−1.96∗ s q r t ( diag (H) [ 1 ] )
UC delta [ i ]<−mle de l ta [ i ]+1.96∗ s q r t ( diag (H) [ 1 ] )
i f ( ( LC delta [ i ]<=d e l t a ) & ( de l ta<=UC delta [ i ] ) ) {
count de l t a=count de l t a+1
}

LC theta [ i ]<−mle theta [ i ]−1.96∗ s q r t ( diag (H) [ 4 ] )
UC theta [ i ]<−mle theta [ i ]+1.96∗ s q r t ( diag (H) [ 4 ] )
i f ( ( LC theta [ i ]<=theta ) & ( theta<=UC theta [ i ] ) ) {
count theta=count theta+1
}
}

#Calcu la te Average Bias
Bias lambda<−sum( mle lambda−lambda )/N
Bias beta<−sum( mle beta−beta )/N
Bia s de l t a<−sum( mle de l ta−d e l t a )/N
Bias theta<−sum( mle theta−theta )/N

pr in t ( cbind ( Bias lambda , Bias beta , B ia s de l t a , B ia s the ta ) )
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#Calcu la te RMSE
RMSE lambda<−s q r t (sum ( ( lambda−mle lambda )ˆ2)/N)
RMSE beta<−s q r t (sum ( ( beta−mle beta )ˆ2)/N)
RMSE delta<−s q r t (sum ( ( de l ta−mle de l ta )ˆ2)/N)
RMSE theta<−s q r t (sum ( ( theta−mle theta )ˆ2)/N)
p r in t ( cbind (RMSE lambda , RMSE beta , RMSE delta , RMSE theta ) )

#Converge P r o b a b i l i t y
CP lambda<−count lambda /N
CP beta<−count beta /N
CP delta<−count de l t a /N
CP theta<−count theta /N
pr in t ( cbind ( CP lambda , CP beta , CP delta , CP theta ) )

#Average Width
AW lambda<−sum( abs (UC lambda−LC lambda ) )/N
AW beta<−sum( abs ( UC beta−LC beta ) )/N
AW delta<−sum( abs ( UC delta−LC delta ) )/N
AW theta<−sum( abs ( UC theta−LC theta ) )/N
pr in t ( cbind (AW lambda , AW beta , AW delta , AW theta ) )
}


