
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v7n2p292

Joint modeling of longitudinal CD4 cell counts
and time-to-default from HAART treatment: a
comparison of separate and joint models
By Seid A., Getie M., Birlie B., Getachew Y.

Published: 14 October 2014

This work is copyrighted by Università del Salento, and is licensed un-
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In HAART and other follow-up clinical trials, both longitudinal and survival
data are generated. Joint models are used to describe the joint behaviour
of such data. This study has discussed Bayesian joint modeling approaches
using a five years HAART data obtained from Jimma University Special-
ized Hospital HIV Outpatient Clinic, Ethiopia. The objective is to compare
separate and joint models of longitudinal CD4 cells counts and default time
processes of HIV/AIDS patients. A linear mixed effects model, assuming
homogenous and heterogenous CD4 variances, is used for modeling the CD4
counts and a Weibull survival model is used for describing the default times.
Then, both processes are linked using unobserved random effects through
the use of a shared parameter model. The analysis of both the separate
and the joint models reveal that the assumption of heterogenous (patient-
specific) CD4 variances brings a substantial improvement in the mode fit.
The parameter estimates of both the separate and joint models are consis-
tent. However, the joint model is parsimonious and fits the data better. The
final joint model relates the hazard of defaulting to two characteristics of the
repeated CD4 counts; patient-specific slopes and CD4 variability.
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1 Introduction

1.1 HAART

Highly active antiretroviral therapy (HAART) is a lifetime treatment given for HIV/AIDS
patients in order to suppress the progression of the disease. It is a combination of at least
three treatment regimens from two or more classes of antiretroviral drugs with different
mechanisms of action to treat the virus (Boskey, 2010).

Currently, because of the wide availability and free service of HAART, HIV/AIDS re-
lated morbidity and mortality has decreased significantly. But, the critical issue to the
success of HAART is retention to the treatment regime as HAART is a lifelong commit-
ment that requires patients to adhere diligently to daily medication, dosing schedules
and make frequent clinic visits for care.

Many patients are defaulting from HAART due to the regime side effects or due to their
poor health conditions like having small CD4 counts. For example, patients with serious
HIV disease may tend to die or withdraw from the treatment earlier compared to the
healthier patients, leading to fewer CD4 counts and to have sharper rates of CD4 decline
(Wu and Carroll, 1988; Hogan and Laird, 1997).

Patients who defaulted from HAART treatment will develop drug resistance virus and
ultimately results drug failure (Poppa et al., 2003). As a result, such defaulter patients
are at high risk of illness and death because of AIDS related conditions. Therefore,
defaulting remains a public health problem which needs to be addressed so that the
maximum benefit from HAART can be obtained.

1.2 Joint Models

Many clinical trials generate both longitudinal (repeated measures) and survival (time-
to-event) data. For example, in many medical studies, blood pressures are often collected
repeatedly over time and one may be interested in the time to recovery or recurrence of
a disease. In HAART treatment, the number of CD4 cell counts is measured repeatedly
over time and the time to event could be time to viral rebound, time to dropout, or time
to death, depending on the research objectives. Such time to event may be associated
with the longitudinal trajectories.

The association between the longitudinal and survival process can arise in two ways, one
is through common explanatory variables and the other is through stochastic dependence
between subject-specific random effects (Guo and Carlin, 2004). When association be-
tween the two processes exists, less biased and more efficient inferences will be obtained
by using joint model (Guo and Carlin, 2004) and unbiased statistical inferences are more
likely to be obtained via a joint model (Tsiatis et al., 1995; Wulfsohn and Tsiatis, 1997).
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A joint model consists of two submodels, which Henderson et al. (2000) referred to as
the measurement model for the longitudinal process, and the intensity model for the sur-
vival process, and a latent association function of the random effects in which the two
submodels are linked. Moreover, these two processes are assumed to be conditionally
independent given unobserved random effects (Wulfsohn and Tsiatis, 1997; Rizopoulos,
2010; Sousa, 2011).

The approach that this study has used to build a joint model is the simultaneous model-
ing of the longitudinal CD4 counts and the default time processes and linking them using
unobserved random effects through the use of a shared parameter model. The main focus
is on modeling the survival data; modeling the longitudinal data is secondary. In other
words, focus is given to the correct specification of the survival submodel of the shared
parameter joint model and the longitudinal submodel is simplified to reduce the num-
ber of nuisance parameters and avoid potential parameter non-identifiability (Wu, 2010).

The paper is organized as follows. Section 2 describes the materials and methods. The
basic findings of the study are presented and discussed in Section 3. Finally, concluding
remarks are provided in Section 4.

2 Materials and Methods

2.1 Description of the HAART Data

The HAART data used for this study were obtained from Jimma University Specialized
Hospital HIV Outpatient Clinic, South West of Ethiopia. The study population consists
of all HIV+ patients who were 18 years old and older, and started the HAART treat-
ment any time in between 1st January 2007 to 31st December 2011. Of the total 3500
registered patients at the hospital, only 1464 of them satisfy these inclusion criteria and
hence are included in study.

Both the longitudinal and survival data are extracted from the patient’s chart which con-
tains epidemiological, laboratory and clinical information of all patients under follow-up.
The two outcome variables considered in this study are defined as follows. The longitu-
dinal response variable is the number of CD4 cell counts per mm3 of blood which were
measured approximately every 6 months; at the study entry, and again at the 6-, 12-, 18-,
24-, 30-, 36-, 42-, 48- and 54-month visits (so that ni ≤ 10), hence a common measuring
(observation) time is used for all patients. The sample sizes at these ten time points are
(1464, 1108, 843, 563, 348, 184, 97, 34, 11, 3) which show a sharply increasing degree of
missing data over time due to deaths, dropouts, missed clinic visits and transferring to
other hospital. The average number of baseline CD4 counts is 197.79 per mm3 of blood
with standard deviation 171.66.

On the other hand, the survival endpoint of interest is defaulting from HAART treat-
ment. Defaulters are patients that did not come back at least one year after their last
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medical contact till the data was censored (31 December 2011) or patients that are away
for more than a year at anytime during the five years treatment period. A defaulter
could be as a result of death, transferring to other hospital and loss-to-follow. There-
fore, defaulting is assumed to be the outcome of interest for the survival analysis and
censoring is considered when the patient is still on the treatment. From our data, 329
(22.5%) patients were defaulted while the remaining 1135 (77.5%) patients were actively
following the treatment. The survival response, default time in months, is created by
subtracting the date of HAART entry from the date of the last visit (default date).
The estimated median defaulting time in the five years follow up time was about 97.69
months.

Also, seven potential explanatory variables were considered in this study. The descrip-
tions of these covariates are presented in Table 1 below.

Table 1: Covariates used in the Separate and Joint Analysis of the HAART Data

No. Variable Description

1. Gender 0 = Female, 1 = Male

2. Age Years

3. Weight Kilograms

4. Marital Status 0 = Never Married, 1 = Married, 2 = Others

5. Clinical Stage 1 = Stage I, 2 = Stage II, 3 = Stage III, 4 = Stage IV

6. Functional Status 0 = Working, 1 = Ambulatory, 2 = Bedridden

7. Education Level 0 = No Education, 1 = Primary, 2 = Secondary, 3 = Tertiary

Out of the total 1464 patients included in the study, 536 (36.65%) were male. More than
half of the patients 873 (59.63%) were married while 296 (20.22%) were never married
and 295 (20.15%) were in the other (divorced/widowed) group. Regarding the clinical
stage of patients, 347 (23.70%) were at clinical stage I, 514 (35.10%) at clinical stage
II, 497 (33.90%) at clinical stage III and the rest 106 (7.20%) were at clinical stage IV
when they started HAART. There were 1003 (68.51%) patients who were able to work,
404 (27.60%) ambulatory and 57 (3.89%) bedridden patients. Only 297 (20.29%) of the
patients were not educated while most of the patients have completed at least primary
education.

Regarding the two continuous covariates, the means of the baseline age and weight are
34.04 years and 51.90 kilograms with standard deviations 9.16 years and 10.24 kilograms,
respectively. These variables are standardized to have a mean 0 and variance 1 in the
remainder of this paper for facilitating parameter convergence. As such, their coefficients
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in the regression models represent the effect per one standard deviation change.

2.2 Methods of Data Analysis

2.2.1 Longitudinal Data Modeling

In the linear mixed effects model, the sequence of the longitudinal measurements yi1, ..., yini

for the ith subject at times si1, ..., sini is modeled as:

yi = µi(s) +W1i(s) + εi

= XT
1i(s)β1 +ZT

1i(s)bi + εi

bi ∼ N(0,Ψ), εi ∼ N(0, σ2
εI)

(1)

where y is an ni dimensional vector of observed responses, β1 is a p dimensional vector
of fixed effects, bi is a q dimensional vector of random effects, XT

1i(s) is a matrix of (size
n × p) fixed effects possibly time-varying covariates, ZT

1i(s) is a matrix of (size n × q
random effects covariates and εi is an ni dimensional vector of within group errors with
a Gaussian distribution.

In this model, µi(s) = XT
1i(s)β1 is the mean response and W1i(s) = ZT

1i(s)bi incorpo-
rates random effects. The term W1i(s) can be viewed as the true individual level CD4
trajectories after they have been adjusted for the overall mean trajectory and other
fixed effects. The random effects covariates, Z1i, is usually a subset of the fixed effects
covariates, X1i.

2.2.2 Survival Data Modeling

The Cox Proportional Hazards (PH) model is the most widely used semi-parametric
survival regression model in which the hazard at time t can be expressed as:

hi(t) = h0(t)µi(t)

= h0(t)exp(XT
2i(s)β2)

(2)

where h0(t) is the baseline hazard function,XT
2i(s) is a vector of (possibly time-dependent)

covariates and β2 is a vector of parameters of fixed effects.

The baseline hazard function, h0(t), corresponds to the reference levels for all covari-
ates (or it is the hazard when all covariates are zero). The vectors X2i and β2 may or
may not have elements in common with X1i and β1, respectively, in the longitudinal
model. In this model, no distributional assumption is made for the survival data, the

only assumption is that the hazards ratio ψ =
hi(t)

h0(t)
does not change over time (i.e.,

proportional hazards).

In addition to the Cox PH model, parametric survival models are also available. The
most common parametric model is the Weibull model, in which the survival time for
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the ith subject is assumed to follow a Weibull distribution, ti ∼Weibull(µi(t), ρ) where
µi(t) = exp(XT

2i(s)β2) and ρ > 0. The corresponding baseline hazard function is
given by h0(t) = λρt(ρ−1) where λ is the scale parameter and ρ is the shape parameter.
The hazard function for this distribution varies monotonically with time. The hazard
decreases with time if ρ is less than 1 and it increases with time if ρ is greater than 1. If
ρ equals 1, the hazard function is constant with time and is equivalent to an exponential
distribution with parameter λ. The general Weibull hazard model for the event intensity
(or hazard) at time t can be written as:

hi(t) = λρt(ρ−1)exp(XT
2i(s)β2) (3)

2.2.3 The Joint Models Structure

This study combines two joint modeling approaches proposed by Guo and Carlin (2004),
and Gao et al. (2011). Guo and Carlin (2004) investigated the approach proposed by
Henderson et al. (2000) from a Bayesian perspective and relying on Markov Chain Monte
Carlo (MCMC) algorithms. They add a frailty term to the survival submodel in order
to accommodate any effect that cannot be explained by the shared random effects. The
joint modeling approach proposed by Gao et al. (2011) directly relates the impact of
biomarker (longitudinal response) variability to the survival outcome.

The Longitudinal Submodel Specification

In most joint models studied in the past decade, longitudinal data are delineated by a
conventional linear mixed model assuming homogeneous within subject variance. How-
ever, such a homogeneity assumption automatically precludes the assessment of the
research question ”whether individuals with different levels of CD4 variability have dif-
ferent susceptibility to defaulting from HAART treatment”. Consequently, the joint
model proposed in this study combines both approaches; that is, it relates the variability
of longitudinal CD4 counts to defaulting and also adds a frailty to the survival submodel.

In the proposed model, the CD4 trajectory was described by both the conventional linear
mixed model (1) and by the linear mixed effects model that incorporates subject-specific
variances (Lyles et al., 1999).

yi = µi(s) +W1i(s) + εi

= XT
1i(s)β1 +ZT

1i(s)bi + εi

bi ∼ N(0,Ψ), εi ∼ N(0, ViI), log(Vi) ∼ N(µv, σ
2
v)

(4)

This model incorporates subject-specific variances, that is, the within group errors, εi,
may not have homogeneous variances. Thus, here, Vi represents the ”true” within-
subject variability which follows a log-normal distribution with mean µv and variance
σ2
v .
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The Survival Submodel Specification

As shown before, both of the separate and the joint models assume that the longitudinal
submodel has the form similar to the conventional linear mixed effects model (1), while
the survival model (3) in the joint model includes a latent association function W2i(t).
Thus, the survival submodel is specified in the form as:

hi(t) = h0(t)exp(XT
2i(s)β2 +W2i(t)) (5)

The form of the association function, W2i(t), is similar to W1i(s), including subject-
specific covariate effects and an intercept (often called a frailty). When W2i(t) = 0 , the
association induced is only via shared baseline covariates. Specifically, the joint model
links the linear mixed effects model (4) that incorporates subject-specific variance and
model (5) by taking:

W1i(s) = b0i + b1is+ b2is
2 (6)

and

W2i(t) = γ0b0i + γ1b1i + γ2b2i + γ3 log(Vi) + b3i (7)

The longitudinal model (6) is of the usual form as proposed by Laird and Ware (1982),
with each patient receiving random intercept, linear and quadratic slope terms. The
form in model (6) is quadratic in s, which is motivated while exploring the longitu-
dinal data. The parameters γ0, γ1, γ2 and γ3 in the survival model (7) measure the
association between the two submodels induced by the random intercepts, linear slope,
quadratic slope and the CD4 variability, respectively. As mentioned before, the triple
latent variables bT = (b0i, b1i, b2i)

T have a zero mean trivariate Gaussian distribution
N(0,Ψ), and the subject-specific variances Vi’s have a lognormal distribution distribu-
tion log Vi ∼ N(µv, σ

2
v) while the b3i’s are independent frailty terms, modeled as iid

N(0, σ2
3), independent of (b0i, b1i, b2i)

T .

2.2.4 Bayesian Estimation and Inference

The proposed joint models are estimated under a Bayesian framework using Markov
chain Monte Carlo (MCMC) methods with Gibbs sampling using the non-commercial
software WinBUGS (http://www.mrcbsu.cam.ac.uk/bugs/).

Given the random effects, the longitudinal process is assumed to be independent from the
event times. So that the full joint distribution of the longitudinal continuous response,
y, and time to event, T , can be specified in the form of:

f(y,T , δ|Θ1,Θ2) =

N∏
i=1

∫
f(y|Θ1,ηi)f(T , δ|y,Θ2,ηi)f(ηi)dηi

with the corresponding likelihood function being

L(y,T , δ|Θ1,Θ2) =
N∏
i=1

∫
f(y|Θ1,ηi)f(T , δ|y,Θ2,ηi)

δi(1− F (T , δ|y,ηi,Θ2)(1−δi)f(ηi)dηi
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where ηi = {bi, ViI} represents the shared underlying process, Θ1 = {β1,Ψ, µv, σ
2
v}

and Θ2 = {β2,γ, σ
2
3} are the population parameters as given in the mixed and survival

models respectively, f(.) and F (.) denote density and distribution functions, respectively.

For Bayesian analysis, inference is based on the posterior distribution given the observed
data. Baye’s theorem is used to construct the posterior distribution which is given as:

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

where f(θ|y) is the posterior distribution of θ, f(y|θ) is the likelihood and f(θ) is the
prior distribution of θ.

Hence, Bayesian analysis combines priors with the likelihood. In this paper, the choice of
priors is aided by Guo and Carlin (2004) paper. Specifically, in the longitudinal submodel
multivariate normal and inverse gamma priors are used for the main effects vector β1

and the error variance σ2
ε , respectively. Similarly normal and inverse gamma priors are

used for β2 and σ2
3 in the survival submodel. Finally, for the parameters common to both

models multivariate gamma are used and for the association parameters, γh’s, normal
priors are used.

2.2.5 Joint Model Selection

The precise nature of the two submodels (i.e., the exact form of W1i(s) and W2i(t) and
their association are selected via the DIC (Deviance Information Criterion); (Spiegelhal-
ter et al., 2002), a hierarchical modeling generalization of the AIC (Akaike Information
Criterion). The DIC approach mimics AIC by setting DIC = D̄ + pD. The first
term is the posterior expectation (mean) of the deviance function, D̄, and measures
the goodness-of-fit. The second term pD is the effective number of parameters and
measures model complexity. Since a smaller D̄ indicates a better fit and a smaller pD
indicates a parsimonious model, small value of the sum (DIC) indicates preferred model.

In general, the DIC facilitates an easy comparison among the various complex but
realistic models that do not need to be nested. For example, the DIC is used for
determining the random effects to be included in the longitudinal model and to select
the best model among several candidate joint models.

3 Results and Discussion

3.1 Results Using the Classical Models

In order to fully specify the mean responses, both the longitudinal and survival data are
analyzed separately using the classical models reviewed in sections 2.2.1 and 2.2.2.
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3.1.1 Separate Analysis of the Longitudinal Data

To check the normality of the longitudinal data, boxplots of the CD4 counts over time are
shown below in Figure 1. The left side of the plot shows a high degree of skewness toward
high CD4 counts, suggesting some transformation. After a square root transformation,
right side plot, the data attained normality.

Figure 1: Boxplots of the actual CD4 counts and the square root CD4 counts over time

Exploring the Mean Structure

To understand the possible relationships among the CD4 means over time, the plot of
the mean structure is shown in Figure 2. The circled points in the plot show the actual
CD4 means at each observation time. Since the data is not balanced, loess smoothing
technique is used instead.

The plot suggests that the mean of the square root CD4 profiles have a quadratic rela-
tionship over time. In other words, both the linear and quadratic time effects may be
included as fixed-effects in the longitudinal model.
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Figure 2: Loess smoothing plot of the mean of the square root CD4 counts over time

The Linear Mixed Effects Model Results

Taking advantage of the fact that the conventional linear mixed effects model (1) de-
scribed by Laird and Ware (1982); and the linear mixed effects model (4) that incorpo-
rates subject-specific (heterogeneous) variances, produce almost identical estimates for
fixed effects (Manatunga et al., 2005), initially, the repeated CD4 counts are analyzed
using model (1). These data analyses were conducted using R software to avoid intensive
computation of MCMC methods.

In many longitudinal studies, much of the systematic variation between subjects may be
explained by covariates such as age and gender (Wu, 2010). So, only Age and Gender are
included in the linear mixed effects models of this study. The results show that among
these two covariates, Gender is only statistically significant. Also the results reveal that
adding quadratic time can significantly improve the model fit (χ2 = 121.26, df = 1,
p < 0.001).

Let yij denote the square root of jth CD4 count of the ith patient at time sij , j =
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1, 2, ..., ni and i = 1, 2, ..., N . Hence, the linear random effects model for square root
CD4 counts is specified as:

yij = β10 + β11sij + β12s
2
ij + β13Gender + β14Age +W1i(sij) + εij (8)

where W1i(sij) = b10 + b11sij + b12s
2
ij . Here, W1i(sij) includes the random effects for

intercept, linear and quadratic time slopes, where the bT = (b0i, b1i, b2i)
T ∼ N(0,Ψ).

This specification allows different subjects to have different baseline CD4 counts, different
linear and quadratic time trends for CD4 counts during the treatment period.

Table 2: Posterior Means and 95% Credible Intervals for Population Parameters of the Conventional

Linear Mixed Effects Model (1) and for Model (4) that incorporates Patient-Specific Variances

Parameter
Without Patient-Specific Variances With Patient-Specific Variances

Posterior Mean 95% CI Posterior Mean 95% CI

Fixed Effects

Intercept 13.6100 ( 13.320, 13.910) 13.4500 (13.1600,13.73000)

T ime 0.4406 ( 0.4046, 0.4779) 0.4543 ( 0.4190, 0.49020)

T ime2 -0.0072 (-0.0089,-0.0054) -0.0076 (-0.0089,-0.00540)

GenderMale -1.2140 (-1.6790,-0.7492) -1.1690 (-1.6790,-0.74920)

Age 0.1427 (-0.0840, 0.3699) 0.1069 (-0.0840, 0.36990)

σ2
ε 13.20 (12.42, 14.01) - -

Random Effects

V ar(b0) 10.8700 ( 9.5930,12.2300) 10.1500 ( 9.5930, 12.2300)

V ar(b1) 0.0126 ( 0.0040, 0.0231) 0.0155 ( 0.0040, 0.0231)

V ar(b2) 0.0001 ( 0.00009, 0.00012) 0.0001 ( 0.00008, 0.00011)

µv - - 2.2910 (2.200, 2.381)

σ2
v - - 0.6586 (0.5287, 0.8064)

DIC 26622.7 25539.1

Table 2 presents the posterior means and 95% credible intervals for the population
parameters of two models; for the conventional linear mixed effects model and for the
model incorporating patient specific CD4 variances. Here the results of the two models
are quite similar to each other. In both models both the linear and quadratic time effects,
and Gender are statistically significant at 0.05 level of significance (in the Bayesian sense;
95% posterior credible interval excludes 0). The table also shows, the estimated subject-
specific variance is σ2

v = 0.6586 with 95% credible interval (0.5225,0.7965). Hence, it
supports the assumption of heterogeneous variance for the repeated CD4 counts. Also,
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the reduction in the DIC for the model incorporating subject-specific variances is an
evident that subject-specific CD4 variances must be considered in the analysis.

3.1.2 Separate Analysis of the Survival Data

Turning to the separate analysis of the survival data, the variables to be included in the
survival model are determined using an automatic variable selection method (stepAIC
in R). Regardless of the survival time distributions, of the seven covariates only two
of them (weight and marital status) were not significant. Four parameteric models
(Weibull, Exponential, Loglogistic and Lognormal) and also the Cox PH models were
explored and then compared using AIC in order to select the appropriate survival time
distribution. Then, the Loglogistic model was having the smallest AIC value but there
was not substantial difference (less than 5) with the AIC of the Weibull model. Thus,
we have decided to use the Weibull survival model because of two reasons; firstly, its
parameters are easily interpretable as compared to the other parametric models and
secondly, it is the only model having both a proportional hazards and accelerated failure
time properties.

Because none of the covariates are time-varying, the regression equation for the log-
relative hazard in the absence of random effects is:

log(µi) = β20 + β21Gender + β22Age

+ β23Stage I + β24Stage II + β25Stage II

+ β26Working + β27Ambulatory

+ β28No Education + β29Primary + β2,10Secondary

(9)

This is the parameterization used in WinBUGS for Weibull model. The Cox proportional
hazards model uses parameterization (9), except that the intercept is modeled as part
of the (nonparametric) baseline hazard. Parameter estimates of both the full Weibull
and Exponential models are very similar to each other, but the estimated Weibull shape
parameter ρ is 0.8131 with 95% CI (0.7391, 0.8897) which is significantly less than 1
indicating that default rate decreases over time. The estimated median defaulting time
is about 97.69 months with 95% CI (81.87, 116.57).

3.2 Results Using Joint Models

After the separate analysis of the data, two types of joint models with a variety of latent
processes are investigated. In the first type of joint models, the longitudinal submodel
of the joint model assumes homogenous variances (using model (1)) while in the second
type of joint models, the longitudinal submodel assumes heterogenous CD4 variances
(using model (4)). In other words, the longitudinal submodel is described by both the
usual linear mixed effects model and by the linear mixed effects model incorporating
patient-specific variances. On the other hand, the survival submodel is fitted using a
full Weibull distribution, and the two sub-models are linked via shared covariates and
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patient-specific random effects.

Hence, several joint models with and without incorporating subject-specific variances
and with a variety of latent processes are explored. In all cases, the results are based
on three parallel MCMC sampling chains of 50,000 iterations each, following a 25,000
iteration burn-in period. Each model required approximately 3-4 hours when using 3
parallel chains with different starting values.

By default, WinBUGS provides the components of DIC for the two submodels (that is,
the terms in the loglikelihood arising from longitudinal and survival model components)
to evaluate their relative contributions to the total DIC score; hence the DIC for the
longitudinal and survival submodels are denoted as DIC1 and DIC2, respectively.

3.2.1 Joint Models With Homogenous Within-Patient CD4 Variances

Table 3 below reports D̄, pD and DIC scores for thirteen joint models with different
random effects and different forms of the latent processes W1(s) and W2(t) . In these
models, the longitudinal submodel is described by the conventional linear mixed effects
model (1) which assumes homogenous patient-specific CD4 variances.

As joint modeling starts with simple model, first, a simple joint model (Model I) is fitted
with no random effects in the two submodels. This model has extremely large (poor)
total DIC score. In Model II, a frailty term b3 is added in the survival submodel, W2(t),
and this does seem to improve the total DIC. A similar relationship exists between
Models III and IV, and Models V and VI. In these cases in which the models differ only
in the addition of the frailty term b3, the frailty term brings an improvement, that is,
the frailty term decreases the total DIC score of the joint model. As such, the frailty
term b3 is considered in subsequent models.

In Model III and IV, random intercepts are allowed in the longitudinal submodel, W1(s),
which results in a dramatic improvement in DIC1, but the total DIC score for the joint
model is worth it if the frailty term is not included.

Next, the association between W1(s) and W2(t) is introduced through the common ran-
dom intercept b0 in Model V, which leads to a substantial decrease in DIC for both
submodels, and hence the total DIC for the joint model when the frailty term is added.
Models VII-XIII further allow both random intercepts and slopes in the longitudinal
submodel, and introduce association between the two submodels in different ways. For
example, Model IX introduce the association between the two submodels through ran-
dom intercepts, Model XI through random slopes, Model XIII through both random
intercepts and slopes with frailty term. The introduction of both the random intercepts
and slopes in the longitudinal submodel substantially decreases DIC1 but does not seem
to improve the total DIC except for Model XII when the association is induced due to
the linear time slopes, b1, and a frailty term is added.
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Table 3: Model Selection for thirteen candidate Joint Models when the Conventional Linear Mixed

Effects Model (1) is used for the Longitudinal Submodel, and a Weibull Survival Model is

used for the Survival Submodel

Model W1(s) W2(t) DIC1 DIC2 D̄ pD DIC

No random effects

I 0 0 28326.8 3694.69 32000.7 20.8360 32021.5

II 0 b3 28326.7 2196.17 30069.0 453.911 30522.9

Random intercepts

III b0 0 26910.4 3694.88 29672.4 932.942 30605.3

IV b0 b3 26909.7 2137.06 27668.6 1378.17 29046.7

V b0 γ0b0 26882.4 3649.45 29581.8 950.053 30531.8

VI b0 γ0b0 + b3 26909.3 2120.71 27634.0 1395.98 29030.0

Random intercepts and slopes

VII b0 + b1s 0 26381.5 3695.10 28805.8 1270.77 30076.6

VIII b0 + b1s b3 26383.2 3106.02 27971.4 1517.78 29489.2

IX b0 + b1s γ0b0 26349.9 3649.37 28714.4 1284.84 29999.2

X b0 + b1s γ0b0 + b3 26358.4 2832.34 27607.5 1583.25 29190.7

XI b0 + b1s γ1b1 26399.1 3584.85 28706.3 1277.63 29983.9

XII b0 + b1s γ1b1 + b3 26378.9 2005.25 26783.4 1600.78 28384.2

XIII b0 + b1s γ0b0 + γ1b1 + b3 26619.7 3694.97 28719.3 1595.31 30314.7

Therefore, among these candidate joint models when the conventional linear mixed ef-
fects model is used for the longitudinal submodel, Model XII seems to be good as it has
the smallest total DIC score. But, on the contrary the model has the largest effective
number of parameters (largest complexity) as compared to the other models. Under this
model, it appears that a patients survival is related to only the rate of CD4 increase.

3.2.2 Joint Models Incorporating Patient-Specific CD4 Variances

Similar to Table 3, Table 4 also reports D̄, pD and DIC score for a variety of joint
models, where the linear mixed effects model that incorporates patient-specific CD4
variability is used for the longitudinal submodel. These joint models relate the variabil-
ity of longitudinal CD4 counts to defaulting. Such approach is relatively straightforward
to interpret, that is, if the proportional hazards assumption is holding, for example, the
effect of the longitudinal response variability on survival outcome can be readily quan-
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tified as hazard ratio (Gao et al., 2011).

Like the previous case, a simple joint model (Model XIV) with no random effects is fitted
first, which has a large (poor) total DIC. But, the incorporation of subject-specific CD4
variances in the longitudinal submodel improves DIC1 and also the total DIC when it
is compared with Model I which does not take into account the patient-specific CD4
variability. Also in Model XV, the addition of a frailty term b3 in W2(t) improves DIC2

as well as the total DIC. Next, random intercepts are introduced in the longitudinal
submodel.

Models XVI-XX allow random intercepts in W1(s), which results in a dramatic improve-
ment in DIC1 for the longitudinal submodel and the total DIC scores. Then, different
latent associations through the random intercepts b0, and random variances are intro-
duced. Models XXI-XXX have both random intercepts and slopes in the longitudinal
submodel which results in a substantial decrement in DIC1.

Generally, Model XXVII emerges with the smallest effective number of parameters (less
complex or more parsimonious model) among the models that introduce association due
to random effects and also it has the smallest total DIC (fits the data well) among
all other models. Thus, Model XXVII is selected as a good model among models which
incorporate patient-specific CD4 variability. Under this model, it appears that a patients
survival is related to two characteristics of driving the patients longitudinal data pattern,
namely the rate of CD4 increase and its variability. This is clinically reasonable, since
an increase in the CD4 count represents better health status and hence patients are not
likely to default from the therapy; and patients with more fluctuation of CD4 would be
expected to have poorer survival.

3.3 Comparison of Separate and Joint Models

After selecting the final joint model, the results should be compared with the separate
(i.e., ignoring any latent association introduced by W2) model. In all of the cases, the
models which incorporate the patient-specific CD4 variability have smaller total DIC
scores than those models which do not assume homogenous CD4 variability. Therefore,
both the separate and the joint model to be compared incorporate patient-specific CD4
variability. That is, both the separate and joint models assume the longitudinal submodel
has form (4), while the survival model now takes the form:

log(µi) = β20 + β21Gender + β22Age

+ β23Stage I + β24Stage II + β25Stage II

+ β26Working + β27Ambulatory

+ β28No Education + β29Primary + β2,10Secondary

+W2i(t)

(10)
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Table 4: Model Selection for seventeen candidate Joint Models when the Linear Mixed Effects Model

(4) that incorporates Patient-Specific Variances is used for the Longitudinal Submodel and a

Weibull Model is used for the Survival Submodel

Model W1(s) W2(t) DIC1 DIC2 D̄ pD DIC

No random effects

XIV 0 0 27760.1 3694.56 30958.9 495.724 31454.6

XV 0 b3 27761.7 2101.56 28973.0 890.346 29863.3

Random intercepts

XVI b0 0 26076.0 3695.27 28476.1 1295.25 29771.3

XVII b0 b3 26074.2 2136.27 26549.2 1661.25 28210.5

XVIII b0 γ0b0 26074.2 2136.27 26549.2 1661.25 28210.5

XIX b0 γ0b0 + b3 26039.0 2661.10 26546.8 1653.31 28200.1

XX b0 γ3 log(V ) + b3 26097.3 2332.21 26786.0 1643.51 28429.6

Random intercepts and slopes

XXI b0 + b1s 0 25417.7 3694.77 27533.1 1579.39 29112.5

XXII b0 + b1s b3 25423.4 2221.28 25672.3 1972.37 27644.7

XXIII b0 + b1s γ0b0 + b3 25379.5 2375.30 25786.8 1967.99 27754.8

XXIV b0 + b1s γ1b1 25424.2 3654.70 27466.9 1612.00 29078.9

XXV b0 + b1s γ1b1 + b3 25416.9 2500.17 25980.9 1936.20 27917.1

XXVI b0 + b1s γ3 log(V ) + b3 26061.3 976.737 26359.0 679.055 27038.0

XXVII b0 + b1s γ1b1 + γ3 log(V ) 25492.2 1474.21 25717.7 1248.74 26966.4

XXVIII b0 + b1s γ0b0 + γ1b1 25410.7 3299.88 27299.7 1410.80 28710.5

XXIX b0 + b1s γ0b0 + γ1b1 + b3 25377.0 2228.88 25669.8 1936.08 27605.9

XXX b0 + b1s γ0b0 + γ1b1 + γ3 log(V ) + b3 25395.9 2347.29 25790.6 1952.66 27743.2
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where

W2i(t) =

{
0, (Separate)

γ1b1 + γ3 log(V ), (Joint)

The posterior estimates of the regression coefficients β1 and β2 together with their 95%
confidence intervals are summarized below in Table 5. Here, the results from the sepa-
rate and joint analyses are quite similar to each other.

In the longitudinal submodel, both the linear and quadratic time effects and Gender are
statistically significant at 0.05 level of significance whereas Age is significant in neither
the separate nor the joint model. Turning to the survival submodel of the joint model,
all covariates included are significantly associated with the hazard of defaulting. But,
Clinical Stage is not significant in the separate model. Also, the estimated shape param-
eter of the Weibull distribution ρ is significantly less than 1 in both analyses indicating
the rate of defaulting decreases over time.

The parameter estimates of the separate and joint models are quite similar to each other
but not identical. However, the posterior estimates of the association parameters in the
joint analysis are significantly different from zero, providing strong evidence of associa-
tion between the two submodels. The estimate of the association parameter due to the
slope (trend) of CD4 is negative (γ1 = −3.836). This means that the slope of CD4 count
is negatively associated with the hazard of defaulting. On the other hand, the estimate
of the association parameter due to the CD4 variability is positive (γ3 = 0.5077) indi-
cating that the higher CD4 fluctuation is associated with the higher hazard of defaulting.

In general, the joint model is preferred as it has a smaller total DIC than the separate
model. Also, the statistical significance of both the association parameters is also an-
other evidence that the joint model is better than the separate models.

To check the convergence of this final joint model, time series plot of the history of
iterations is used. The plot (not shown here) shows a reasonable degree of randomness
between iterations indicating that Gibbs Sampler has converged to the target density.
The estimated hazard ratios (HRs) and 95% posterior credible intervals for the survival
submodel of this joint model are presented in Table 6.

4 Conclusions

In this study, a full Bayesian approach to jointly model the CD4 fluctuations of HIV/AIDS
patients under HAART follow-up and time-to-default from the treatment is discussed.
The results of both the separate and joint analyses are consistent. However, the joint
model is the simplest model compared to the separate model as its effective number of
parameters is smaller. In other words, this reduction in the effective number of param-
eters ensures that the joint model is more parsimonious (less complex). Also, the joint
model has much smaller posterior mean of the deviance function which indicates that
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Table 5: Comparison of the Separate and Joint Models of Longitudinal CD4 Counts and Time-to-

Default from HAART Treatment

Parameter
Separate Models Joint Model

Posterior Mean 95% CI Posterior Mean 95% CI

Longitudinal Submodel

Fixed Effects

Intercept 13.5100 (13.220,13.8000) 13.5500 ( 13.270, 13.840)

T ime 0.4354 ( 0.4051, 0.4665) 0.4276 ( 0.3942, 0.4594)

T ime2 -0.0068 (-0.0078,-0.0058) -0.0068 (-0.0078,-0.0058)

GenderMale -1.1990 (-1.6500,-0.7496) -1.1920 (-1.6320,-0.7327)

Age 0.1014 (-0.1181, 0.3247) 0.1136 (-0.1030, 0.3270)

Random Effects

V ar(b0) 10.0900 ( 8.8430,11.4200) 9.8530 ( 8.5920, 11.200)

V ar(b1) 0.0228 ( 0.0178, 0.0285) 0.0236 ( 0.0183, 0.0295)

V ar(b2) 0.0001 ( 0.00009, 0.00012) 0.0001 ( 0.00008, 0.00011)

µv 2.2990 ( 2.2150, 2.3830) 2.3450 ( 2.2560, 2.4280)

σ2
v 0.6538 ( 0.5259, 0.7927) 0.6360 ( 0.5026, 0.7705)

Survival Submodel

Fixed Effects

Intercept -3.4750 (-4.1390,-2.7970) -4.8350 (-6.0300,-3.7940)

GenderMale 0.5301 ( 0.2913, 0.7673) 0.5641 ( 0.0315, 0.8189)

Age -0.2827 (-0.4115,-0.1568) -0.3144 (-0.4587,-0.1741)

Clinical Stage

StageI -0.4904 (-0.9570, 0.0114) -0.6294 (-1.1470,-0.1006)

StageII -0.3452 (-0.7607, 0.1215) -0.3545 (-0.8162, 0.1334)

StageIII -0.3209 (-0.7162, 0.1230) -0.3618 (-0.8067, 0.1089)

StageIV - - - -

Functional Status

Working -0.9630 (-1.3840,-0.5264) -1.1050 (-1.5960,-0.6093)

Ambulatory -0.6416 (-1.0540,-0.2097) -0.7355 (-1.2160,-0.2493)

Bedridden - - - -

Education Level

NoEducation 0.4984 ( 0.0459, 0.9785) 0.4803 ( 0.0169, 0.9637)

Primary 0.4193 (-0.0053, 0.8854) 0.4008 (-0.2839, 0.8613)

Secondary 0.1537 (-0.2833, 0.6338) 0.1374 (-0.3164, 0.6140)

Tertiary - - - -

γ1 - - -3.8360 (-6.5180,-1.4760)

γ3 - - 0.5077 ( 0.2238, 0.8506)

ρ 0.8136 ( 0.7377, 0.8895) 0.8668 ( 0.7789, 0.9690)
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Table 6: Posterior Means and Hazard Ratio Estimates with corresponding 95% Credible Intervals for

Parameters of the Survival Submodel of the Final Joint Model

Parameter
Parameter Estimates HR Estimates

Posterior Mean 95% CI HR 95% CI

Intercept -4.8350 (-6.0300,-3.7940) 0.0079 (0.0024, 0.0225)

GenderMale 0.5641 ( 0.0315, 0.8189) 1.7579 (1.3703, 2.2680)

Age -0.3144 (-0.4587,-0.1741) 0.7302 (0.6321, 0.8402)

Clinical Stage

StageI -0.6294 (-1.1470,-0.1006) 0.5329 (0.3176, 0.9043)

StageII -0.3545 (-0.8162, 0.1334) 0.7015 (0.4421, 1.1427)

StageIII -0.3618 (-0.8067, 0.1089) 0.6964 (0.4463, 1.1150)

StageIV - - - -

Functional Status

Working -1.1050 (-1.5960,-0.6093) 0.3312 (0.2027, 0.5437)

Ambulatory -0.7355 (-1.2160,-0.2493) 0.4793 (0.2964, 0.7793)

Bedridden - - - -

Education Level

NoEducation 0.4803 ( 0.0169, 0.9637) 1.6166 (1.0170, 2.6214)

Primary 0.4008 (-0.2839, 0.8613) 1.4930 (0.9655, 2.3662)

Secondary 0.1374 (-0.3164, 0.6140) 1.1473 (0.7288, 1.8478)

Tertiary - - - -

γ1 -3.8360 (-6.5180,-1.4760) 0.0216 (0.0015, 0.2286)

γ3 0.5077 ( 0.2238, 0.8506) 1.6615 (1.2508, 2.3411)
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it fits the data better than the separate model. Hence, the joint model is not only the
simplest model, but also provides a better fit to the data.

Separate analysis of the longitudinal CD4 counts and also the joint model analysis prove
that incorporation of patient-specific CD4 variances brings a significant improvement
in the mode fit. Specifically, the assumption of heterogeneous CD4 variances among
patients results a reduction in both the effective number of parameters and the posterior
mean of the deviance function of the model.

All the covariates; Gender, Age, Clinical Stage, Functional Status and Education Level,
included in the survival submodel of the joint model are found to be significantly as-
sociated with defaulting. In additon, the results show that the patients survival in the
HAART treatment is associated with patient-specific CD4 fluctuations such that a pa-
tient with higher CD4 trend is less likely to default from the treatment and an individual
with higher CD4 variability is more likely to default than an individual with smaller CD4
variability.
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WinBUGS Codes for Selected Models

The Separate Model - Model XXI

model{

for (i in 1:N) {

for (j in 1:M) {

mu.CD4[i,j] <- beta1[1]+beta1[2]*ss[j]+beta1[3]*s2[j]+

beta1[4]*sex[i]+ beta1[5]*age[i]+b0.i[i]+

b1.i[i]*ss[j]

CD4[i,j] ~ dnorm(mu.CD4[i,j], tau.vi[i])

}

log(mu.surv[i])<- beta2[1]+beta2[2]*sex[i]+beta2[3]*age[i]+

beta2[4]*st1[i]+beta2[5]*st2[i]+beta2[6]*st3[i]+

beta2[7]*wor[i]+beta2[8]*amb[i]+

beta2[9]*noe[i]+beta2[10]*pri[i]+

beta2[11]*sec[i]

sur.t[i] ~ dweib(p,mu.surv[i])I(cen.t[i],)

tau.vi[i] <- 1/exp(log.vi[i])

log.vi[i] ~ dnorm(mu.v, tau.v)

b0.i[i]~dnorm(0,tau.b0)

b1.i[i]~dnorm(0,tau.b1)

}

var.v <- 1/tau.v

var.b0 <- 1/tau.b0

var.b1 <- 1/tau.b1

p~dgamma(1,1) # Full Weibull Model

# p <-1 # Use this for Exponential Model

# Priors

for(k in 1:5){ beta1[k] ~ dnorm(0, 0.01)}

for (h in 1:11) { beta2[h] ~ dnorm(0,0.01) }

mu.v ~ dnorm(0,0.01)

r0 ~ dnorm(0,0.01)

tau.v ~ dgamma(0.1, 0.1)

tau.b0 ~ dgamma(0.1, 0.1)

tau.b1 ~ dgamma(0.1, 0.1)

}

The Final Joint Model - Model XXVII
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model{

for (i in 1:N) {

for (j in 1:M) {

mu.CD4[i,j] <- beta1[1]+beta1[2]*ss[j]+beta1[3]*s2[j]+

beta1[4]*sex[i]+ beta1[5]*age[i]+b0.i[i]+

b1.i[i]*ss[j]

CD4[i,j] ~ dnorm(mu.CD4[i,j], tau.vi[i])

}

log(mu.surv[i])<- beta2[1]+beta2[2]*sex[i]+beta2[3]*age[i]+

beta2[4]*st1[i]+beta2[5]*st2[i]+beta2[6]*st3[i]+

beta2[7]*wor[i]+beta2[8]*amb[i]+

beta2[9]*noe[i]+beta2[10]*pri[i]+

beta2[11]*sec[i]+r1*b1.i[i]+r3*log.vi[i]

sur.t[i] ~ dweib(p,mu.surv[i])I(cen.t[i],)

tau.vi[i] <- 1/exp(log.vi[i])

log.vi[i] ~ dnorm(mu.v, tau.v)

b0.i[i]~dnorm(0,tau.b0)

b1.i[i]~dnorm(0,tau.b1)

}

var.v <- 1/tau.v

var.b0 <- 1/tau.b0

var.b1 <- 1/tau.b1

p~dgamma(1,1) # Full Weibull Model

# p <-1 # Use this for Exponential Model

# Priors

for(k in 1:5){ beta1[k] ~ dnorm(0, 0.01)}

for (h in 1:11) { beta2[h] ~ dnorm(0,0.01) }

mu.v ~ dnorm(0,0.01)

r1 ~ dnorm(0,0.01)

r3 ~ dnorm(0,0.01)

tau.v ~ dgamma(0.1, 0.1)

tau.b0 ~ dgamma(0.1, 0.1)

tau.b1 ~ dgamma(0.1, 0.1)

}


