Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index
e-ISSN: 2070-5948

DOLI: 10.1285/i20705948v7n1p153

Identification of Multicollinearity and it’s effect
in Model selection
By Jayakumar and Sulthan

April 26, 2014

This work is copyrighted by Universita del Salento, and is licensed un-
der a Creative Commons Attribuzione - Non commerciale - Non opere derivate
3.0 Italia License.

For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/




Electronic Journal of Applied Statistical Analysis
Vol. 7, Issue 1, 2014, 153-179
DOI: 10.1285/i20705948v7n1p153

Identification of Multicollinearity and
it’s effect in Model selection

D.S. Jayakumar * and A. Sulthan

Jamal Institute of Management, Tiruchirappalli, India

April 26, 2014

Multicollinearity is the problem experienced by statisticians while evalu-
ating a sample regression model. This paper explored the relationship be-
tween the sample variance inflation factor (vif) and F-ratio, based on this
we proposed an exact F-test for the identification of multicollinearity and it
overcomes the traditional procedures of rule of thumb. The authors criti-
cally identified that the variance inflation factor not only inflates the vari-
ance of the estimated regression coefficient and it also inflates the residual
error variance of a given fitted regression model in various level of inflation.
Moreover, we also found a link between the problem of multicollinearity and
its impact on the model selection decision. For this, the authors proposed
multicollinearity corrected version of generalized information criteria which
incorporates the effect of multicollinearity and help the statisticians to select
a best model among the various competing models. This procedure numer-
ically illustrated by fitting 12 different types of stepwise regression models
based on 44 independent variables in a BSQ (Bank service Quality) study.
Finally.the study result shows the transition in model selection after the cor-
rection of multicollinearity effect.

keywords: Multicollinearity, variance inflation factor, Error-variance, F-
test, Generalized Information criteria, multicollinearity penalization.

1 Introduction and Related work

In the process of fitting regression model, when one independent variable is nearly com-
bination of other independent variables, there will affect parameter estimates. This
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problem is called multicollinearity. Basically, multicollinearity is not a violation of the
assumptions of regression but it may cause serious difficulties Neter et al (1989) (1)
variances of parameter estimates may be unreasonably large, (2) parameter estimates
may not be significant, (3) a parameter estimate may have a sign different from what
is expected and so on Efron (2004). For solving or alleviating this problem in cer-
tain regression model, the usually best way is dropping redundant variables from this
model directly, that is to try to avoid it by not including redundant variables in the
regression model Bowerman et al (1993). But sometimes, it is hard to decide the re-
dundant variables. Another alternative to deleting variables is to perform a principal
component analysis Maddala (1977). With principal component regression, we create
a set of artificial uncorrelated variables that can then be used in the regression model.
Although principal component variables are dropped from the model, when the model
is transformed back, it will cause other biases too Draper and Smith (1981) Srivas-
tava (2002).The transformation of the independent variables and the methods applicable
to overcome the multicollinearity problem discussed above purely depends on the exact
identification of the problem. In this paper, the effect identification of the multicollinear-
ity problem is discussed in a separate section and how it misleads the statisticians to
select a regression model based on the information criteria are visualized in the next
section.

2 Inflation of error variance

Consider an estimated sample regression model with a single dependent variable (y;)
with p regressors namely x1;, T2;, £3;, ...Tp; 1S given as

p
yi=a+ Y Biwji+ & (1)
j=1

where a is the estimated Intercept, B\] is the estimated beta co-efficients or partial
regression co-efficients and é; is the estimated residual followed normal distribution N
(0,02).From (1), the sample regression model should satisfy the assumptions of normality,
homoscedasticity of the error variance and the serial independence property. Though
the model satisfying all the assumptions, still it has to be evaluated. The authors more
particularly focused on the multicollinearity and its effects leads the strong inter causal
effect among the independent variables. For the past 5 decades, statisticians believe
that the impact of this multicollinearity problem severely inflates the variance of the
estimated regression co-efficients. This creates greater instability and inconsistency in
the estimated co-efficients. Besides this, we identified a remarkable and astonishing
problem due to the multicollinearity and it will be mathematically identified below.
Consider the variance of the estimated regression co-efficient as

2
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Where s2is the unbiased estimate of the error variance, 3:2%, is the variance of the x;
independent variable (j=1,2,3...p) and 1/1 — R2 is technically called as variance infla-
tion factor (vif). The term 1 — RQ, is the unexplamed variation in the x; independent
variable due to the same mdependent variables other than x;.More specifically, statisti-
cians named the term as Tolerance and inverse of the Tolerance is said to be the VIF.By
using the fact s2 = (n/n — k)52 Rewrite (2) as

=2

9 n o;

0% = ) 3
Bi (n—l)(n—k)s%j<1—R%j ®)
~2 _ n ~2
JE; - (n _ 1)<n _ k)82 TINF(e;) (4)

zj
From (3), the error variance (52) of the given regression model plays a mediating role

between the variance of estimated regression co-efficients (’a\%) and the VIF. Instead of
J

analyzing the inflation of variance of estimated regression co-efficients ((TB\) the authors

only focused on the inflated part of the error variance due to the impact of multicollinear-
ity as from (4). From (4) 52, Fley) is the inflated error variance which is inflated by the

(VIF); is equal to

2 Ch
OINF(e;) = 1= RZ (5)
> (&/\/1—R2)?
~ i=1
U%NF(eJ) = n (6)
Zl(GINF(e]Z))
~2 i=
OINF(ej) = (7)

n
From (5), the inflated error variance E%NF(ej) which is always greater than or equal

to the uninflated error variance 2 where (5%, Fle;) 2 o2).If R:%j is equal to 0, then both
J

the variances are equal, there is no multicollinearity. Similarly, If the Rg%j is equal to 1,
then the error variance severely inflated and raise upto 8 and this shows the existence of
severe multicollinearity. In the same manner, if 0<R§j<1, then there will be a chance
of inflation in the error variance of the regression model. Likewise, from (6) and (7), the
estimated errors €; are also inflated by the /(VIF'); and it is transformed as estimated
inflated residuals €7 F(e;;)- 1f the estimated errors and error variance are inflated, then
the forecasting performance of the model will decline and this leads to take inappropriate
and illogic model selection decision. From the above discussion, the authors proved the
problem of multicollinearity not only inflates the variance of estimated regression co-
efficients but also inflates the error variance of the regression model. In order to find the
statistical equahty between the inflated error variance 01 NF(e )and the uninflated error

variance 52, the authors proposed an F-test by finding the link between sample vif and
F-ratio. The methodology of applying the test statistic is discussed in the next section.
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3 Testing the Inflation of error variance

For the purpose of testing the statistical equality between sample 52 and&% NF(e;) first,
the authors derived the test statistic by re-writing (5) as the basis and it is given as

~2
1 _ TINF(e;) (8)
1— R;%j o2

o —

o2 _
(vif); = <L) (9)

2
O¢

From (8) and (9), it has been modified as

2 =2
R, _ JINF(e)) 1 (10)
1-RZ o2
R2
— T (vif), — 1 (11)
" R2
1-R2 j

From (11), we using the fact(sst); = (ssr); + (Sse)j,Rij = (ss1);/(sst);,1 — R?U]_ =
(sse)j/(sst);, rewrite (11) as

(ss1); vif)s —
(SS@)j_( f)] 1 (12)

Where ssr, sse, sst refers to the sample sum of squares of regression, error and the
total respectively. Based on (12), it can be rewritten as in terms of the sample mean

squares of regression (s2) and error (s2) as
2

qSTJ’ .
— = ((vif); — 1 13
(n_q_ 1)ng (( )] ) ( )
From (13), multiply both sides by the population mean square ratiosagj / crfj, we get

2 /2 2

qsrj /arj Oe; .
= (5 )((vif); — 1) (14)
(n —q— 1)82],/0'2], 0-%]' ’

From (14), the ratios qsg]_ / 03]_ and (n—q—l)sg]_ / Ugj are followed chi-square distribution

with ¢ and n-¢-1 degrees of freedom (where ¢ is the no.of independent variables in the
q

auxiliary regression modelx; = g + Y iz + €5, # k) and they are independent.

k=1
The independency of the ratios are based on least square property ifr;; = Z;; + eji,

then Zj;and ej; are independent and the respective sum of squares are equal to(sst); =
(ssr)j + (sse)j.without loss of generality, (14) can be written as in terms of the F-ratio
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and it is defined as the ratio between the two independent chi-square variates divided
by the respective degrees of freedom and is given as

2 n—q—1)02
i —/Z —1 | = i)y - 1) (15)
Fj(q,nqul) = (7)((”#)] - 1)(07) ~ F(q,n—q—l) (16)

From (16), the population variance ratios agj / afj can be written in terms of the pop-
ulation VIF by combining the ratios O'gj / sz and (12) can be given as

2

lops

= (VIF);—1 (17)
€j
2

p 1

L = (18)
02j (VIF); —1

Then, substitute (18) in (16), we get the final version of the F-ratio of the jth inde-
pendent variable using in the regression model as

o (n—q—1) (vif);~1

Jjlgn—q-1) = q ((VIF)j _ 1) ~ F(Q»n*qfl)

(19)

From (19), the relationship between the sample vif and the F-ratio can be derived as

T
(n—q—1)

This relationship equation is the significant part of this research paper and the authors
believe, it can be used to test the exactness of multi-collinearity and its effect on the error
variance of regression model. The sampling distribution of vif exists, if the population
VIF >1 and if VIF=1, then the sample vif=1.under the null hypothesis, if the population
VIF=2, then it shows to check the cent percent inflation in the population error variances
of a model and the test statistic from (19) is given as

n—q-—1 .
Fj(q,n—q—l) = (q)((’mf)j - 1) ~ F(q,n—q—l) (21)

(vif); =14+ ((VIF); = 1) Lk (20)

Where from (21), vif is the sample variance factor of jth independent variable used
in a regression model, ¢ is the no.of independent variables in the auxillary regression
model and n is the sample size. Pragmatically, the authors recommends for checking
the variance inflation in different levels gives more exact results. If VIF=2, then from
(9), the population inflated error variance is equal to twice of the population error
variance, that is 0? NF(ej) = 202 This shows, due to the multicollinearity effect, the error
variance of regression model is inflated 100% percent. The authors believe, the exact
test of multicollinearity and it’s effect can be determined by fixing the value of VIF as
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1 < (VIF); < 2.If VIF=1.05,1.1,1.5,2 helps the statisticians to scrutinize the inflation
in error variance due to the multicollinearity effect at 5%,10% ,50% and 100% inflation
level.

4 Modified Generalized Information Criterion and
Incorporation of Multicollinearity effect in Model
selection

In the previous sections, the authors discussed, how the vif inflates the estimated error
variance of a model as well as they also highlighted the application of the F-test to
diagnose the exact impact of the multicollinearity with different inflation levels due to
the independent variables in a regression model. This section deals with the model
selection aspect, and it leads to modify the existing model selection criteria, which
the selection criteria should carry the multicollinearity effect and the authors tactically
penalize the models, whenever the selected model is having multicollinearity problem.
For a multiple regression model, the generalized information criterion is given as

GIC = nlog(G?) + f(n, k) (22)

where G2the estimated error variance of the regression is model and f(n,k) is the
generalized penalty function which includes the sample size ‘n’ and no. of parameters
‘k’ estimated in a regression model. In order to incorporate the effect of multicollinearity
effect in GIC, the authors highlighted some procedure as follows.

Step: 1 Calculate the residuals é;for ith observation from a fitted sample regression
model, wheree; ~ N (0,02).

Step: 2 Inflate the residuals calculated from step 1 by using the square root of

the Average variance inflation factor (VAVIF), where AVIF = L 3 (1/1 — RJQ) =
j=1

% jg(m' f); and m is the no. of significant sample vif based on the F-test of significance
from (19).

Step: 3 Calculate the inflated residuals I N F'(é;)for ith observation from step 2, where
INF(&) ~ N(0, U?NF(@))'

Step: 4 Estimate the inflated error variance from INF(¢;) = ¢;vV AVIFand we get
G%NF(e) = GZ(AVIF).

Step: 5 From step 4, rewrite 8§NF(6) = 02(AVIF) as 02 = G%NF(G)/AVIF and
substitute in (18), we get the Modified Generalized information criterion (M GIC)

Based on the above discussed procedure, the multicollinearity effect is incorporated
into the existing information criterion (9) is given as

/O-\?NF(G)
AVIF

GIC = nlog( )+ f(n, k)
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GIC = nlog(0}y () — nlog(AVIF) + f(n, k)
GIC + nlog(AVIF) = nlog(d7yp(e)) + f(n, k)

MGIC = nlog(aINF )+ f(n, k) (23)

where M GIC'is the Modified Generalized information criterion, 3? NF(e) is the inflated
estimate of population error variance and f(n, k)is the penalty function. Moreover, this
MGICis more meaningful when compared it with the traditional information criteria
because the error variance was inflated and it will be penalized due to the multicollinear-
ity effect existing in a regression model. The authors also derived the Akaike information
criterion (AIC), Schwartz Bayesian criterion (SBIC), Hannan-Quinn information crite-
rion, Akaike information criterion corrected for small sample (AICc) from the Modified
Generalized information criterion(M GIC)by assigning the proper values for the penalty
function which leads us to get 4 different modified version of the AIC, SBIC, HQIC and
AlICc. These criteria can also be used for the purpose of selecting a best model when-
ever the problem of multicollinearity exists among the set of competing models. The
following table shows the different versions of information criteria after modification.

Table 1: Modified versions of Generalized Information Criteria

Criteria  Penalty function Before multicoll. correction  After multicollinearity

GIC f(n, k) nlog(c?) + f(n, k) nlog(E?NF(e)) + f(n, k)

AIC 2k nlog(c?) + 2k n10g(G7y pe)) + 2k

SBIC klogn nlog(&f) + klogn nlog(E%NF( ,) + klogn

HQIC 2k log(logn) nlog(ag) + 2k log(log n) n log(’a\?NF(e)) + 2k log(log n)
AICc 2nk/n—k—1 nlog(c?) + (2nk/n —k — 1) nlog(&?NF(e)) (2nk/n—k—1)

k- no. of parameters (includes intercept + error variance), n- sample size, 52- Sample
estimate of error variance, 6\% NF( e)—Inﬂated sample estimate of error variance

5 Results and Discussion

In this section, we will investigate the effect of multicollinearity in the model selection
decision based on the survey data collected from BSQ (Bank service quality) study. The
data comprised of 45 different service quality attributes about the bank and the data was
collected from 102 account holders. A well-structured questionnaire was prepared and
distributed to 125 customers and the questions were anchored at 5 point likert scale from
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1 to 5 after the data collection was over only 102 completed questionnaires were used
for analysis. The aim of this article is to identify the exactness of multicollinearity and
how it inflates the error variance of a fitted regression model. Moreover the authors also
discussed how the multicollinearity distorts the model selection decision as well as the
transition occurred in model selection. The following table shows the results extracted
from the analysis by using IBM SPSS version 21. At first the authors used stepwise
multiple regression analysis by utilizing 44 independent variables and a dependent vari-
able. The results of the stepwise regression analysis, test of multicollinearity and the
transitions in model selection are visualized in the following tables.
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Table 3: F-test for Multicollinearity identification and inflation of error variance

Independent variables Model 4 Model 5
Tol. vif mv NF(e) F-ratio® Tol. vif mvzlmv F-ratio?

Variance Inflation level Variance Inflation level

5% 10% 50%  100% 5% 10% 50% 100%
X38 978 1.023 0.171 15.03*%* 7.51%* 1.50 .75 .864 1.158 0.190 76.63*%* 38.31*%* 7.66** 3.83*%*
X2 967 1.035 0.173 22.87**%  11.43** 2.29 1.14 964 1.037 0.170 17.94%* 8.97** 1.79 0.90
X31 973 1.028 0.172 18.29%* 9.15%* 1.83 0.91 951 1.051 0.173 24.73%*%  12.37** 2.47* 1.24
X19 .949 1.054 0.176 35.28 17.64** 3.53* 1.76 .947 1.056 0.173 27.16** 13.58%** 2.72%* 1.36
X44 - - - - - - - .861 1.161 0.191 78.08*%* 39.04** 7.81%* 3.90%*
X5 - - - - - - - - - - - - - -
X11 - - - - - - - - - - - - - -
X13 - - - - - - - - - - - - - -
X39 - - - - - - - - - - - - - -
X8 - - - - - - - - - - - - - -
X23 - - - - - - - - - - - - - -
error variance 62=0.17679 52=0.16422
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Table 5: F-test for Multicollinearity identification

and inflation of error variance

Independent variables Model 6 Model 7
Tol. vif &7y F-ratio® Tol. Vif G}y, F-ratio/
Variance Inflation level Variance Inflation level

I
3
M 5% 10% 50% 100% 5% 10% 50% 100%
QUu X38 .860 1.163 0.182 62.59** 31.30** 6.26** 3.13* .858 1.166 0.172 52.57** 26.28*%* 5.26** 2.63*
~= X2 .950 1.053 0.165 20.35** 10.18** 2.04 1.02 .853 1.173 0.173 54.78** 27.39%* 5 48%* 2.74%
m X31 951 1.052 0.165 19.97** 9.98%* 2.00 1.00 925 1.081 0.159 25.65** 12.82*%* 2.56% 1.28
W X19 931 1.074 0.168 28.42%*  14.21%* 2.84%* 1.42 .895 1.117 0.164 37.05%* 18.52**% 3.71** 1.85
m X44 815 1.226 0.192 86.78%** 43.39*%* 8.68** 4.34** 802 1.247 0.184 78.22%%  39.11** 7.82%*% 3.91%**
.ﬂ/U,u X5 .921 1.086 0.170 33.02** 16.51** 3.30** 1.65 901 1.110 0.163 34.83**  17.42*%* 3.48** 1.74
Wu X11 - - - - - - - 780 1.282 0.189 89.30** 44.65** 8.93** 4.47**
< X13 - - - - - - - - - - - - - -

X39 - - - - - - - - - - - - - -

X8 - - - - - - - - - - - - - -

X23 - - - - - - - - - - - - - -

error variance 52=0.15650 52=0.14721

d.f(5,96), ** p-value<0.01, * p-value<0.05, f d.f(6,95), ** p-value<0.01, * p-value<0.05
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Table 7: F-test for Multicollinearity identification and inflation of error variance

Independent variables Model 10 Model 11
Tol. Vif  Gjyu,, F-ratio’ Tol. vif  Gjyp,, F-ratio/

Variance inflation level Variance inflation level

5% 10% 50% 100% 5% 10% 50% 100%
X38 .811 1.233 0.155 47.64%* 23.82%*  4.76%* 2.38%* 799 1.251 0.154 45.68%* 22.84** 4. 57%* 2.28%*
X2 .806 1.241 0.156 49.27*%* 24.64**  4.93** 2.46* .748 1.337 0.165 61.33** 30.67** 6.13** 3.07**
X31 .802 1.248 0.157 50.70%** 25.35%*% 5.07** 2.54% .673 1.485 0.183 88.27**  44.13*%* 8.83** 4.41%**
X19 .835 1.197 0.150 40.28** 20.14**  4.03** 2.01%* .800 1.250 0.154 45.50** 22.75%* 4.55%* 2 28*
X44 781 1.280 0.161 57.24** 28.62%* 5 72%* 2.86*%* 760 1.315 0.162 57.33%*% 28.66** 5.73%* 2.87**
X5 .864 1.158 0.146 32.30%* 16.15%**  3.23** 1.62 .864 1.158 0.143 28.76**% 14.38%* 2.88*%* 1.44
X11 .665 1.503 0.189 102.84*%* 51.42%* 10.28*%* 5.14** .665 1.504 0.185 91.73**  45.86** 9.17** 4.59%*
X13 .855 1.169 0.147 34.55%* 17.28%*  3.46** 1.73 .844 1.184 0.146 33.49** 16.74** 3.35*%* 1.67
X39 726 1.378 0.173 77.28%* 38.64%** 7. 73%* 3.86*%* 724 1.381 0.170 69.34%*  34.67** 6.93*%* 3.47**
X8 753 1.327 0.167 66.85** 33.43**  6.69** 3.34*%* 704 1.420 0.175 76.44%*  38.22%*% 7.64%** 3 .82%*
X23 - - - - - - - .651 1.536 0.189 97.55%*  4B.78** 9.76%* 4.88%*

error variance

52=0.12569

52=0.123078

d.f(9,92), ** p-value<0.01, * p-value<0.05, j d.f(10,91), ** p-value<0.01, * p-value<0.05
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Independent variables Model 12
Tol. vif 3%NF(e) F-ratio®

Variance inflation level

5% 10% 50% 100%
X38 811 1.233 0.157 47.64** 23.82%* 4.76** 2.38%*
X2 748 1.336 0.170 68.69*%* 34.35%* 6.87** 3.43**
X31 - - - - - - -
X19 .806 1.241 0.158 49.27**  24.64%* 4.93** 2.46*
X44 789 1.268 0.161 54.79%* 27.40%* 5.48%* 2 74%*
X5 .866 1.155 0.147 31.69*%* 15.84** 3.17** 1.58
X11 .681 1.469 0.187 95.88**  47.94%* 9.,59%* 4. 79%*
X13 .851 1.175 0.149 35.78** 17.89%* 3.58** 1.79
X39 790 1.266 0.161 54.38%* 27.19*%* 5.44%** 2. 72%*
X8 707 1.415 0.180 84.84**  42.42%% 8.48** 4.24%*
X23 775 1.290 0.164 59.29** 29.64%* 5.93** 2.96**

error variance

52=0.127046

d.f(9,92), ** p-value<0.01, * p-value<0.05
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Table 9: Transition in model selection at 5% Inflation level of error variance

Model k R2 Significantavif 5%y, AIC SBIC HQIC AICc

BMC AMC BMC AMC BMC AMC BMC AMC
2 4 .331 1007 0.19114 -16150 -160.78  -151.00 -150.28  -157.24 -156.53 -161.08 -160.37
3 5 .377 10123 0.17806 -166.74 -165.50 -153.62 -152.38  -161.43 -160.19 -166.12 -164.88
4 6 .410 1.0286 0.18184 -164.74 -161.87 -149.00 -146.12  -158.37 -155.49 -163.86 -160.99
5 7 441 1.0926 0.17943 -170.27 -161.23 -151.89 -142.86  -162.83 -153.79  -169.08 -160.04
6 8 .489 1.109 0.17356 -173.18 -162.63 -152.18 -141.63  -164.68 -154.12 -171.63 -161.08
7 9 .525 1168 017194 -177.42 -161.58 -153.80 -137.96  -167.85 -152.02 -175.46 -159.63
8 10 .565 1.1861 0.16723 -179.82 -162.42 -153.58 -136.17  -160.20 -151.79 -177.41 -160.00
9 11 .598 1.227 0.16340 -183.65 -162.78  -154.77 -133.90  -171.95 -151.09 -180.71 -159.85
10 12 .615 1.2734 0.16005 -187.54 -162.89 -156.04 -131.30  -174.79 -150.14 -184.04 -159.39
11 13 .634 1.3473 0.16582 -187.68 -157.28  -153.56 -123.15  -173.87 -14346 -183.55 -153.14
12 12 .630 1.2848 0.16323 -186.45 -160.88 -154.95 -120.39  -173.60 -148.13 -182.94 -157.38

BMC- Before multicollinearity correction, k-no.of parameters,avif- average variance

inflation factor, AMC- After multicollinearity correction
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Figure 1: Line plot shows the values of Modified Versions of Information Criteria for
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Table 12: Transition in model selection at 100% Inflation level of error variance

Model k R2 Significantavif &2, AIC SBIC HQIC AICc

BMC AMC BMC AMC BMC AMC BMC AMC
2 4 .331 - 18981  -161.50 -161.50 -151.00 -151.00  -157.24 -157.24  -161.08 -161.08
3 5 37T - 17679 -166.74 -166.74  -153.62 -153.62  -161.43 -161.43  -166.12 -166.12
4 6 .410 - 17679 -164.74 -164.74  -149.00 -149.00  -158.37 -158.37  -163.86 -163.86
5 7 441 11595 19041 -170.27 15517 -151.89 -136.80  -162.83 -147.73  -169.08 -153.98
6 8 .489 1.1945 18694  -173.18 -155.05  -152.18 -134.05  -164.68 -146.55 -171.63 -153.50
7 9 525 1217 17915 -177.42 -157.39  -153.80 -133.77  -167.85 -147.83 -175.46 -155.44
8 10 .565 1.2113 17078 -179.82 -160.27  -153.58 -134.02  -169.20 -149.64 -177.41 -157.86
9 11 .598 1.2467 16602 -183.65 -161.16  -154.77 -132.28  -171.95 -149.46 -180.71 -158.22
10 12 .615 1.3008 16349 -187.54 -160.72  -156.04 -129.22  -17479 -147.97 -184.04 -157.22
11 13 .634 1.3865 17065  -187.68 -154.35 -153.56 -120.23  -173.87 -140.53 -183.55 -150.21
12 12 .630 1.3147 16703 -186.45 -158.54  -154.95 -127.04  -173.69 -145.78 -182.94 -155.03

BMC- Before multicollinearity correction, k-no.of parameters,avif- average variance inflation factor, AMC- After multicollinearity correction
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Figure 2: Line plot shows the values of Modified Versions of Information Criteria for
different Models at 50% inflation in error variance
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Figure 3: Line plot shows the values of Modified Versions of Information Criteria for
different Models at 100% inflation in error variance
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From the previous analysis, the authors first checked the significance of multicollinear-
ity effect for the 12 fitted stepwise regression models. We left the results of the model
1 because it only involves one independent variable and there is no need to test the sig-
nificance of multicollinearity effect. The result presented from Table-2 to 7 includes the
tolerance of the independent variable, sample variance inflation factor (vif), estimated
inflated error variance (&\%NF(e)) of the fitted model by using jth independent variable
and the result of F-test for multicollinearity identification. For the model 2, the authors
identified, that the result of F-test shows that the error variance of this model is inflated
up to 10% due to the multicollinearity effect between the independent variables X38 and
X2.Similarly,almost all the fitted models experienced a multicollinearity problem with
the inflation in error variance upto 10%.As far as model 4 is concern, the F-test reveals
that the estimated error variance was inflated at 50% level due to the multicollinearity
effected by the independent variable X19.Similarly, from model 5 to 12,based on the
result of F-test, the authors identified that the error variance of the fitted model was
inflated upto 50% due to the problem of multicollinearity created by the independent
variables at 1% and 5% significance level respectively. Moreover, model 5 to12, affected
severely due to multicollinearity effect among independent variables with a 100% infla-
tion level in the error variances. From the above discussion, the authors found, due
to the inflation of the error variances in the fitted models, the estimated variances of
the regression co-efficients will definitely increase and it also threaten the stability of
the least squares estimates of regression co-efficients. In the same manner, the authors
also found another interesting result extracted from the previous analysis. The impact of
multicollinearity distorts the model selection decision and from table-8 to 11 with graphs
exhibits the transitions in the model selection decision at 5%,10%,50% and 100% infla-
tion level in error variances based on 4 frequently used information criteria such as AIC,
SBIC, HQIC and AICc. As far as AIC is concern, it suggests model 11 is the best before
carrying multicollinearity correction because the information loss between the true and
the fitted model is minimum when compared to remaining competing models. As far
as SBIC, HQIC and AICc are concern, model 10 is the best before the incorporation of
multicollinearity correction. But after the incorporation of the multicollinearity effect in
model selection criteria, the selection decision varied. From table-8, 9,10 and 11, if the
error variance was inflated upto 5%, 10%, 50% and 100% respectively, the result of the
modified information criteria such as AIC, SBIC, HQIC and AICc recommends, model-3
is the best in minimum information loss when compare to remaining competing models.
Hence the simulation results proves that there is a definite transition in model selection
after removing the effect of multicollinearity from the fitted models.

6 Conclusion

From the previous sections, the authors explained how the multicollinearity influences
the fitness of the model and how it impacts the model selection decision. For this the
authors, utilized F-test for scrutinizing the identification of multicollinearity based on
the estimated inflated and uninflated error variance of a fitted regression model. While
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taking a model selection decision, the statisticians should consider the problems in the
fitted models. Multicollinearity is not violating the assumption of least squares or maxi-
mum likelihood approach but some care should be given while selecting a model affected
by multicollinearity. The authors tactically penalized a model with multicollinearity and
they showed the inflation in various levels of the error variances among the competing
models. On the other hand, while taking a model selection decision based on informa-
tion criteria, these are incapable of reflecting the problems in the fitted models. For
this, the authors made a multicollinearity correction in GIC and incorporate the multi-
collinearity effect by replacing the inflated error variance instead of using the un-inflated
error variance of a model. Hence the authors emphasize while selecting a model, statis-
ticians should consider the problems in the fitted model and we should incorporate the
consequences of this problem in the model selection yardsticks. As far as least square
problems are concern, the authors suggested, statisticians to incorporate the problems
such as Heteroskedasticity, autocorrelation, outliers and influential points in the model
selection decision, only then we can do an unbiased model selection process. In future,
more rigorous simulation experiments may conduct by fixing the variance inflation level
between 1% to 100% with an interval of 0.1% helps the statisticians to find an exact
variance inflation level of the error variance. Moreover, based on the relationship be-
tween the F-ratio and sample variance inflation factor (vif), we can derive the exact
sampling distribution of the vif and its properties will motivates the statisticians to take
the multicollinearity problem to the next level.
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