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Cox regression model has an important and glaring place in survival anal-
ysis. The key assumption is proportional hazards and violation of this as-
sumption can invalidate outcomes of a study. Our approach will be to use
Cox regression model with weighted estimation for a survival data set that
includes both proportional and nonproportional hazards. We carried out a
simulation study, considering different censoring rates, sample sizes, and tied
observations. Simulation results are interpreted and discussed with the re-
sults obtained by traditional Cox regression model. Cox regression model
with N-Prentice weighting function serves as a better model under all simu-
lation scenarios.

keywords: Cox regression model, hazard ratio, log-rank test, nonpropor-
tional hazards, survival analysis, weighting function.

1 Introduction

Survival analysis has several application areas from medicine to marketing. Kaplan-
Meier provides a method for estimating the survival curve, the log rank test provides a
statistical comparison of two groups, and Cox regression model (CM) allows additional
covariates to be included. Both of the latter two methods assume that the hazard ratio
comparing two groups is constant over time (Bewick et al., 2004). The CM analyzes the
survival data arising from studies where the response variable is the length of time taken
to reach a certain end-point, often death. The CM is similar to a multiple regression
model and enables analyzing the effects of covariates on the hazard function of time.
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The CM is used extensively in clinical survival analysis. Its popularity is rooted in
its simple interpretation, semi-parametric nature, mathematical elegance and its imple-
mentation in popular statistical software packages (Frankel and Longmate, 2002). It has
a significant assumption of proportional hazards (PH) which means that the survival
curves for two groups must have hazard functions that are proportional over time (i.e.
constant relative hazard). Although the model is very useful when the assumption of
proportionality holds, a special care is needed when it is violated (Perperoglou et al.,
2007). If the PH assumption fails to hold for the treatment or for one or more covariates,
the results of CM will be misleading. The hazard ratio for the particular covariate can-
not be interpreted as a hazard ratio or relative risk; moreover, the regression coefficients
of the other covariates may be biased as a result (Putter et al., 2005).

It is not uncommon to encounter nonproportional hazards in survival data applica-
tions, especially in long follow-up term studies. Several modeling techniques have been
proposed for nonproportional hazards. Nonproportional hazards are generally modeled
by extensions of Cox or parametric regression models. An alternative approach is Cox
regression model with weighted estimation (WCM), which is suggested by Schemper
(1992). The WCM has some advantages over models such as stratified CM and CM
with time-dependent covariates, because there is no requirement of distributional as-
sumption, additional parameters and determination of a strata variable.

In the study of Ata and Demirhan (2013), WCM is examined and weighting functions
different from Schemper’s suggestions are proposed (Schemper, 1992). In these studies,
the weighting function is used only for the covariates with nonproportional hazards. The
performance and effect of proposed and existing weighting functions are discussed via a
simulation study. Their simulation study shows that WCM gives better results than the
traditional CM for sample sizes 25 and 50 under 60% censoring rates. Under censoring
rate of 60%, the WCM with weighting functions N-Altshuler, N-KM, N-Prentice, N-
Prentice-Marek, N-Harris-Albert, N-Moreau, Tarone-Ware has better results than the
traditional Cox regression model for n = 25; WCM with weighting functions N-Altshuler,
N-KM, N-Prentice, N-Prentice-Marek, N-Moreau has better results than that of CM for
n = 50.

In this study, we consider WCM for the survival data sets that include both propor-
tional and nonproportional hazards. The aim of our study is to use different weighting
functions not only for the covariates with nonproportional hazards but also for the co-
variates with proportional hazards. Additionally, we compare the behavior of examined
models with CM.

Section 2 reviews Cox regression model with weighted estimation and investigate the
proposed approach. The simulation study is given in Section 3. Results, discussions and
some recommendations are given in Section 4.

2 Cox regression model with weighted estimations

Let T be the random variable representing time until the event of interest occurs. The
distribution of T can be characterized by the hazard function which is defined as follows:
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λ(t) = lim
δt→0

{
P (t ≤ T < t+ δt|T ≥ t)

δt

}
(1)

This is the probability that an individual alive at t experiences the event in the next
period δt. If one or more measurements are available for each individual, we have a
vector of covariates x. The relationship between the hazard function of failure time and
these covariates is analyzed by the following model proposed by Cox (1972):

λ(t;x) = λ0(t) exp(β′x) (2)

where t denote failure time, x be a row vector of covariates of dimension p and β be a p-
vector of covariate coefficients. λ(t;x) is the hazard at time t for individual with covariate
vector x = (x1, x2, . . . , xp) and λ0(t) is an unknown function giving the hazard for the
standard set of conditions, when x = 0 . This model is called Cox regression model
(CM) and assumes that the hazard ratio between two subjects with fixed covariates is
constant.

The simplest approximation to the likelihood function of CM and also WCM is given
by Breslow (2004) in order to accommodate tied observations:

L(β) =
r∏
j=1

exp(β′sj)∑
`∈Rtj

exp(β′x`)
(3)

Here, we suppose data are available for n individuals, amongst whom there are r district
death times and (n − r) right censored survival times. t1 < t2 < · · · < tr are ordered
death times. R(t(j)), j = 1, 2, . . . , r, is the set of individuals who are alive and uncensored
at a time just prior to t(j) and called as the risk set. x` is vector of p covariates for the
individual ` who is in the risk set. sj is the vector of sums of each of the p covariates for
those individuals who die at t(j). If there are dj deaths at t(j), then the hth element of

sj is shj =
∑dj

k=1 xhjk, where xhjk is the value of hth covariate, h = 1, 2, . . . , p, for the
kth of dj individuals who die at the jth death time (Collett, 2003).

The maximum likelihood estimates of the β-parameters in CM and also WCM can be
found by maximizing log-likelihood function using numerical methods such as Newton-
Raphson procedure. To obtain the estimates of βj and information matrix I(β̂), the
first and second derivatives of log-likelihood function of WCM are given distinctly in
Schemper (1992) and Ata and Demirhan (2013).

In previous studies, weighting function (fk(tj)) is taken as 1 for proportional hazards
whereas different weighting functions are taken for nonproportional hazards. In this
study, we use fk(tj) different from 1 for the covariates with proportional hazards. We
use weighting functions for all the covariates in the study, regardless of whether they
have proportional hazards or not. Our first purpose is to compare WCM with CM and
conclude which model is more appropriate under different scenarios. Our second aim is
to check the performance of weighting functions with those in literature.

Some of the weighting functions suggested in Ata and Demirhan (2013) are considered
in this paper and these are given in Table 1. In Table 1, weighting functions numbered by
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(1)-(5) are the functions used for weighted log-rank tests in the literature, and weighting
functions numbered by (1) (Gehan, 1965) and (2) are the functions used by Schemper
(1992). Weighting functions numbered by (6)-(15) are the proposed functions formed
from the estimation of survival functions and weighted log-rank tests in the literature.

Table 1: Weighting functions.

1 Gehan nj

2 N-KM NSKMj

3 Moreau SPRENj =
∏j
i=1

ni
ni+di

4 Tarone-Ware (TW)
√
nj

5 Andersen (Weighted Prentice-Marek) S∗jnj/(nj + 1)

6 Altshuler SALTj =
∏j
i=1 exp(−di/ni)

7 Harris-Albert S∗∗j =
∏j
i=1

ni+di−1
ni+di

8 Peto-Peto (KM) SKMj =
∏j
i=1

ni−di
ni

9 Prentice S∗PRENj =
∏j
i=1

ni
ni+1

10 Prentice-Marek S∗j =
∏j
i=1

ni−di+1
ni+1

11 N-Altshuler NSALTj

12 N-Harris-Albert NS∗∗j

13 N-Moreau NSPRENj

14 N-Prentice NS∗PRENj

15 N-Prentice-Marek NS∗j

In Table 1, N denotes the number of individuals in the study, nj denotes the individ-
uals at risk and dj denotes the individuals died within the interval [tj , tj+1). S

ALT
j , is

the survival function estimate of Altshuler (1970), S∗j is the survival function estimate
of Prentice and Marek (1979), S∗∗j is the survival function estimate of Harris and Albert

(1991), SKMj is the survival function estimate of Kaplan and Meier (1958), S∗PRENj is

the survival function estimate of Prentice (1978), SPRENj is the survival function esti-
mate of Moreu et al. (1992). These estimates are used in proposed weighting functions
(Leton and Zuluaga, 2001).

In order to analyze the performance of traditional CM with WCM, we have carried
out a simulation study that is presented in the next section.
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3 Simulation Study

In this section, we carried out a simulation study to investigate CM and WCM with
weighting functions used for all covariates. We would like to study the effect of the
censoring rates and sample sizes on the estimates obtained from the models.

Two dichotomous covariates (X1, X2) are taken into consideration in this study. The
variable X1 is generated to have nonproportional hazards, whereas X2 is generated
to have proportional hazards. We use the simulation procedure of Schemper (1992).
Survival times are generated from Weibull(α, γ) distribution and the setting of α and γ
is chosen to get nonproportional hazards. To generate censoring times and determine the
censored observations, we utilize from the studies of Persson (2005), and Jinnah (2007).
Censoring times are drawn from uniform distribution Uniform(0, k) , where k is chosen
to ensure desired censoring rates. We choose censoring rates (CR) that are 10%, 30%,
and 60% and values 25, 50, and 100 for sample size n. The simulated data is generated
1000 times.

A test based on the Schoenfeld partial residuals (Schoenfeld, 1982), which is a measure
of the difference between the observed and expected value of the covariate at each time
(Therneau and Grambsch, 2000), is used to control the PH assumption of the simulated
data.

The weighting functions given in Table 1 are used for both proportional and nonpro-
portional covariates. We obtain the bias and standard error (SE) of parameter estimates
(β̂ and β̂) for CM and WCM. Then the sample mean square error (MSE) values are ob-
tained to compare the performance of the models examined in the simulation study and
the results are given in Table 2.

In the simulations, the Newton-Raphson algorithm is employed to obtain parameter
estimates over the first and second derivatives of the likelihood function given in eq.
(3) (Schemper, 1992). All computations for the simulation study are carried on the
algorithm given in Appendix A over a script programmed on Matlab.
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As seen in Table 2, WCM for a part of weighting functions has better results than the
CM in terms of MSE. The results in Table 2 are regarded as below:

For censoring rate 10%,

• When n = 25, WCM with weighting functions Tarone-Ware, N-Moreau, N-Prentice,
N-Prentice-Marek, has better results than CM. Besides, N-Prentice has the mini-
mum MSE within these weighting functions.

• When n = 50, WCM with weighting functions Tarone-Ware and N-Prentice has
better results than that of CM. Besides, N-Prentice has the minimum MSE within
the weighting functions.

• When n = 100, WCM with weighting function N-Prentice has better result than
that of CM.

For all sample sizes, it is observed that CM has better results than WCM with weight-
ing functions N-KM and Gehan. For censoring rate 30%,

• When n = 25, WCM with weighting functions N-KM, Gehan, Tarone-Ware, N-
Altshuler, N-Harris Albert, N-Moreau, N-Prentice, N-Prentice-Marek has better
results than CM. Besides, Tarone-Ware has the minimum MSE within these weight-
ing functions.

• When n=50, same results with n=25 are obtained.

• When n=100, WCM with weighting functions N-KM, Tarone-Ware, N-Altshuler,
N-Moreau, N-Prentice, N-Prentice-Marek has better results than CM. Besides,
N-Prentice has the minimum MSE within these weighting functions.

For censoring rate 60%,

• When n = 25, n = 50, and n = 100, WCM with weighting functions N-KM, Gehan,
Tarone-Ware, N-Altshuler, N-Harris Albert, N-Moreau, N-Prentice, N-Prentice-
Marek has better results than CM. However, N-Prentice has the minimum MSE
for n = 25 and n = 100 whereas N-Moreau has the minimum MSE for n=50 within
the weighting functions.

Simulation results show that for all scenarios WCM with weighting function N-Prentice
gives better results than CM and also WCM with Gehan and N-KM weighting functions.
WCM with weighting function Tarone-Ware has better results than CM for sample size
n = 25 and n = 50 under all censoring rates taken into consideration in this study.

4 A Real Data Application

A real data application is also carried out to see how these weighting functions work
in reality. The breast cancer data set consists of 42 observations, of which 61.90% are



Electronic Journal of Applied Statistical Analysis 33

Table 3: MSE values for CM and WCM with different weighting functions.

Models β̂1 β̂2 SE(β̂1) SE(β̂2)

CM -0.2213 -0.5889 0.2387 0.2423

WCM

W
ei

gh
ti

n
g

fu
n

ct
io

n

N-KM -0.2186 -0.6518 0.0021 0.0022

Gehan -0.2998 -0.6065 0.0023 0.0024

Moreau -0.2585 -0.5972 0.2629 0.2682

Tarone-Ware -0.2608 -0.5981 0.0236 0.0241

Andersen -0.2595 -0.5975 0.2656 0.271

Altshuler -0.2588 -0.5973 0.2631 0.2684

Harris-Albert -0.3013 -0.6079 0.2909 0.2985

Peto-Peto (KM) -0.2591 -0.5974 0.2633 0.2686

Prentice -0.2864 -0.603 0.2846 0.2914

Prentice-Marek -0.2588 -0.5973 0.2631 0.2683

N-Altshuler -0.2183 -0.6517 0.0021 0.0022

N-Harris Albert -0.2573 -0.6684 0.0024 0.0024

N-Moreau -0.218 -0.6515 0.0021 0.0022

N-Prentice -0.2432 -0.6619 0.0023 0.0024

N-Prentice Marek -0.2183 -0.6516 0.0021 0.0022

censored, is used in this section (Ata and Demirhan, 2013). The parameter estimates
and standard errors are given by Table 3.

According to the standard errors of parameter estimates, WCM with N-KM, Gehan,
Tarone-Ware, N-Altshuler, N-Harris Albert, N-Moreau, N-Prentice, N-Prentice Marek
weighting functions have smaller standard errors than the CM. Hence, it is observed
that results obtained for this data set are in rapport with the simulation results.

5 Conclusion

The Cox regression model is routinely used in clinical trials, but it may encounter seri-
ous difficulties with departures from the PH assumption, even when the departures are
not readily detected by commonly used diagnostics (Frankel and Longmate, 2002). The
assessment of PH assumption can be done by many numerical (a test based on inclusion
of a time dependent covariate in the model (Cox, 1972), a test based on the Schoenfeld
partial residuals (Schoenfeld, 1982), a test based on a comparison of different gener-
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alized rank estimators of the hazard ratio (Gill and Schumacher, 1987)) or graphical
approaches (log-minus-log survival plots of survival functions, a plot of survival curves
based on the Cox regression model and Kaplan-Meier estimates for each group, a plot of
cumulative baseline hazards in different groups (Andersen et al., 1982), a plot of differ-
ence of the log cumulative baseline hazard versus time, a smoothed plot of the ratio of
log-cumulative hazard rates time, a smoothed plot of scaled Schoenfeld residuals versus
time and a plot of estimated cumulative hazard versus number of failures (Arjas, 1988)).
None of these approaches are known to be superior in finding out nonproportionality.
Interpreting graphical plots can be arbitrary. The conclusions are highly dependent on
the subjectivity of the researcher. Thus, we can absolutely recommend the use of WCM
with N-Prentice weighting function since it can be used for both proportional and non-
proportional hazards. Further, WCM has no distributional assumption and has no need
to examine PH assumption. Using WCM also eliminates the sorrows of which testing
method of proportional assumption to use for the survival data.

Appendix A

The following algorithm is used for the computations in the simulation study.

Algorithm:

S1. Read the total number of simulations, sample size, censoring rate, parameters of
Weibull distribution, real values of parameters, maximum iteration number, tolerance
value and starting values for Newton Raphson algorithm.
S2. Repeat for the total number of simulations.

S2.1. Randomly generate a data set.
S2.2. Calculate all of the considered weights.
S2.3. Repeat for each weight and no weight case.

S2.3.1. Find parameter estimates and corresponding variances by using Newton-
Raphson algorithm.
S2.3.2. Calculate MSE value.

S2.4. Store MSE value for each weight function.
S3. Calculate grand average of stored MSE values for each weight function over the
total number of simulations.
S4. Write the MSE values for all weight functions.
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