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In this paper, we have introduced a class of GPDs of order k upon using a
class of Quasi Binomial distribution of order k and using Abels generalization
of the Binomial formula from Riordan (1968). A few particular cases, like a
class of GPD, GPD of order k and classical Poisson distribution have been
studied. A mixture of Poisson and Generalized Poisson distribution along
with their various inferential properties are discussed. Finally, the mixture
of Poisson and GP distributions are fitted to some real life data and compared
with classical Poisson distribution and GPD and the fittings of the mixture
to the observed frequencies are found to be very good as judged by the
corresponding chi-square values.
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1 Introduction

When the populations are supposed to be Poissonian having unequal mean and vari-
ance, then we expect Generalized Poisson distributions. In this type of situation, the
probability of occurrence of an event does not remain constant but changes with time
and / or previous occurrences.
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Consul and Jain (1973a,b) are the early researchers who developed a class of discrete
distributions of the Poissonian type, known as Generalized Poisson distribution (GPD)
with two parameters having the probability function,

p(k; a, z) =

{
1
k!a(a+ kz)k−1e−(a+kz); k = 0, 1, 2, ...

0; k > m, when z < 0
(1)

where a > 0, max (−1,− a
m) < z ≤ 1 and m, the largest positive integer for which

(a+ zm) > 0, when z < 0.

Since then different aspects of these distributions have been studied by Bowman and
Shenton (1985), Consul (1988), Consul and Shoukri (1985), Jani (1987). The detailed
review works on the book authored by Consul (1989) have been done by Kemp (1992),
Olkin (1992), Shimzu (1992), etc.

Nandi et al. (1999) stating with definition of the exponential sums k(a; s, z) mathe-
matically, obtained a class of discrete distributions having the probability function,

p(k; a, s, z) =
(a+ kz)k+sekz

k!K(a; s; z)
, k = 0, 1, 2, ...; (a+ kz) > 0 (2)

where the exponential sum is given by,

k(a; s, z) =
∑
k>0

1

k!
(a+ kz)k+se−kz (3)

They referred it as a class of GPDs.

2 A Class of Quasi Binomial Distribution of order k :

By using Abel’s generalization of the binomial formula of Riordan (1968) and extending
it to order k , we have defined a class of Quasi Binomial distribution of order k with
parameters n, p and φ, and integers s and t, whose probability function is given by Gupta
et al. (2008) as,

Pk(x; s, t;φ) =
k−1∑
m=0

∑
∑k

j=1 jxj=n−m−kx

(
x1 + x2 + ..xk + x

x1, x2, ..xk, x

)(
p+ φ

k∑
i=1

xi

)∑k
i=1 xi+s

·

·

(
1− p− φ

k∑
i=1

xi

)n−∑k
i=1 xi+t

· 1

Bk(n; p, q; s, t;φ)

(4)

where x = 0(1)n, p+ q + nφ = 1 and − p
n < φ < 1−p

n .

and,
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Bk(n; p, q; s, t;φ) =
k−1∑
m=0

∑
∑k

j=1 jxj=n−m−kx

n∑
x=0

(
x1 + x2 + ..xk + x

x1, x2, ..xk, x

)(
p+ φ

k∑
i=1

xi

)∑k
i=1 xi+s

·

·

(
q − φ

k∑
i=1

xi

)n−∑k
i=1 xi+t

(5)

By setting n → ∞ and φ → 0, such that np = λ and nφ = ψ(finite), in equation 4,
then the limiting distribution of QBDs of order k is the probability function of a class
of GPDs of order k for λ > 0, and |ψ| < 1 is given by,

gk(x;λ, s;ψ) =
∑

x1,x2,..xk3x1+2x2+...+kxk=x

e−(λ+ψ
∑k

i=1 xi)

(
λ+ ψ

k∑
i=1

xi

)∑k
i=1 xi+s

Πk
i=1xi!Kk(λ, s;ψ)

(6)

where,

Kk(λ, s;ψ) =
∑

x1,x2,..xk≥0

e−(λ+ψ
∑k

i=1 xi)

(
λ+ ψ

k∑
i=1

xi

)∑k
i=1 xi+s

Πk
i=1xi!

(7)

So, the definition of a class of GPDs of order k is as follows,

2.1 Definition:

A random variable ’X’ is said to follow a class of GPDs of order k, when it assumes only
non-negative values having parameters λ and ψ, such that λ > 0, and |ψ| < 1, having
the probability function:

gk(x;λ, s;ψ) =
∑

x1,x2,..xk3x1+2x2+...+kxk=x

e−(λ+ψ
∑k

i=1 xi)λ

(
λ+ ψ

k∑
i=1

xi

)∑k
i=1 xi+s

Πk
i=1xi!Kk(λ, s;ψ)

(8)

where Kk(λ, s;ψ) is defined in equation 7.

Substituting various values of s, one may obtain different GPDs of order k.
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2.2 Particular Cases:

2.2.1

If s=-1, the probability function in equation 8 reduces to the probability function of
GPD of order k as follows:

P (X = x) =
∑

x1,x2,...xk3x1+2x2+...+kxk=x

e−(λ+ψ
∑k

i=1 xi)λ

(
λ+ ψ

k∑
i=1

xi

)∑k
i=1 xi−1

Πk
i=1xi!

(9)

where (λ+ ψ
k∑
i=1

xi) > 0

2.2.2

Substituting k=1 in equation 9, it reduces to GPD I of Consul and Jain (1973a,b), whose
probability function is as follows:

P (X = x) =
e−(λ+xψ)λ(λ+ xψ)x−1

x!
; x = 0, 1, 2, ...and |ψ| < 1 (10)

2.2.3

If s=0, ψ=0 and k=1, then the probability function in equation 8 becomes common
Poisson distribution of Johnson and Kotz (1969).

3 A Mixture distribution of Poisson and Generalized
Poisson of order k :

Philippou et al. (1983a,b) studied the Poisson distribution of order k and accordingly
they gave a definition of Poisson distribution of order k as follows:

A random variable X is said to have the Poisson distribution of order k with parameter
λ, denoted by Pk(λ) , if its probability function is given by,

P (X = x) =
∑

x1,x2,...,xk

e−kλ
λx1+x2+...+xk

x1!x2!...xk!
; x = 0, 1, 2, ... (11)

where the summation is over all the non-negative integers x1, x2,...xk such that x1 +
2x2 + ...+ kxk = x.

Gupta et al. (2008) studied the Generalized Poisson distribution of order k and their
different inferential properties, whose probability function is given in equation 9.

Here we have found out the probability function of Mixture distribution of Poisson
and Generalized Poisson of order k, given by,
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P (X = x) = w
e−kλλx1+x2+x3+...+xk

x1!x2!x3!...xk!
+ (1− w)

e−(λ+ψ
∑k

i=1 xi)λ

(
λ+ ψ

k∑
i=1

xi

)∑k
i=1 xi−1

Πk
i=1xi!

(12)

where (λ+ ψ
k∑
i=1

xi) > 0 and 0 < w < 1

4 A Mixture of a Poisson and a Generalized Poisson
Distribution

The probability function of mixture of a Poisson and a Generalized Poisson distribution
is,

Pr(X = x) = w
e−aax

x!
+ (1− w)

a(a+ xλ)x−1e−(a+xλ)

x!
; x = 0, 1, 2, ...

The pgf is

H(u) = wea(u−1) + (1− w)ea(t−1), where t = ueλ(t−1)

and the r-th descending factorial moment is,

µ(r)
′ = war + (1− w)e−rλ

K(a+ rλ; r − 1;λ)

K(a;−1;λ)

where

K(a;−1;λ) = eaa−1

and

K(a; 0;λ) =
ea

(1− λ)

Putting r =1, we get

Mean = µ(1)
′ =

a(1− wλ)

(1− λ)
,

Assuming r = 2, we get

µ(2)
′ =

1

(1− λ)3
[wa2(1− λ)3 + a(1− w)(a− aλ+ 2λ− λ2)]

and hence

V ar(X) =
1

(1− λ)
[2aw − awλ+ 2a2w − 2a2w2 − a]
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Estimators for the parameters w, a and λ of the mixture can be obtained by using the
method of moments or by the method of maximum likelihood estimation. The recurrence
relation for the probabilities is

P (x+ 1) =
a

x+ 1

[
wax + (1− w)(a+ λ+ xλ)xe−(λ+xλ)

wax + (1− w)a(a+ xλ)x−1e−xλ

]
P (x)

5 Graphical Representation of A Mixture Of a Poisson
and a Generalized Poisson Distribution

To study the behavior of the mixture of a Poisson and a Generalized Poisson Distribution
with varying values of a and λ and for fixed value of w, the probabilities for possible
values of x are computed and a number of graphs for particular values of a, w and λ are
shown in Figures 1 and 2.

Figure 1: Graphs of probability distributions of mixture of a Poisson and a Generalized
Poisson Distribution for w=0.50, z = λ = 0.5 and a=0.05, 0.50, 1.50, 2.50,
8.00, 10.5 respectively.

It is clear from the graphs of Figures 1 and 2 that for any given value of λ, the mixture
of a Poisson and a Generalized Poisson Distribution is L shaped for values of a < 1, and
as ′a′ becomes larger the probability distribution acquires a larger span on the x-axis
by moving to the right side, gradually losing its asymmetry and acquiring a bell-shaped
form.

The graphs for a=8.0, λ=0.5, w=0.5; a=10.0, λ=0.05, w=0.5; a=10.0, λ=0.005,
w=0.5; and a=10.5, λ=0.5, w=0.5 appear to be very close to the normal form.
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Figure 2: Graphs of probability distributions of mixture of a Poisson and a Generalized
Poisson Distribution for a=10, w=0.5 and z = λ =0.05, 0.005 respectively.

6 Maximum Likelihood Estimation of Mixture of a
Poisson and a Generalized Poisson Distribution

The probability function of a mixture of Poisson and Generalized Poisson Distribution
is given by,

P (X) = w
e−aax

x!
+ (1− w)

a(a+ xλ)x−1e−(a+xλ)

x!

Log likelihood function of this distribution is,

logL = n logw − na+

n∑
i=1

xi log a−
n∑
i=1

log xi! + n log(1− w) + n log a−
n∑
i=1

(a+ xiλ)+

+

n∑
i=1

(xi − 1) log(a+ xiλ)−
n∑
i=1

log xi!

(13)

Differentiating equation 13 with respect to w, we get, w = 0.5000.

Now differentiating equation 13 with respect to a and λ, we can obtained two normal
equations and solving these equations we get,

λ̂ =
2(x̄− a)

x̄
, (14)
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Table 1: The following data give the distribution of the catches of the Leech Herobdella
in water samples

Leeches Observed Frequency Expected Frequency

Poisson GPD Poisson Λ GPD

0 58 45.56 55.81 58.01

1 25 37.16 26.66 25.85

2 13 15.14 11.53 11.69

3 2 4.11 4.98 2.68

4 2 0.83 2.18 2.46

5 1 0.13 0.97 1.31

6 1 0 0.43 0.62

7 0 0 0.27 0.21

8 1 0 0.12 0

9 0 0 0 0

Total 103 103 103 103

â 0.8155 0.6127 0.5736

λ̂ 0.2486 0.5932

χ2 8.3900 0.8014 0.8154

d.f 2 1 1

Mean = 0.8155

Putting the value of in one of the normal equations and applying the Newton - Raphson
method we may obtained the value of a. Finally we can estimate the value of λ from
equation 14.

7 Application

From the tables 1, 2 and 3, we studied the comparison of observed frequencies with that
of expected frequencies.



22 Gupta et al.

Table 2: The following data from Lucy (1914) give the distribution of the number of
days according to the number of deaths of women per day over 85 published in
times during 1910-12.

Number of Deaths per Day Observed Frequency Expected Frequency

Poisson GPD Poisson Λ GPD

0 364 336.1 364.0 364.3

1 376 397.3 376.0 368.2

2 218 234.7 217.1 228.5

3 89 92.4 92.6 90.2

4 33 27.3 32.6 34.0

5 13 6.5 10.0 10.1

6 2 1.3 2.8 1.2

7 1 0.3 0.9 0.4

Total 1096 1096 1096 1096

â 1.18157 1.10227 1.0765

λ̂ 0.16947 0.1778

χ2 13.649 0.5346 2.1931

d.f 4 3 3

Mean = 1.18157
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Table 3: The following data give the distribution of 400 squares of haemacytometer ac-
cording to yeast cells (x) observed by ’Student’.

x Observed Frequency Expected Frequency

Poisson GPD Poisson Λ GPD

0 213 202.1 213.0 206.7

1 128 138.0 128.0 132.1

2 37 47.1 44.3 42.3

3 18 10.7 11.6 17.4

4 3 1.8 2.6 3.4

5 1 0.3 0.5 0.7

6 0 0 0 0

Total 400 400 400 400

â 0.6825 0.63017 0.6602

λ̂ 0.0475 0.0653

χ2 10.12 4.8281 1.1793

d.f 3 1 1

Mean = 0.6825
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8 Conclusions

From the study of χ2 values we conclude that in Tables 1 and 3, a mixture of Poisson
distribution and Generalized Poisson Distribution gives the best fit to the observed
frequencies.
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