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Berliner (1987) discussed the issue of controlling the output (response)
towards the specified value by choosing the values for independent variables
in a regression mixture model, taking it as a Bayesian Decision Problem. The
quantification of the potential loss was done with the help of quadratic loss
function, which was a symmetric loss function. We have tried to quantify
this loss with the help of Precautionary Loss Function and Modified Squared
Error Loss Function, in linear Scheffé (1958) mixture model and comparison
is established between these loss function. Results are improved as compared
to Berliner (1987).

keywords: Bayesian control in mixture, design of mixture experiments,
Modified squared error loss function, optimization, Posterior risk, Precau-
tionary loss function.

1 Introduction

A statistical control problem for a regression model is to control the output (response) by
selecting the values of the independent variables. Berliner (1987) studied the problem
of statistical control in mixture models and posed it as Bayesian decision problem. For
optimization, Berliner (1987) used only quadratic loss function. In this article, we have
tried to use some alternative loss functions, specially an asymmetric loss functions. A
comparative study is established to compare the loss functions for the Bayesian control
in mixture experiments. With the study we would be able to control a response value
or the target value by choosing the values of mixture components, for which the risk is
minimum.
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For a mixture experiments with q components the proportion of ingredients may be
denoted by z1, z2, · · · , zq where zi ≥ 0 for i = 1, 2, · · · , q and z1 + z2 + · · · + zq =
1. The response depends only on the mixture and not on the total amount of mix-
ture. The factor space is a (q − 1)-dimensional regular simplex Sq−1 i.e. Sq−1 = {z :
(z1, z2, · · · , zq)|

∑q
i=1 zi = 1, zi ≥ 0}. A first order polynomial in q components has

(q+1) terms. The expected regression model is given as,

E(y) = α0 + α1z1 + α2z2 + · · ·+ αqzq (1)

Since ”T is the best Target” situation is considered, so Berliner (1987) calls it a ”control”
problem. Let y denote the deviations of the response (Y ) from the target value T. Due
to the constraint

∑q
i=1 zi = 1, one term must be deleted to obtain a full-rank mixture

model, which is a model in which there are no linear dependencies among the repressors
and as a result parameters will be unique. Hence following Scheffé (1963), Eq.[1] can
be rewritten as,

E(y) = α0

q∑
i=1

zi +

q∑
i=1

ziαizi =

q∑
i=1

(α0 + αi)zi =

q∑
i=1

θizi (2)

where θi = α0 + αi. The preliminary experiments provide n independent observations
of y. In matrix form the model becomes,

y = zθ + ε (3)

where y = (y1, y2, · · · , yn)
′
, θ = (θ1, θ2, · · · , θq), z is n× q is the design matrix, ε is the

n× 1 vector of errors which is assumed to follow multivariate normal distribution with
the mean 0 = (0, 0, · · · , 0)

′
and the variance-covariance matrix σ2Iq. The least square

estimator of θ is θ̂ = (z
′
z)−1zy and θ̂ ∼ N(θ, σ2(z

′
z)−1). Now the optimization problem

posed by Berliner is to minimize the square of the future observation y = θ
′
x+ ε where

x = (x1, x2, · · · , xq)
′

such that 0 ≤ xi ≤ 1,
∑q

i=1 xi = 1 and ε ∼ N(0, η2). The error
term of the future observation is assumed to be independent of θ. For decision rule the
expected loss or risk is quadratic,

E(y
′
y) = E{(θx)

′
(θx)}+ η2 (4)

and the loss L(θ,x) = (θ − x)
′
(θ − x) . Berger (1985) (pp. 158-163) provided compre-

hensive study about the Bayesian approach to decision problems.

1.1 Bayesian Control Procedure

The philosophy of Bayesian statistics is based on the updating of belief in the light of
prior information about the unknown quantity in which we are interested. We start
with a probability distribution reecting our current state of knowledge. When new data
become available, we modernize our probability distribution in light of the new data.
In a probability framework, there is only one way to do this: via Bayes theorem. The
theory of a prior distribution is not much famous in statistics. This controversy is closely
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linked to the debate regarding the meaning of probability. Some statisticians believe that
a prior distribution can be chosen for the parameter in every statistics problem. They
believe that this distribution is a subjective probability distribution in the sense that it
represents an individual experimenter’s information and subjective beliefs about where
the true value of parameter is likely to lie. They also believe, however, that a prior
distribution is no different from any other probability distribution used in the field of
statistics and that all the rules of probability theory apply to a prior distribution. We
combine our current information with the prior information and the resulting distribution
is called posterior distribution. For more detail discussion about Bayesian philosophy
see Berger (1985). Let π(θ, σ2) denote a prior density for the unknown parameters
(θ, σ2). The posterior density for the unknown parameters (θ, σ2) is given by,

π(θ, σ2|x) =
f(x|θ, σ2)π(θ, σ2)∫ ∫
f(x|θ, σ2)π(θ, σ2)dθdσ2

(5)

The marginal posterior of θ is given by π(θ|x) =
∫
π(θ, σ2|x)dσ2 with the posterior

mean vector µ(θ) = θLS and the posterior Var-Cov matrix C(θ). For known value of
σ2, C(θ) = σ2(z

′
z)−1

1.2 Optimization Problem in Bayesian Control for Mixture

Suppose that we want to estimates θ which is unknown from the realizations x ∈ R.
To evaluate the significance of estimator we assign a loss L(θ, a) ≥ 0. A loss function
L(θ, a) is said to be symmetric if L(θ, a) = L(−θ,−a) otherwise it will be asymmet-
ric. Averaging the loss with respect to the joint probability density function (PDF)
p(θ,x) yields an important characteristic value for an estimator. It is called the Bayes
risk/posterior risk (PR), which is PR =

∫ ∫
L(θ, a(x))p(θ,x)dθdx. Hence the opti-

mal Bayes estimator is an estimator which minimizes the posterior risk i.e. PR =
argmax
a(x)

∫ ∫
L(θ, a(x))p(θ|x)dθdx. Suppose that the loss function is differentiable , so

taking the derivative with respect to estimator and equating to zero one can get the
Bayes estimator and putting this value into expected loss one can get posterior risk.
Thus, optimization problem can be stated in terms of posterior expected loss.

Minimize L(.) =

∫
(θδ)

′
(θδ)π(θ|x)dθ (6)

subject to the constraint xi ≥ 0(i = 1, 2, · · · , q) and x
′
1 = 1 where 1 = (1, 1, · · · , 1)

′
.

Since (θx)2 = x
′
(θ
′
θ)x, we have L(θ̂) = x

′
B(θ̂)x where

B(θ̂) = C(θ̂) + µ(θ̂)µ(θ̂)
′

(7)

Hence, we wish to solve the optimization problem with the objective function,

Minimize x
′
Bx

such that xi ≥ 0 and x
′
1 = 1

(8)
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It is a quadratic programming problem which is a branch of mathematical programming
involving the minimization or maximization of a continuous real quadratic objective
function subject to linear constraints. The quadratic objective function has a unique
solution if B is positive definite; see Boot (1964)( pp.23-25).

1.3 An example for Bayesian Control in Mixture

To illustrate the control problem Berliner (1987) used an example given by Snee (1981).
This example is also given in Castillo (2007) (pp.355-359). Snee (1981) studied the
design of mixture experiments concerning gasoline blending. The objective of Gasoline
Blending study was to develop a blending model for five-component system with the
constraints given in Table [1]. Here the response variable y = research octane at 2.0

Table 1: Constraints for Gasoline Blending

Components Range

z1 =Butane 0.0 − 0.50

z2 =Isopentane 0.0 − 0.30

z3 =Reformate 0.0 − 0.35

z4 =Cat cracked 0.0 − 0.60

z5 =Alkylate 0.0 − 0.60

grams of lead per gallon. The data in Table [2] is reproduced from Snee (1981) (pp.124).
Berliner (1987) focused on a remark given by Snee (1981) i.e. ”These components were

being used to make a premium grade gasoline, and it was desired that the blends had
octanes in the 97-101 range” (pp.123). The standard deviation of the octane are known
and taken as 0.25 and 0.4. The desired octane target value is taken here as T = 99.
The prior distribution for the unknown parameters (θ, σ2) is based upon the knowledge
of the chemical process involved in gasoline mixing. Berliner (1987) considered only a
uniform generalized prior, π(θ) = 1 on the regression coefficients. However, he avoided
the specification of a prior for σ2 and simply computed the Bayes rules for various fixed
values of σ2. So, for the given example with the uniform prior on θ, the Bayes rule
proved to be insensitive to the prior on σ2. Using the optimization problem stated in
Eq. [8], the future observations obtained for different values of σ2, with the respective
risk values are given in Table [3]. The table is reproduced from Berliner (1987) (pp.459)
for Squared Error/ Quadratic Loss Function (SELF/QLF).
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Table 2: Gasoline Blending Data

z1 z2 z3 z4 z5 Y

0.000 0.000 0.350 0.600 0.060 100.0

0.000 0.300 0.100 0.000 0.600 101.0

0.000 0.300 0.000 0.100 0.600 100.0

0.150 0.150 0.100 0.600 0.000 97.3

0.150 0.000 0.150 0.600 0.100 97.8

0.000 0.300 0.049 0.600 0.051 96.7

0.000 0.300 0.000 0.489 0.211 97.0

0.150 0.127 0.023 0.600 0.100 97.3

0.150 0.000 0.311 0.539 0.000 99.7

0.000 0.300 0.285 0.415 0.000 99.8

0.000 0.080 0.350 0.570 0.000 100.0

0.150 0.150 0.266 0.018 0.600 101.9

0.150 0.150 0.082 0.100 0.600 100.7

0.000 0.000 0.300 0.461 0.239 100.9

0.150 0.034 0.116 0.100 0.600 101.2

0.068 0.121 0.175 0.444 0.192 98.7

0.067 0.098 0.234 0.332 0.270 100.5

0.000 0.300 0.192 0.208 0.300 100.2

0.150 0.150 0.174 0.226 0.300 100.6

0.075 0.225 0.278 0.424 0.000 99.1

0.075 0.225 0.000 0.100 0.600 100.4

0.000 0.126 0.174 0.600 0.100 98.4

0.075 0.000 0.225 0.600 0.100 98.2

0.150 0.150 0.000 0.324 0.376 99.4

0.000 0.300 0.192 0.508 0.000 98.8

2 Bayesian Control for Mixtures under Precautionary and
Modified Loss functions

The QLF is a symmetric loss function which allows estimating zero value. This means
no risk is expected. But in some cases it is not good to under estimate the potentiality
of an event as to overestimate it. Generally in risk analysis we investigate potentiality
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Table 3: Bayes Control Rules under SELF/QLF

σ2 T Risk Value x1 x2 x3 x4 x5

0.0625

97 0.0104 0.0675 0.1872 0.0934 0.6519 0.0000

99 0.0026 0.0660 0.1579 0.1554 0.4345 0.1844

100 0.0058 0.0648 0.1395 0.1970 0.1953 0.4034

0.1600

97 0.0625 0.0675 0.1870 0.0939 0.6516 0.0000

99 0.0068 0.0660 0.1598 0.1554 0.4343 0.1845

100 0.0147 0.0648 0.1395 0.1969 0.1957 0.4031

and effects of unwanted events. The probability or a failure rate is used to measure
potentiality. Bayes approach is used to estimate this failure rate. The two loss functions
are defined below and used in the problem of Bayesian control for mixtures.

2.1 Precautionary Loss Function

In this section, we will consider Bayesian estimation with other loss functions. This
dilemma is extremely significant for realistic applications as the loss function should
replicate the cost that is associated with a certain estimation error. The following two
examples illustrate this more clearly: Consider the problem of constructing a dam.
Underestimating the peak water level from older measurements is clearly more serious
than overestimating it and this fact should be reflected in the choice of the loss function
L(θ, a). This illustration motivates the use of an asymmetric loss function and it is
obvious that the use of asymmetric loss functions as quadratic loss function is not suited
for such an estimation problem. Another example that gives rise to other loss functions
can be found in the field of image processing. Traditionally, the mean squared error
is used to evaluate images and therefore many algorithms are optimized for this loss
function. The problem with the MSE is that it does not well represent the human
perception. Images which have a small mean squared error may still look very different
and therefore it is suggested to use other distance measures. One is the structural
similarity (SSIM) index, for more details see Uhlich and Yang (2012) and the references
cited therein. However, calculating the optimal Bayesian estimator (OBE) for many
non-standard loss functions is not trivial and it can often only be stated in terms of an
optimization problem which has to be solved.
Norstram (2012) defined asymmetric loss function called Precautionary loss function
(PLF). According to Norstram (2012) these loss functions approach infinitely near the
origin to avoid under estimation. It is much useful especially when under estimation may
lead to a serious effect (Ali et al. (2012)). The loss function L(θ, a) is a Precautionary
loss function iff:
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1. L(θ, a) is downside damaging.

2. For each fixed θ, L(θ, a)→∞ when a→∞

A loss function is downside damaging if L(θ, a − ε) ≥ L(θ, a + ε) (for any ε > 0) and

a is any estimate of θ. The loss function L(θ, a) = (θ−a)2
a satisfies the criteria of being

precautionary and its Bayes estimate is easy to calculate. Now, if we consider that
y = (Y − T )/

√
T in Eq. [2] then Eq. [4] becomes:

E

(
Y − T√

T

)2

= E(θx+ ε)
′
(θx+ ε) (9)

The left hand side of Eq. [9] is the PLF and at the right hand side is the SELF. Hence,
from Eq. [9] the minimization of the PLF L(Y, T ) is equal to the minimization of SELF
L(θ, x) = E{(θx)

′
(θ, x)}. So, we use the optimization problem given in Eq. [8]. Using

the example given in section 1, we first compute the OLS estimates under PLF as given
below:

θ̂LS =


0.1456

−0.0851

0.8928

−0.4264

0.2738


Now C(θ) for σ2 = 0.0625 is

C(θ) =


0.5884 0.1113 0.0410 −0.1015 −0.0923

0.1113 0.2020 0.0299 −0.0641 −0.0720

0.0410 0.0299 0.2113 −0.0866 −0.0275

−0.1015 −0.0641 −0.0866 0.0695 0.0284

−0.0923 −0.0720 −0.0275 0.0284 0.0574


Then B(θ̂LS) given in Eq. [8] provides,

B(θ̂LS) =


0.5886 0.1111 0.0423 −0.1022 −0.0918

0.1111 0.2021 0.0292 −0.0638 −0.0722

0.0423 0.0292 0.2193 −0.0904 −0.0251

−0.1022 −0.0638 −0.0904 0.0713 0.0273

−0.0918 −0.0722 −0.0251 0.0273 0.0582


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B(θ̂LS) is a positive definite and its unique solution exists. We solve the optimization
problem given in Eq. [8] and obtain the future observations which are given below,

x∗ =


0.0660

0.1589

0.1566

0.4289

0.1896


The expected loss or the risk using PLF is 0.0013. Similarly, the whole process is
repeated for σ2 = 0.16. We have also tried this control problem for the target values
T = 97, 99, 100. The Bayes control rules under PLF are given below in Table [4].

Table 4: Bayes Control Rules under PLF

σ2 T Risk Value x1 x2 x3 x4 x5

0.0625

97 0.0047 0.0664 0.1606 0.1198 0.6302 0.0230

99 0.0013 0.0660 0.1589 0.1566 0.4289 0.1896

100 0.0014 0.0654 0.1502 0.1748 0.3230 0.2866

0.1600

97 0.0106 0.0668 0.1737 0.1266 0.6016 0.0313

99 0.0064 0.0700 0.1184 0.2326 0.5355 0.0435

100 0.0035 0.0654 0.1511 0.1730 0.3325 0.2780

2.2 Modified Squared Error Loss Function

The modified squared error loss function (MSELF) may be defined as L(θ, a) =
(
θ−a
a

)2
.

Next, we use the optimization procedure under MSELF as defined in section 2.1. The
optimization problem posed by Berliner is to minimize the expected square of the future
observation y = θ

′
x + ε where y = (Y − T )/T , x = (x1, x2, · · · , xq)

′
. Thus,

minE

(
Y − T
T

)2

= E(θx+ ε)
′
(θx+ ε) (10)

The left hand side of Eq. [10] is the MSELF and at the right hand side of Eq. [10] is
the SELF. Thus, from Eq. [9] the minimization of the MSELF L(Y, T ) is equal to the
minimization of SELF. Again using the example given in section 1, we first compute the



Electronic Journal of Applied Statistical Analysis 183

OLS estimates under the MSELF, with the target value T = 99 and σ2 = 0.0625.

θ̂LS =


0.0146

−0.0085

0.0897

−0.0428

0.0275


Then B(θ̂LS) given in Eq. [8] provides,

B(θ̂LS) =


0.5886 0.1111 0.0423 −0.1022 −0.0918

0.1111 0.2021 0.0292 −0.0638 −0.0722

0.0423 0.0292 0.2193 −0.0904 −0.0251

−0.1022 −0.0638 −0.0904 0.0713 0.0273

−0.0918 −0.0722 −0.0251 0.0273 0.0582


Again, B(θ̂LS) is a positive definite and its unique solution exists. We solve the opti-
mization problem given in Eq. [8] and obtain the future observations which are given
below,

x∗ =


0.0658

0.1556

0.1636

0.3882

0.2268


The expected risk using MSELF is 0.0012. Again, the whole process is repeated for
σ2 = 0.16. We have also tried this control problem for the target values T = 97, 99, 100.
The Bayes control rules under PLF are given below in Table [5].

Table 5: Bayes Control Rules for MSELF

σ2 T Risk Value x1 x2 x3 x4 x5

0.0625

97 0.0015 0.0659 0.1570 0.1606 0.4057 0.2108

99 0.0012 0.0658 0.1556 0.1636 0.3882 0.2268

100 0.0012 0.0657 0.1550 0.1651 0.3798 0.2344

0.1600

97 0.0034 0.0657 0.1562 0.1626 0.3930 0.2225

99 0.0031 0.0657 0.1556 0.1638 0.3856 0.2293

100 0.0031 0.0657 0.1552 0.1644 0.3823 0.2324



184 Hasan, Ali, Khan

3 Discussion and some Final Remarks

The main theme of this article is to use some alternative loss functions in place of
QLF, given in Berliner (1987). The SELF, being a symmetric loss function, gives equal
weights to over and under estimates. The expected loss obtained through the QLF, for
σ2 = 0.0625 and with the target value T = 99, as given in Castillo (2007), is 0.00263.
When PLF is used, the expected loss reduces to 0.0013 and for MSELF it becomes
0.0012. So this concludes that if we use asymmetric loss function (PLF) it outperforms
SELF. Also, we see that the MSELF is a good replacement for a symmetric SELF, with
the reduction in expected loss. Further when we compare the risk values, for two values
of σ2, with the different target values of the Table [3], to the risk values in Table [4] and
Table [5], it can be concluded that both, the PLF and MSELF are the better choice for
the Bayesian control problem in mixture experiments.

The conclusion about the preference of PLF and MSELF as compared to SELF can

Figure 1: Comparison of Loss Functions for σ2 = 0.0625

Figure 2: Comparison of Loss Functions for σ2 = 0.1600

be verified from Figure [1] and Figure [2]. The results are independent of the choice of
data set and also can be verified for other examples. In Figure [1], when the parameter
value is small, we get the estimated value of parameter under SELF/QLF has increasing
trend but under MSELF (modified quadratic loss function) is smaller than the PLF and
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SELF. Similar conclusions can be drawn from Figure [2]. Actually the SELF gives the
equal weights to overestimation and underestimation but the other two loss functions
prevent this trend. It is assumed the error term in the mixture model follows normal
distribution, and hence the response also follows it. We have used the uniform prior
for the unknown coefficients of mixture model. But in some mixture experiments the
response follows Logistic or Poisson distribution; ultimately the prior distribution will
have to be changed for the unknown coefficients of mixture model. As Berliner (1987)
avoided the specification of a prior for σ2 and simply computed the Bayes rules for
various fixed values of σ2 , some future work can be done by using some suitable prior
for σ2. For the quadratic programming solutions we have used MATLAB Ver.7.0.
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