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Abstract: In this paper longitudinal responses data are considered and it is 
showed how to benefit of the use of multilevel setting to model data structure. In 
fact, both longitudinal and item responses data can be ascribed to hierarchical 
generalized linear model, so that the whole data complexity is effectively modeled 
in a 3-level multilevel structure. An application to chemotherapy side effects is 
showed. 
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1. Introduction 
 
Longitudinal data belong to the more general family of correlated data. Correlated data embraces 
a large set of data structures, like multivariate observations, clustered data, repeated measures, 
spatially correlated data and, in particular, longitudinal data [9]. Despite of the common 
membership, statistical techniques for longitudinal data analysis are specifically devoted for this 
particular research perspective. A dataset is longitudinal if it records the same type of 
information on the same statistical units at multiple points in time and time itself is object of 
scientific investigation. Even if there are several statistical modeling techniques to analyze 
repeated measures data, Multilevel Model (MLM, or Hierarchical Linear Model) appears as a 
very helpful tool (see, for example, [1] and [8]) because it takes into account of the hierarchical 
setting of longitudinal data: the development over time is modelled by a linear regression 
equation and each individual gets his own growth curve, specified by individual regression 
coefficients that may depend on individual attributes [3]. Another advantage of MLM in 
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longitudinal data analysis is the fact that MLM allows to managing incomplete time data where 
number of time points can vary across individuals and time points need not to be equally spaced. 
Data considered in this contribution are obtained by administering, on multiple occasions, a set 
of items included in a questionnaire devoted to measure, through ordinal responses, an individual 
latent trait, i.e. a personal characteristics not directly observable. Goals of the analysis are to 
obtain person and item measures that locate each individual and each item into a unique 
continuous interval scale and to study the behavior of such measures across time points. To 
obtain items and persons measures on the same interval scale, Rasch Model (RM) appears to be a 
good tool because of its capacity to estimate both persons and items parameters on an interval 
scale. Also, as pointed out by several authors, RM can be interpreted as a member of 
Hierarchical Generalized Linear Model (HGLM) considering items as first-level units and 
persons as second-level units, in a fully crossed design (see, for example, [4], [7] and [2]). The 
belonging of RM to HGLM has many advantages, and, in particular, the possibility to easily add 
others levels to the model to take into account the dependency among observations when lower-
level units are nested within over-setting. Since data considered are repeated measures taken in 
different time points, the HGLM for Repeated Measures [5] with three levels appears a suitable 
model to accommodate data structure, where: first level is represented by items, second level is 
represented by time (taking values 0, 1, 2, …) and  third level is represented by persons. The 
HGLM for Repeated Measures is described in next section and an application of the model to 
investigate malaise severity and site effects during chemotherapy cycle will close the paper. 
 
 
2. Longitudinal Ordinal Rasch model in MLM framework 
 
Kamata [4] has established the equivalence between dichotomous Rasch model and two levels 
HGLM. After his contribution, other authors (see, for example, [5]) have extended Kamata’s 
result to Polytomous Rasch Model (PRM), and, in particular, to the case in which response 
categories are ordinal. Denoting with Yij the response of person i (i=1,…, n) to item j (j=1,…, J) 
and with k (k=1,…, K) the k-th ordinal response category, RM implies that conditional 
probability of Yij is a function of three sets of parameters (person, item and threshold 
parameters). In particular, considering the so called cumulative logit model and denoting with pijk 
the probability that Yij takes values higher than or equal to k, i.e. pijk=P(Yij≥k), PRM model 
assumes the form:  
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This model is the so called rating scale model (RSM), where αi-s are person parameters 
(measuring the so called latent trait), θj-s are item parameters (constant across persons) and τk-s 
are threshold parameters (constant across persons and across items). The HGLM formulation of 
RSM is obtained by considering, for person i, a dummy variable Xqij taking value 1 when q=j 
and 0 if q≠j for item j, q=1,…, J-1 (the dummy variable for the last item is dropped to obtain a 
full rank matrix). Then the PRM assume the form: 
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Right side of model (2) alone is a structural model, called level-1 or item-level model: at this 
level β-s are item parameters, were β0i (the intercept term) is associated to dropped item (the last) 
and can be interpret as the expected item effect of this item for person i. The other βqi parameters 
are specific effects of items j (j=1,..., J-1), expressed in term of difference form β0i. Threshold 
parameters are denoted by δki. Note that, at item-level model, item parameters are not constant 
across persons. A level-2 model is obtained adding the left-side of the (2): this two-level logistic 
model is equivalent to RSM where u0i are person parameters, fixed across items, γ-s are item 
parameters, fixed across persons, and δ-s are threshold parameters, fixed across both persons and 
items. While in RM both item and person are fixed effect, in HGLM person effects u0i are 
random with distribution N[0,var(u0i)]. Putting all together the two sides of the (2), the following 
model for item q is obtained: 
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where parameters (γ0 + γq0), δk and  u0i are equivalent, respectively, to αi , τk and θj of model (1). 
Finally, to consider longitudinal data, a third level is added. The three-level model assumes the 
form: 
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where: dmi (m=1,…, M) is time variable coded so that it takes value 0 for m=1; subscript m 
indicates second-level units; u0mi~N[0,var(u0mi)], with variance of u0mi constant for every third-
level units; note that, at level-2, item location βqmi are supposed nonrandom function of time.  
Model (4) allows the third-level mean effect to vary across units, so that it models variation in 
growth trajectories among persons. In fact, while item location’s intercept and linear coefficient 
for time remain constant across both the second and the third-level units, the latent trait 
parameters can vary randomly across persons. The π-s parameters represent: π000 the average 
overall latent trait at time 0; π010 the overall linear time effect; πq00 overall item location at time 
0; πq10 is the overall change in item location over time. The random effects r00i and r01i are 
assumed N[0,Σ], where Σ is the variance-covariance matrix. Combining the three sides of the 
(4), model for item q can be obtained in a similar way as in (3). 
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3. Application 
 
The model proposed in the previous section is applied to observational cancer data. A group of 
88 women with breast cancer were asked to fill a questionnaire, administrated at the end of six 
consecutive chemotherapy cycles, to self assess their level of malaise. The tool consists of 15 
items that refer to both physical (pain, nausea and vomiting, fatigue, dry mouth, swallowing 
difficulty, diarrhoea, constipation, alopecia) and psychological (insomnia, sleepiness, anger, 
anguish, sadness, anxiety, depression) side effects. Responses regard, for each side effect, the 
level of malaise in a 4-point Likert scale: 1=not at all, 2=slight, 3=a lot and 4=very much. There 
are no missing data. The number of observations in the data set is 7920 (responses of 88 women 
to 15 items in 6 cycles). The aim of this analysis is to investigate how the patient malaise (the 
latent trait or person parameters) changes over time assuming that side effects severity (item 
parameters) are fixed across chemotherapy cycles and patients. The program GLLAMM [6], was 
used to perform the analysis. Although model (4) is very flexible, with the possibility to easily 
add higher levels and individual and/or contextual covariates, it is very computer intensive.  So it 
is useful to follow a step-by-step procedure to estimate the model: at each step estimated 
parameters are saved and then used as initial values for the next, more complex, model.  
 
Table 1. Parameters estimate of the final model. 

Fixed effects Coefficient (SE) Standard Error 

Swallowing difficulty -2.994 0.123 

Diarrhea -2.600 0.112 

Insomnia -2.325 0.109 

Constipation -2.087 0.102 

Dry mouth -0.632 0.083 

Sadness  0.610 0.080 

Anger  0.641 0.081 

Fatigue  0.720 0.087 

Sleepiness  1.170 0.083 

Depression  1.305 0.082 

Anguish  1.558 0.082 

Anxiety  2.226 0.084 

Alopecia  2.412 0.085 

Nausea  2.935 0.086 
Chemotherapy cycle 2   0.761 0.085 
Chemotherapy cycle 3   0.958 0.086 
Chemotherapy cycle 4   1.563 0.087 
Chemotherapy cycle 5   2.073 0.089 
Chemotherapy cycle 6   2.855 0.094 
Thresholds paramaters Threshold Standard Error 
δ1  0.414 0.071 
δ2  2.702 0.079 
δ3  5.477 0.099 
Random Effects Parameter Standard Error 
Var(r00i)  0.083 0.031 
Var(r01i)  0.002 0.001 
Cov(r00i,r01i)  0.012 0.006 
Deviance 14059.16  
!

 
Note: Reference categories are item: Pain,  Chemotherapy cycle: cycle 1. 
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After a preliminary analysis of models deviances (not reported for brevity), the final model has: 
random intercept,  random slope, overall item location parameters at time 0, the side effects  and  
five different overall linear time effect parameters.  Last parameters express the chemotherapy 
cycle effects (note that the time variable dm is a categorical one with six levels). The  parameters 
of the change in item location over time are not significant. Table 1 shows estimation for fixed 
parameters (side and chemotherapy cycle effects), thresholds and the variances of the random 
intercept and slope parameters. Results indicate that side effects, during the whole therapy, are 
all significant, even if psychological aspects are more severe than those physical, except for 
alopecia (see also Figure 1.). The coefficients of chemotherapy cycle effects indicate that the 
level of malaise increase during the therapy.  
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Figure 1. Side effects from the lowest to the highest intensity. 

 
With regard to the random effects, the Wald tests, for the variance of the intercepts and the slops, 
are significant. This means that the variability between patients regarding the intercept (the 
average level of malaise at the beginning of the therapy) and the linear time effect (the change in 
malaise intensity as therapy occasions increase) is relevant. Note that the variance of the random 
slope is very small: this suggests that the trend of malaise severity is almost the same for all 
patients (see Figure 2). 
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Figure 2. Patients latent growth curves. 
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The relationship between intercept and slope of patient growth curves (Cor(r00i,r01i)=0.856) is 
positive suggesting that patients with high initial level of malaise have a faster rate than those 
with initial moderate or low levels of malaise. 
 
 
4.  Concluding remarks 
 
The advantage of considering the longitudinal Rasch model in the framework of the multilevel 
models is to allow flexibility in the data structure, with the possibility to easily add higher levels 
and individual and/or contextual covariates, and also to investigate the relationship between 
intercept and slope of the individual latent growth curves.  
 
 
References 
 
[1]. Bryk, A.G., Raudenbush, S.W. (1987). Application of hierarchical linear models to 

assessing change. Psychological Bulletin, 101,147-158. 
[2]. Doran, H., Bates, D., Bliese, P. Dowling, M. (2007). Estimating the Multilevel Rash 

Model: With the lme4 Package, Journal of Statistical Software, 20, 1-18. 
[3]. Hox, J.J. (2009). In: T.D. Little, K.U. Schnabel, & J. Baumert (Eds.) Modeling 

longitudinal and multiple-group data: Practical issues, applied approaches, and specific 
examples. Hillsdale, NJ: Erlbaum. 

[4]. Kamata, A. (2001). Item Analysis by the Hierarchical Generalized Linear Model, Journal 
of Educational Measurement, 38, No.1, 79-93. 

[5]. Pastor, D.A., Beretvas, S.A. (2006). Longitudinal Rasch Modeling in the Context of 
Psychotherapy Outcomes Assessment, Applied Psychological Measurement, 30, 100-120. 

[6]. Rabe-Hesketh, S., Skrondal, A., Pickles, A. (2004) GLLAMM Manual. U.C. Berkeley 
Division of Biostatistics Working Paper Series, Working Paper 160 

[7]. Raudenbush, S.W., Johnson, C., Sampson, R. J. (2003). A Multivariate, Multilevel Rasch 
model with application to self-reported criminal behavior, Sociological Methodology, 3 (1), 
169-211. 

[8]. Snijders, T. (1996). Analysis of longitudinal data using the hierarchical linear model, 
Quality & Quantity, 30, 405-426. 

[9]. Verbeke, G, Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New 
York, Springer-Verlag. 

 
 
 
 
 
 
 
 
This paper is an open access article distributed under the terms and conditions of the Creative Commons 
Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License. 


