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Abstract: Since its introduction, the classical linear factor model has been 
central in many fields of application, notably in psychology and sociology, and, 
assuming continuous and normally distributed observed variables, its likelihood 
analysis has typically been tackled with the use of the EM algorithm. For the case 
in which the observed variables are not Gaussian, extensions of this model have 
been proposed. Here, we present a hierarchical factor model for binomial data 
for which likelihood inference is carried out through a Monte Carlo EM 
algorithm. In particular, we discuss some implementations of the estimation 
procedure with the aim to improve its computational performances. The binomial 
factor model and the Monte Carlo EM estimation procedure are illustrated on a 
data set coming from a psychological study on the evaluation of the professional 
self-efficacy of social workers. 
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1. Introduction 
 
The use of latent variable models is widespread in all fields of applications for the analysis of 
complex data sets and for the investigation of theoretical hypotheses. In this respect, the classical 
linear factor model constitutes in many instances the reference tool for the discovery of 
unobserved variables responsible for the correlation in the observed data, and the expectation-
maximization (EM) algorithm provides the basic procedure for the likelihood estimation of its 
parameters. In social sciences, where the observed (manifest) variables are often non-Gaussian 
(categorical, for instance), many extensions of the classical factor model have been developed. 
The work in [1] constitutes one of the main references for the analysis of discrete and categorical 
multivariate data using latent variable models. More recently, [8] discusses a latent trait model 
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for mixed outcomes in the class of the generalized linear models, and proposes the use of the 
Monte Carlo EM (MCEM) algorithm for the inferential analysis of a model with binomial and 
Gaussian manifest variables. Still adopting the MCEM algorithm, [6] proposes an extension of 
the classical factor model, with more than one common latent variable, for manifest variables 
having a distribution in the exponential family. In contrast, for ordered manifest variables and for 
manifest variables in the exponential family, quite different estimation procedures have been 
adopted in [5] and in [10] where a marginal likelihood EM approach and a simulated EM 
algorithm have been applied. Another approach for the analysis of mixed (continuous and 
discrete) outcomes has been proposed in [9] where polytomous variables are defined via 
unknown threshold parameters applied to some underlying continuous variables. In a Bayesian 
inferential context, [2] proposes a mixture of generalized linear models to model the joint 
distribution of a set of underlying variables related, through distinct link function, to the 
observed outcomes. Notwithstanding the several proposals appeared in the literature, the 
computational burden required for the inferential analysis of non-Gaussian factor models is still a 
challenge. Adopting a likelihood based inferential approach, the stochastic versions of the EM 
algorithm, such as the MCEM algorithm, seem to work well, but their computational efficiency 
decrease rapidly as the number of manifest and latent variables increases. In this work, we 
consider a hierarchical factor model for binomial data and discuss some issues related to the 
implementation of the MCEM algorithm. The paper is organized as follows. In Section 2 we 
introduce our binomial factor model, whereas in Section 3 we discuss some aspects related to the 
implementation of the MCEM algorithm. Then in Section 4 we apply our estimation procedure 
to a psychological data set, and in Section 5 we end with some conclusions. 
 
 
2. A hierarchical binomial factor model 
 
Let us present here a hierarchical factor model for multivariate binomial observations. Let yik, 
i=1,…,m, k=1,…,K, be a set of real observations (each taking values in {0,1,2,…,n}) relative to 
K subjects and to m variables (items). For these observations we assume that, for any given i and 
k, conditionally on the latent random variables Zik, the random variables Yik have conditional 
distributions f(y;Mik), that is, Yik|Zik ~ f(y;Mik), specified by the values of the conditional 
expectations Mik=E[Yik|Zik], and that h(Mik)= βi+Zik, for some parameters βi and some known link 
function h(·). Specifically, we assume that the data are conditionally distributed as Binomial, that 
is, that, for any i and k, 
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so that Mik=n·πik, and that the linear predictor βi+Zik is related to the conditional mean Mik 
through a logit link function, that is, logit(πik)=ln(πik/(1-πik))=βi+Zik, and so 
Mik=n·∙eβi+Zik/(1+eβi+Zik). For the latent part of the model we adopt the following linear factor 
structure. For any i and k, let Zik=ΣP

p=1 aip Fpk+ξik, where aip are m×P coefficients and the latent 
variables Fpk and ξik represent common factors (indexed by p=1,…,P) and unique factors 
(indexed by i=1,…,m), respectively. We further assume that Fpk (responsible for the correlation 
between the Zik) are independently and identically distributed (i.i.d.) as standardized Gaussians, 
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and ξik are i.i.d. as Gaussians with mean zero and variance equal to ψi (Figure 1 shows the 
conditional independence structure of the model). Let us note that, as the classical factor model, 
our model is not identifiable. Indeed, for any orthogonal P×P matrix G with elements gqp 
(q,p=1,…,P), such that GGT=GTG=I, we have that the variables F(G)

qk=ΣP
p=1 gqp Fpk, q=1,…,P, 

are still Gaussians with mean zero and variance one, so that they are not distinguishable from the 
common factors Fpk, p=1,…,P. However, this is the only indeterminacy in the model. As far as 
the latent variables Zik are concerned, defining ςi2=Var[Zik], for i=1,…,m, and ςij=Cov[Zik,Zjk], for 
i≠j, we have that ςi2=ΣP

p=1 aip
2+ψi, and ςij=ΣP

p=1 aipajp, for i≠j. This correlation structure is 
responsible for the correlation between the observable Yik. Moreover, as in classical linear factor 
analysis, the coefficients aip can be interpreted in terms of covariances between the latent Zik and 
the common factors Fpk. In fact, Cov[Zik,Fpk]=aip, whereas the correlation between Zik and Fpk is 
given by Corr[Zik,Fpk]=aip/ςi2. Defining the standardized loadings λip=aip/ςi2, we can write, for i≠j, 
Corr[Zik,Zjk] = ςij/(ςi ςj) = (1/(ςi ςj)) ΣP

p=1 aip ajp = ΣP
p=1 λip λjp, and, by noting that Corr[Zik,Zik] = 1 

= ΣP
p=1 (aip/ςi)2 + (ψi/ςi2) = ΣP

p=1 λip
2 + (ψi/ςi2), we derive that 0 ≤ ΣP

p=1 λip
2 ≤ 1. Though we are 

here concerned with Binomial observations, the present model can be adapted to deal with 
Poisson, Gamma or other kind of manifest variables. 
 

 
Figure 1. Directed acyclic graph representing the conditional independence structure of the model. 
 
 
3. Likelihood inference through the MCEM algorithm 
 
The model depends on the parameter vector ϑ=(β,ψ,A), where β=(β1,…,βm)T, ψ=(ψ1,…,ψm)T, 
and A=(a1,…,am)T, with ai=(ai1,…,aip), for i=1,…,m. For the implementation of the MCEM 
algorithm we need to work with the complete likelihood (accounting also for the unobserved 
variables) which can be factorized as: 
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where y=(y1,…,ym)T with yi=(yi1,…,yiK) for i=1,…,m, F=(F1,…,FP)T with Fp=(Fp1,…,FpK) for 
p=1,…,P, and ξ=(ξ1,…,ξm)T with ξi=(ξi1,…,ξiK) for i=1,…,m, and 
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Taking the logarithm of the complete likelihood we get the complete log-likelihood: 
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This complete log-likelihood can be maximized numerically with respect to ϑ. In particular, the 
maximization with respect to ψi, i=1,…,m, (that is, the maximization of ln f(ξi;ψi)) leads to m 
closed form formulas, whereas the maximization with respect to βi and aip, i=1,…,m and 
p=1,…,P, can be carried out numerically by maximizing separately the functions li(βi,ai1,…,aiP), 
i=1,…,m. Let us note that this numerical maximization can be carried out by using standard 
maximization techniques since each function li(βi,ai1,…,aiP) admits just one point of stationarity, 
which is a local and global maximum. Indeed, it is easy to see that the Hessian matrices of the 
functions li(βi,ai1,…,aiP), i=1,…,m, are negative definite (almost surely) for every value of the 
parameters βi, ai1,…,aiP, that is, that the functions li(βi,ai1,…,aiP) are concave with a unique 
maximum, and that the complete log-likelihood lc(ϑ) is concave with a unique local and global 
maximum. On the other hand, in the case in which the loadings ai1,…,aiP are known, it is 
possible to see that the complete likelihood belongs to the curved exponential family and that it 
is maximized by two continuous functions. In this situations, we can invoke the results in [3] to 
state that the (stable) MCEM algorithm converges almost surely to some values in the set of 
stationary points of the likelihood. 
 
 
4. An application to psychological data 
 
Our binomial factor model and the Monte Carlo EM estimation algorithm are illustrated on a 
data set coming from a psychological study regarding the evaluation of the professional self-
efficacy of social workers. Self-efficacy is defined as a person’s belief in her own ability to 
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succeed in specific situations. In professional contexts, a high level of self-efficacy is strictly 
associated to good professional performances. Self-efficacy can be measured indirectly through 
ad-hoc questionnaires. Our data is relative to a questionnaire with 11 items, each of which can be 
answered on a Likert scale made up of 7 ordered categories: the higher the category, the greater 
the level of self-efficacy. In particular, here we are interested in the analysis of three main 
aspects of self-efficacy: ‘procedural’, ‘affective’ and ‘communicative’, representing, 
respectively, the self-efficacy in applying the standard procedures regarding specific situations, 
the self-efficacy in managing emotions, and the self-efficacy in communicating problems. To 
this end, we use our model to carry out a factor analysis assuming P=3 latent common factors 
and m=11 manifest variables (items). Also, since the answer to the 11 items can be given on a 
Likert scale with 7 categories, we assume for the observed data a Binomial distribution with n=6. 
The psychological study involved about 800 social workers and for our analysis we have selected 
100 questionnaires from the subset (of roughly 770 questionnaires) of those with no missing 
data. The MCEM estimation algorithm was implemented using the R and OpenBUGS software. 
Figure 2 shows the run of the MCEM algorithm, whereas Table 1 reports the corresponding 
estimates. 
 

 
Figure 2. MCEM traces (1200 iterations each involving up to 200 MCMC samples) of the loadings ai1, ai2 and 
ai3, for i=1,…,m, of the Binomial factor model. 
 
As in standard factor analysis, the three common factors extracted can be interpreted looking at 
the values of the standardized loadings. In particular, the first common factor seems more related 
to items 1, 5, 6, 7 and 11 and could be named ‘procedural’ self-efficacy; the second to items 2, 3 
and 4; and the third common factor to items 8, 9 and 10, and might represent ‘communicative’ 
self-efficacy. 
 
 
 
 



Minozzo, M., Ferrari, C. (2012). Electron. J. App. Stat. Anal., Vol. 5, Issue 3, 346 – 352. 

351 

Table 1. Estimated standardized loadings for a model with m=11, P=3 and n=6. For the MCEM algorithm we 
considered 200 iterations, each involving 200 MCMC samples. Reported estimates have been obtained by 
averaging over the last 30 iterations and using a varimax rotation. 
Item λi1 λi2 λi3 
Item 1 (‘welcome’)                       -0.865   -0.393  -0.302 
Item 2 (‘managing of impotence’)         -0.370   -0.810  -0.325 
Item 3 (‘loading on someone’)            -0.256   -0.864  -0.335 
Item 4 (‘containing anxiety’)            -0.469   -0.864  -0.254 
Item 5 (‘recognizing limits’)            -0.658   -0.643  -0.390 
Item 6 (‘compliance with commitments’)  -0.666   -0.372  -0.644 
Item 7 (‘abstaining rating’)              -0.803   -0.417  -0.414 
Item 8 (‘needing of support’)            -0.399   -0.565  -0.660 
Item 9 (‘seeking of support’)            -0.299   -0.329  -0.895 
Item 10 (‘professional involvement’)      -0.620   -0.305  -0.723 
Item 11 (‘redefine goals’)                -0.681   -0.466  -0.495 

 
 
5. Conclusions 
 
The analysis of the above data set with our hierarchical factor model for non-Gaussian data using 
the MCEM algorithm for the estimation of the parameters gave quite convincing results. Other 
work is needed to investigate further the convergence and the sampling properties of the MCEM 
algorithm and to diminish its computational cost. On this last point, it might prove useful to 
follow some of the suggestions appeared in [4] and [7] which allowed, in other contexts, for a 
considerable improvement of the computational performances of the estimation procedures. 
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