
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v7n2p326

Bayesian analysis of censored Burr XII distribu-
tion
By Danish M. Y., Aslam M.

Published: 14 October 2014

This work is copyrighted by Università del Salento, and is licensed un-
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The paper deals with Bayesian estimation of unknown parameters of Burr
type XII distribution under the Koziol-Green model of random censorship
assuming both the informative and noninformative priors. We use different
symmetric and asymmetric loss functions to obtain the Bayes estimates. It is
seen that the closed-form expressions for the Bayes estimators cannot be ob-
tained; we propose Gibbs sampling scheme to obtain the approximate Bayes
estimates. Monte Carlo simulation is carried out to observe the behavior of
the proposed estimators and also to compare with the maximum likelihood
estimators. Based on the simulation study, we propose a set of estimators
of the model parameters. One real data analysis is performed and it is seen
that the proposed set of estimators fit the data best than the rest.

keywords: Random censoring, Bayes estimate, log-concave density, Gibbs
sampling, Markov chain Monte Carlo.

1 Introduction

There are several types of censoring schemes. The most popular among these are the type
I and type II censoring schemes. In these censoring schemes, objects on test are removed
from the test at the final termination of the test. In situations where it is desirable to
remove the objects from the test other than the final termination point, random censoring
scheme provide a suitable plan. Random censoring scheme is an important type of right
censoring in which the time of censoring is not fixed but taken as random. In a clinical
trial, for example, patients often enter into the study after some medical operation,
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therefore the enrolment time and hence the censoring time is random. In some medical
studies and longitudinal designs, individuals enter into the study simultaneously but the
censoring time depends on other random factors e.g., patients lost to follow-up, drop
out of the study, etc. The type I censoring scheme can be considered as a special case
of random censoring scheme in which censoring takes place at some fixed time point.

Let X1, X2, ..., Xn be independent identically distributed random variables with dis-
tribution function F(x), density function f(x) and let T1, T2, ..., Tn be also independent
identically distributed random variables with distribution function G(t) and density
function g(t). In the context of reliability and life testing experiments, X ′is are the true
survival times of n individuals censored by T ′i s from the right. The experiment thus
results in independent identically distributed random pairs (Y1, D1), ..., (Yn, Dn) where
Yi = Min(Xi, Ti) and Di = I(Xi ≤ Ti) is indicator of noncensored observation, for
i = 1, 2, ..., n. In random censorship model it is assumed that Xi and Ti, Yi and Di are
independent. Now it is simple to show that the joint density function of Y and D is

fY,D(y, d) = {fX(y)(1−GT (y))}d{gT (y)(1− FX(y))}1−d; y ≥ 0, d = 0, 1. (1)

In Green (1976) of random censorship, variables X and T satisfy the relation for some
β > 0

1−GT (y) = {1− FX(y)}β (2)

The relation (2) differentiates the Koziol-Green model from the general model of random
censorship. From (1) and (2), we have

fY,D(y, d) = fX(y){1− FX(y)}ββ1−d; y > 0, d = 0, 1. (3)

The Burr type XII is the most important distribution among the twelve distributions
introduced by Burr (1942). It covers a variety of curve shapes and provides a wide
range of values of skewness and kurtosis that can be used to model any general lifetime
data. The probability density and cumulative distribution functions of Burr type XII
distribution are

fX(x; θ, λ) = θλxλ−1(1 + xλ)−θ−1; x > 0, λ > 0, (4)

FX(x; θ, λ) = 1− (1 + xλ)θ. (5)

For the density function in (4) and the distribution function in (5), the expression in (3)
takes the following form

fY,D(y, d; θ, β) = θλyλ−1(1 + yλ)−θ(1+β)−1β1−d; y, θ, λ, β > 0, d = 0, 1. (6)

The marginal distributions of Y and D can be obtained from (6) as

fY (y; θ, λ, β) = θλ(1 + β)yλ−1(1 + yλ)−θ(1+β)−1; y, θ, λ, β > 0,
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fD(d; p) = pd(1− p)1−d; 0 ≤ p ≤ 1,

where p = P (Xi ≤ Ti) = 1
1+β .

Some of the important references on the topic include the following. Liang (2004) consid-
ered the exponential distribution under Koziol-Green model of random censorship with
known censoring parameter. Friesl (2007) dealt with Bayesian estimation in exponential
distribution under random censorship and investigated the asymptotic properties of the
estimators with particular stress on the Bayesian risk. Nigm (1988) discussed the predic-
tion bounds for the Burr model. Rampone and Ruse (2012) obtained the approximate
Bayes estimates of the Burr XII distribution using Lindleys approximation. Upadhyay
(2004) considered Bayesian analysis of generalized four-parameter Burr distribution for
complete and censored samples via Gibbs sampler. Li and Chai (2007) focused on the
empirical Bayes estimators of reliability performances for progressively type II censored
Burr XII distribution. Hussaini and Hussein (2011) provided a number of references on
the applications of Burr model in different fields of applied statistics and derived the
Bayes estimates using censored data from exponentiated Burr type XII population.

Although extensive work has been done on the statistical inferences of the unknown
parameters of the Burr distribution, however, this type of work has not been addressed
up to now. The aim of the paper is to obtain the Bayes estimators of the unknown
parameters of the model derived in (6) under different loss functions assuming different
sets of priors.

The rest of the paper is organized as follows. In Section 2, we derive the maximum
likelihood (ML) estimators of the unknown parameters. Section 3 contains the prior
distributions, loss functions, Bayes estimates using Gibbs sampling scheme. A simulation
study is considered in Section 4. A real data set is analyzed in Section 5 and finally, we
conclude the paper in Section 6.

2 Maximum Likelihood Estimation of Parameters

In this section, we derive the ML estimators θ̂,λ̂ and β̂ of θ, λ and β, respectively, assum-
ing the model defined in (6) holds. For the observed sample (y1, d1), (y2, d2), ..., (yn, dn) =
(y, d) of size n from (6), the likelihood function can be written as

l(θ, λ, β; (y, d)) = θnλn
n∏
i=1

yλ−1
i

n∏
i=1

(1 + yλi )−θ(1+β)−1β
n−

n∑
i=1

di
. (7)
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Thus the log-likelihood function is

L(θ, λ, β; (y, d)) = ln (l(θ, λ, β; (y, d))) = n ln θ + n lnλ+

(
n−

n∑
i=1

di

)
lnβ

− (1 + θ(1 + β))
n∑
i=1

ln(1 + yλi ) + (λ− 1)
n∑
i=1

ln yi. (8)

Differentiating (6) with respect to θ, λ and β, the three normal equations thus obtained
are

n

θ
− (1 + β)

n∑
i=1

ln(1 + yλi ) = 0, (9)

n

λ
− θ(1 + β)

n∑
i=1

yλi ln yi

1 + yλi
+

n∑
i=1

ln yi

1 + yλi
= 0, (10)

n−
n∑
i=1

di

β
− θ

n∑
i=1

(1 + yλi ) = 0. (11)

Solving these equations simultaneously, we have

β̂ =

n−
n∑
i=1

di

n∑
i=1

di

, (12)

θ(λ) =

n∑
i=1

di

n∑
i=1

ln(1 + yλi )

, (13)

λ = h(λ), (14)

where

h(λ) =


n∑
i=1

yλi ln yi
1+yλi

n∑
i=1

ln(1 + yλi )

− 1

n

n∑
i=1

ln yi

1 + yλi


−1

. (15)

Some numerical procedures are required to solve (13) and (14). We suggest the following
procedure: Start with a suitable initial value of λ, say λ(0), and obtain λ(1) from λ(1) =
h(λ(0)), λ(2) from λ(2) = h(λ(1)) and finally λ(n) from λ(n) = h(λ(n−1)). Stop the process
when |λ(n) − λ(n−1)| < ε, where ε is a pre-assigned tolerance limit. Once the MLE of λ
is obtained, the MLE of θ can be obtained from (13).
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3 Bayesian Estimation of Parameters

In this section, we discuss prior distributions for unknown parameters, loss functions
and Bayes estimates.

3.1 Prior distributions

The Bayesian analysis requires the choice of appropriate priors for the unknown parame-
ters in addition to the experimental data. Arnold and Press (1983) correctly pointed out
that there is no clear cut way in which one can say that one prior is better than the other.
The important thing in this connection is the relationship between the prior distribution
and the loss function. The model under consideration has two shape parameters and
one censoring parameter, and continuous conjugate priors for these parameters do not
exist. Nevertheless, we consider both the informative and noninformative priors and ob-
serve the results. First, we assume the following independent gamma priors for θ, λ and β

π1(θ) =
b
a1
1

Γ(a1)θ
a1−1e−b1θ; a1, b1, θ > 0

π2(λ) =
b
a2
2

Γ(a2)λ
a2−1e−b2λ; a2, b2, λ > 0

π3(β) =
b
a3
3

Γ(a3)β
a3−1e−b3β; a3, b3, β > 0.

 (16)

The assumption of independent gamma priors is not unreasonable. Many authors have
used these priors on the scale and the shape parameters of the two-parameter lifetime
distributions, see Gupta and Kundu (2006), Kundu (2008), Wahed (2006). It is to be
noted that the noninformative priors on the scale and the shape parameters are the
special cases of independent gamma priors. The joint prior density of the unknown pa-
rameters can be written from (16) as

π(θ, λ, β) ∝ θa1−1e−b1θλa2−1e−b2λβa3−1e−b3β (17)

Second, we consider a conditional gamma prior for θ given λ and a gamma prior for λ,
and an independent beta prior for p as

π4(θ|λ) = λa4
Γ(a4)θ

a4−1e−λθ; a4 > 0

π5(λ) =
b
a5
5

Γ(a5)λ
a5−1e−b5λ; a5, b5 > 0

π6(p) = Γ(a6+b6)
Γ(a6)Γ(b6)p

a6−1(1− p)b6−1; a6, b6 > 0

 (18)

For the transformation p =
1

1 + β
, the prior density for β is obtained from π6(p) as

π7(β) =
Γ(a6 + b6)

Γ(a6)Γ(b6)

βb6−1

(1 + β)a6+b6
. (19)
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Thus the joint prior density for θ, λ and β in this case is

g(θ, λ, β) ∝ θa4−1e−λθλa4+a5−1e−b5λβb6−1

(1 + β)a6+b6
. (20)

This prior density is formulated following Upadhyay (2004), Friesl (2007) and Hussaini
and Hussein (2011).

3.2 Loss functions

In order to select a best decision in decision theory, an appropriate loss function must be
specified. The most commonly used loss function is the squared error (SE) loss function
defined by l1(θ̂SE , θ) = (θ̂SE − θ)2, where θ̂SE is a decision rule to estimate parameter
θ. The Bayes estimator under SE loss function is

θ̂SE = E(θ), (21)

where E denotes the expectation with respect to the posterior distribution of θ.
The SE loss function is used when the loss is symmetric with respect to over estimation

and under estimation of equal magnitude. When the true loss is not symmetric with
respect to over estimation and under estimation, then the asymmetric loss functions are
used to represent the consequences of different errors ( Zellner (1986), Norstrom (1996)).
Since there is no specific way to identify a suitable loss function for a particular problem,
we, therefore, consider symmetric as well as asymmetric loss functions in our Bayesian
analysis.

The second loss function is the asymmetric precautionary (AP) loss function defined

by l2(θ̂AP , θ) = (θ̂AP−θ)2

θ̂AP
. This loss function is a special case of the general class of

precautionary loss functions introduced by Norstrom (1996). The Bayes estimator under
AP loss function is

θ̂AP = [E(θ2)]
1
2 . (22)

The third loss function is the quadratic loss function which is defined as l3(θ̂Q, θ) =
(θ̂Q−θ)2

θ . The Bayes estimator under quadratic loss function is

θ̂Q =
E(θ−1)

E(θ−2)
. (23)

The last one is the squared-log error (SLE) loss function defined by

l4(θ̂SE , θ) = (ln θ̂SE − ln θ)2 =

(
ln
θ̂SE
θ

)2

.

The Bayes estimator under SLE loss function is

θ̂SE = exp[E(ln θ)]. (24)
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3.3 The Bayes estimators under π(θ, λ, β)

In this section, we obtain the Bayes estimates of θ, λ and β under different loss functions
assuming the prior density as in (17). Combining the likelihood function in (7) and the
prior density in (17), the joint posterior density function of θ, λ and β given data is

π(θ, λ, β|(y, d)) ∝θn+a1−1e
−θ
(
b1+

n∑
i=1

ln(1+yλi )

)
λn+a2−1e−λb2

n∏
i

yλ−1
i

1 + yλi
β
n−

n∑
i=1

di+a3−1
e
−β×

(
b3+θ

n∑
i=1

ln(1+yλi )

)
. (25)

Thus the posterior expectation of any function of parameters, say U(θ, λ, β) can be
written as

ÛB(θ, λ, β) = E(U(θ, λ, β)|(y, d)) =

∞∫
0

∞∫
0

∞∫
0

U(θ, λ, β)π(θ, λ, β|(y, d))dθdλdβ

∞∫
0

∞∫
0

∞∫
0

π(θ, λ, β|(y, d))dθdλdβ

. (26)

However, it is not possible to evaluate (26) in closed-form. We use Gibbs sampling
scheme to obtain the Bayes estimates.

The full conditional forms of θ, λ and β can be obtained from (25) up to proportionality
as

π1(θ|λ, β, (y, d)) ∝ θn+a1−1e
−θ
(
b1+(1+β)

n∑
i=1

ln(1+yλi )

)
, (27)

π2(λ|θ, β, (y, d)) ∝ λn+a2−1e−λb2e
−θ(1+β)

n∑
i=1

ln(1+yλi )
n∏
i

yλ−1
i

1 + yλi
, (28)

π3(β|λ, θ, (y, d)) ∝ β
n−

n∑
i=1

di+a3−1
e
β(b3+θ

n∑
i=1

ln(1+yλi ))
, (29)

The full conditional forms (27) and (29) are the gamma densities, so the samples of
θ and β can be easily generated using any of the gamma generating routines. The full
conditional form (28) is log-concave since

∂2(π2(λ|θ, β, (y, d)))

∂λ2
=
−(n+ a2 − 1)

λ2
− (1 + θ(1 + β))

n∑
i=1

yλi (ln yi)
2

(1 + yλi )2
< 0.

Thus the samples of λ can be generated using the method suggested by Devroye (1984).
Now following the idea of Geman (1984) and using (27), (28), (29), it is possible to
generate samples of (θ, λ, β) from posterior distribution (25) and then to obtain the
Bayes estimates. Starting with suitable choice of initial values, say (θ0, λ0, β0) , we
suggest the following procedure to generate the posterior samples and then to obtain
the Bayes estimates:

Step 1: Generate θ1 from gamma

(
n+ a1, b1 + (1 + β0)

n∑
i=1

ln(1 + yλ0i )

)
.
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Step 2: Generate λ1 from the log-concave density function (28) using the method
suggested by Devroye (1984).

Step 3: Generate β1 from gamma

(
n−

n∑
i=1

di + a3, b3 + θ0

n∑
i=1

ln(1 + yλ0i )

)
.

Step 4: Repeat Steps 1-3 M times to obtain (λ1, θ1, β1), ..., (λM , θM , βM ).
Now the approximate Bayes estimates of θ, λ and β under SE loss function can ob-

tained from

θ̂SE =
1

M

M∑
j

θj , λ̂SE =
1

M

M∑
j

λj , and β̂SE =
1

M

M∑
j

βj .

The approximate Bayes estimates of θ, λ and β under AP loss function can be obtained
from

θ̂AP =

 1

M

M∑
j

θj

 1
2

, λ̂AP =

 1

M

M∑
j

λj

 1
2

, and β̂AP =

 1

M

M∑
j

βj

 1
2

.

The approximate Bayes estimates of θ, λ and β under quadratic loss function can be
obtained from

θ̂Q =

1
M

M∑
j

1
θj

1
M

M∑
j

1
θ2j

, λ̂Q =

1
M

M∑
j

1
λj

1
M

M∑
j

1
λ2j

and β̂Q =

1
M

M∑
j

1
βj

1
M

M∑
j

1
β2
j

.

The approximate Bayes estimates of θ, λ and β under SLE loss function can be obtained
from

θ̂SLE = exp

 1

M

M∑
j

ln θj

 , λ̂SLE = exp

 1

M

M∑
j

lnλj

 ,

and β̂SLE = exp

 1

M

M∑
j

lnβj

 .

3.4 The Bayes estimators under g(θ, λ, β)

In this section, we obtain the Bayes estimates of θ, λ and β under different loss functions
assuming the prior density as in (20). The joint posterior density function of θ, λ and
β given data is obtained by combining the likelihood function in (7) and the joint prior
density in (20) as

π(θ, λ, β|(y, d)) ∝ θn+a4−1e
−θ
(
λ+(1+β)

n∑
i=1

ln (1+yλ1 )

)
λn+a4+a5−1e−λb5

β
n−

n∑
i=1

di+b6−1

(1 + βa6+b6)

n∏
i=1

yλ−1
i

1 + yλi
.

(30)
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Thus the Bayes estimate of any function of parameters, say U(θ, λ, β) can be written as

ÛB(θ, λ, β) = E(U(θ, λ, β)|(y, d)) =

∞∫
0

∞∫
0

∞∫
0

U(θ, λ, β)π(θ, λ, β|(y, d))dθdλdβ

∞∫
0

∞∫
0

∞∫
0

π(θ, λ, β|(y, d))dθdλdβ

. (31)

However, it is not possible to evaluate (31) in closed-form. We again use the Gibbs sam-
pling procedure to approximate the Bayes estimates. The full conditional distributions
of θ, λ and β can be obtained from (30) as

π1(θ|λ, β, (y, d)) ∝ θn+a4−1e
−θ
(
λ+(1+β)

n∑
i=1

ln (1+yλi )

)
, (32)

π2(λ|θ, β, (y, d)) ∝ θn+a4+a5−1e−λ(b5+θ)e
−θ(1+β)

n∑
i=1

ln (1+yλi )
n∏
i

yλ−1
i

1 + yλi
, (33)

π3(β|θ, λ, (y, d)) ∝ β
n−

n∑
i=1

di+a6−1

(1 + β)a6+b6
e
−βθ

n∑
i=1

ln (1+yλi )
. (34)

The full conditional form (32) is gamma density, so the samples of θ can be easily
generated. The full conditional forms (33) and (34) are log-concave since

∂2(π2(λ|θ, β, (y, d)))

∂λ2
= −(n+ a4 + a5 − 1)

λ2
− (1 + θ(1 + β))

n∑
i=1

yλi (ln yi)
2

(1 + yλi )2
< 0,

∂2(π3(β|θ, λ, (y, d)))

∂β2
= −

(n−
n∑
i=1

di + b6 − 1)

β2
+

a6 + b6
(1 + β)2

< 0,∀ n−
n∑
i=1

di − 1 ≥ b6.

Thus the samples of λ and β can be generated using the method suggested by Devroye
(1984). Starting with suitable choice of initial values, say (θ0, λ0, β0), we suggest the
following procedure to generate samples of (θ, λ, β) from posterior distribution (30) and
then to obtain the Bayes estimates:

Step 1: Generate θ1 from gamma

(
n+ a4, λ

0 + (1 + β0)
n∑
i=1

ln (1 + yλ
0

i )

)
.

Step 2: Generate λ1 and β1 from the log-concave densities (33) and (34), respec-

tively, using the method suggested by Devroye (1984).

Step 3: Repeat Steps 1 and 2 M times to obtain (λ1, θ1, β1), ..., (λM , θM , βM ).

Now the Bayes estimates of θ, λ and β under different loss functions can be obtained
following the procedure given in previous section.
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4 Simulation

In this section, we perform a Monte Carlo simulation to observe the behavior of the
proposed estimators of the parameters for different sample sizes, for different priors,
for different loss functions and for different proportions of uncensored observations.
We consider different sample sizes: n = 20, 40, 60; different proportions of uncen-
sored observations: p = 0.50, 0.80; different sets of parameter values: θ = 2, λ =
1.5, β = 1, θ = 2, λ = 1.5, β = 0.25; and different combinations of hyperparameters:
a1 = 0, b1 = 0, a2 = 0, b2 = 0, a3 = 0, b3 = 0 (prior-1), a1 = 4, b1 = 2, a2 = 3, b2 =
2, a3 = 2, b3 = 2 (prior-2), a4 = 3, a5 = 3, b5 = 2, a6 = 4, b6 = 3 (prior-3) when
θ = 2, λ = 1.5, β = 1 and prior-1, a1 = 4, b1 = 2, a2 = 3, b2 = 2, a3 = 1, b3 = 4 (prior-2),
a4 = 3, a5 = 3, b5 = 2, a6 = 9, b6 = 2 (prior-3) when θ = 2, λ = 1.5, β = 0.25. Where
prior-1 denotes the noninformative priors for θ, λ and β when all the hyperparameters
in (17) are zero, prior-2 and prior-3 are defined in (17) and (20). It is to be noted that
in prior-2 and prior-3, the hyperparameters are taken so that the priors means are the
same as the original means.

To generate random samples from (6), we suggest the following procedure:

1. Generate N uniform (0, 1) random numbers u1, ..., uN and compute the corre-

sponding x1, ..., xN , where xi = ((1− ui)−θ − 1)
1
λ .

2. Generate another set of N uniform (0, 1) random numbers v1, ..., vN and compute

the corresponding t1, ..., tN , where ti = ((1− vi)−θβ − 1)
1
λ .

3. Obtain d1, ..., dN , where di = 1 if xi ≤ ti and di = 0 otherwise.

4. Compute y1, ..., yN , where yi = xidi + ti(1− di).

5. Obtain the required number of samples of required size from the generated pairs
(yi, di), for i = 1, ..., N .

For a particular combination, we generate 1000 randomly censored samples from (6)
and for each sample we compute the Bayes estimates under different loss functions based
on 20,000 MCMC samples with 10,000 samples as burn-in period. The average values of
the MLEs and the Bayes estimates and the corresponding mean square errors (MSEs)
are obtained from these 1000 replications. The results are reported in Tables 1-3. Some
of the points are very clear from these results. It is observed that as the sample size
increases the MSEs of the estimators decrease in all cases. This rate of decrease in MSEs
is relatively higher for informative priors as compared to noninformative priors. This is
true for both the cases of 50% and 80% proportions of noncensored observations. It is
further observed that the performance of the Bayes estimators of θ, λ and β is different
under different loss functions. That is for the shape parameter θ, the Bayes estimator
of θ under squared log-error loss function performs better than the rest. For the shape
parameter λ, the Bayes estimator of λ under quadratic loss function performs better
than the rest. For the censoring parameter β, the ML estimator of β performs better
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than the rest. It is also noted that the noinformative prior based Bayes estimators of
θ, λ under AP loss function perform worse than the corresponding ML estimators and
perform better under the other loss functions. When comparing the Bayes estimators
under prior2 and prior3, it is seen that the Bayes estimators of parameter θ under prior2
perform better than the corresponding Bayes estimators under prior3 and the Bayes
estimators of λ, β under prior3 perform better than the corresponding Bayes estimators
under prior2.
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Table 1: Average values of the different estimators of θ and the corresponding MSEs (in
parenthesis).

Prior p n θ̂SE θ̂Q θ̂AP θ̂SLE θ̂

1 0.50 20 2.2451 1.7189 2.3815 2.1101 2.2899

(0.6132) (0.3304) (0.8102) (0.4698) (0.8171)

40 2.1098 1.8695 2.1704 2.0492 2.1147

(0.1758) (0.1343) (0.2063) (0.1534) (0.1825)

60 2.0603 1.9054 2.0992 2.0213 2.0686

(0.1015) (0.0884) (0.1128) (0.0935) (0.1067)

0.80 20 2.1139 1.8308 2.1844 2.0429 2.1304

(0.3633) (0.2780) (0.4143) (0.3241) (0.3664)

40 2.0456 1.9120 2.0789 2.0122 2.0567

(0.1449) (0.1311) (0.1543) (0.1379) (0.1473)

60 2.0251 1.9375 2.0469 2.0032 2.0295

(0.0883) (0.0840) (0.0919) (0.0858) (0.0864)

2 0.50 20 2.1173 1.8256 2.1916 2.0432 2.2899

(0.1758) (0.1423) (0.2134) (0.1501) (0.8171)

40 2.0763 1.8991 2.1211 2.0316 2.1147

(0.1016) (0.0861) (0.1159) (0.0915) (0.1825)

60 2.0483 1.9220 2.0801 2.0166 2.0686

(0.0732) (0.0660) (0.0802) (0.0683) (0.1067)

0.80 20 2.0652 1.8600 2.1164 2.0138 2.1304

(0.1715) (0.1515) (0.1906) (0.1581) (0.3664)

40 2.0367 1.9227 2.0651 2.0082 2.0567

(0.1051) (0.0973) (0.1113) (0.1006) (0.1473)

60 2.0214 1.9427 2.0410 2.0017 2.0295

(0.0718) (0.0689) (0.0745) (0.0699) (0.0864)

3 0.50 20 2.1729 1.8508 2.2544 2.0915 2.2899

(0.2250) (0.1517) (0.2793) (0.1852) (0.8171)

40 2.1125 1.9258 2.1594 2.0655 2.1147

(0.1193) (0.0892) (0.1384) (0.1048) (0.1825)

60 2.0763 1.9446 2.1093 2.0432 2.0686

(0.0832) (0.0680) (0.0926) (0.0759) (0.1067)

0.80 20 2.0816 1.8696 2.1344 2.0286 2.1304

(0.1932) (0.1627) (0.2158) (0.1765) (0.3664)

40 2.0426 1.9295 2.0707 2.0143 2.0567

(0.1069) (0.0973) (0.1135) (0.1020) (0.1473)

60 2.0282 1.9492 2.0479 2.0084 2.0295

(0.0744) (0.0701) (0.0774) (0.0721) (0.0864)
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Table 2: Average values of the different estimators of λ and the corresponding MSEs (in
parenthesis).

Prior p n λ̂SE λ̂Q λ̂AP λ̂SLE λ̂

1 0.50 20 1.5862 1.4997 1.6072 1.5648 1.5967

(0.0857) (0.0702) (0.0918) (0.0804) (0.0903)

40 1.5373 1.4962 1.5471 1.5269 1.5433

(0.0332) (0.0303) (0.0345) (0.0322) (0.0342)

60 1.5176 1.4909 1.5242 1.5109 1.5244

(0.0216) (0.0207) (0.0220) (0.0212) (0.0218)

0.80 20 1.5864 1.4932 1.6091 1.5633 1.5878

(0.0910) (0.0744) (0.0978) (0.0852) (0.0929)

40 1.5376 1.4933 1.5486 1.5266 1.5396

(0.0365) (0.0332) (0.0379) (0.0353) (0.0363)

60 1.5252 1.4961 1.5324 1.5179 1.5270

(0.0249) (0.0234) (0.0256) (0.0244) (0.0247)

2 0.50 20 1.5594 1.4844 1.5778 1.5409 1.5967

(0.0599) (0.0518) (0.0637) (0.0568) (0.0903)

40 1.5304 1.4921 1.5399 1.5209 1.5433

(0.0285) (0.0264) (0.0295) (0.0277) (0.0342)

60 1.5178 1.4922 1.5242 1.5114 1.5244

(0.0198) (0.0190) (0.0203) (0.0195) (0.0218)

0.80 20 1.5663 1.4823 1.5868 1.5455 1.5878

(0.0685) (0.0578) (0.0733) (0.0645) (0.0929)

40 1.5331 1.4904 1.5435 1.5226 1.5396

(0.0325) (0.0299) (0.0337) (0.0315) (0.0363)

60 1.5231 1.4949 1.5301 1.5160 1.5270

(0.0232) (0.0219) (0.0237) (0.0227) (0.0247)

3 0.50 20 1.551 1.4849 1.5723 1.5377 1.5967

(0.0520) (0.0451) (0.0553) (0.0494) (0.0903)

40 1.5306 1.4937 1.5397 1.5215 1.5433

(0.0267) (0.0247) (0.0277) (0.0260) (0.0342)

60 1.5173 1.4922 1.5235 1.5110 1.5244

(0.0190) (0.0182) (0.0194) (0.0187) (0.0218)

0.80 20 1.5595 1.4823 1.5784 1.5403 1.5878

(0.0572) (0.0487) (0.0611) (0.0539) (0.0929)

40 1.5303 1.4905 1.5402 1.5204 1.5396

(0.0301) (0.0278) (0.0312) (0.0292) (0.0363)

60 1.5224 1.4949 1.5292 1.5155 1.5270

(0.0220) (0.0507) (0.0225) (0.0215) (0.0247)
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Table 3: Average values of the different estimators of β and the corresponding MSEs (in
parenthesis).

Prior p n β̂SE β̂Q β̂AP β̂SLE β̂

1 0.50 20 1.1136 0.7274 1.2395 1.0018 1.0000

(0.0130) (0.0744) (0.0576) (0.0001) (0.0000)

40 1.0540 0.8585 1.1102 1.0011 1.0000

(0.0030) (0.0202) (0.0121) (0.0003) (0.0000)

60 1.0352 0.9040 1.0709 1.0007 1.0000

(0.0013) (0.0092) (0.0051) (0.0000) (0.0000)

0.80 20 0.2917 0.1363 0.3359 0.2495 0.2500

(0.0203) (0.0232) (0.0291) (0.0160) (0.0000)

40 0.2721 0.1936 0.2928 0.2518 0.2500

(0.0079) (0.0090) (0.0098) (0.0070) (0.0000)

60 0.2664 0.2141 0.2800 0.2530 0.2500

(0.0049) (0.0052) (0.0058) (0.0045) (0.0000)

2 0.50 20 1.0600 0.8093 1.1282 0.9945 1.0000

(0.0080) (0.0391) (0.0213) (0.0041) (0.0000)

40 1.0308 0.8854 1.0794 0.9984 1.0000

(0.0020) (0.0143) (0.0071) (0.0012) (0.0000)

60 1.0271 0.9172 1.0561 0.9994 1.0000

(0.0011) (0.0072) (0.0032) (0.0000) (0.0000)

0.80 20 0.2718 0.1556 0.3013 0.2423 0.2500

(0.0087) (0.0151) (0.0114) (0.0078) (0.0000)

40 0.2655 0.1993 0.2825 0.2486 0.2500

(0.0053) (0.0069) (0.0064) (0.0049) (0.0000)

60 0.2632 0.2167 0.2751 0.2514 0.2500

(0.0037) (0.0042) (0.0043) (0.0035) (0.0000)

3 0.50 20 1.0091 0.7582 1.0831 0.9413 1.0000

(0.0032) (0.0602) (0.0103) (0.0064) (0.0000)

40 0.9993 0.8471 1.0403 0.9583 1.0000

(0.0013) (0.0243) (0.0023) (0.0023) (0.0000)

60 1.0010 0.8913 1.0311 0.9732 1.0000

(0.0002) (0.0124) (0.0013) (0.0013) (0.0000)

0.80 20 0.2620 0.1653 0.2878 0.2367 0.2500

(0.0062) (0.0117) (0.0080) (0.0058) (0.0000)

40 0.2590 0.2003 0.2744 0.2439 0.2500

(0.0044) (0.0061) (0.0051) (0.0041) (0.0000)

60 0.2586 0.2154 0.2698 0.2476 0.2500

(0.0032) (0.0039) (0.0036) (0.0030) (0.0000)
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5 Data Analysis

To illustrate the proposed methods we analyze a real data set from Fleming (1991). The
data belongs to Group IV of the Primary Biliary Cirrhosis (PBC) liver study conducted
by Mayo Clinic. The event of interest is the time to death of PBC Patients. The data
on the survival times (in days) of 36 patients who had the highest category of bilirubin
are: 400, 77, 859, 71, 1037, 1427, 733, 334, 41, 51, 549, 1170, 890, 1413, 853, 216,
1882+, 1067+, 131, 223, 1827, 2540, 1297, 264, 797, 930, 1329+, 264, 1350, 1191, 130, 943,
974, 790, 1765+, 1320+. The observations with + indicate censored times. For com-
putational ease, each data value is divided by 1000. Since we do not have any prior
information about the unknown parameters, we use noninformative priors with all the
hyperparameters equal to zero, that is a1 = b1 = a2 = b2 = a3 = b3 = 0, for Bayes
estimates. We compute the MLEs and the Bayes estimates of θ, λ and β under different
loss functions.

Table 4: The estimates of unknown parameters under different loss functions and the
corresponding p-values of the Kolomogorov-Smirnov test.

Method θ λ β K-S D p-value

Bayes(SE) 1.4860 1.5070 0.1670 0.1262 0.7251

Bayes (Q) 1.3902 1.4483 0.0947 0.1594 0.3939

Bayes (AP) 1.5093 1.5212 0.1858 0.1287 0.6962

Bayes (SLE) 1.4617 1.4920 0.1482 0.1286 0.6973

SG 1.4617 1.4483 0.1613 0.1238 0.7533

ML 1.4904 1.5108 0.1613 0.1273 0.7123

Based on the simulation study we suggest the Bayes estimator of θ under SLE loss
function, the Bayes estimator of λ under quadratic loss function and the ML estimator of
β, and call these estimators as simulation guided (SG) estimators. To test the goodness
of fit of the model to this data, we compute the Kolomogorov-Smirnov D statistics in
each case. The results are reported in Table 4. Based on the Kolomogorov-Smirnov
test, we can say that all the methods fit the data quite well. However, the SG estimates
perform slightly better than the rest.

6 Conclusion

In this paper, we consider the Bayesian estimation in Burr type XII distribution under
the Koziol-Green model of random censorship. We assume two different set of infor-
mative priors for the unknown parameters since no continuous conjugate priors exist.
We use squared error, quadratic, precautionary and squared log-error loss functions to
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obtain the Bayes estimates. It is seen that the closed-form expressions for the Bayes es-
timators are not possible we suggest Gibbs sampling scheme to obtain the approximate
Bayes estimates. To observe the behavior of the Bayes estimators and to compare them
with the ML estimators some simulation study is carried out. It is observed that as
the sample size increases the MSEs of the estimators decrease. This rate of decrease in
MSEs is relatively higher for informative priors as compared to noninformative priors.
It is further observed that the Bayes estimator of θ under SLE loss function performs
best, the Bayes estimator of λ under quadratic loss function performs best and the ML
estimator of β performs best in all the cases. A real data analysis is performed to illus-
trate the proposed methods and to confirm the simulation results. The performance of
these different methods is judged by the Kolomogorov-Smirnov test. It is seen that all
the methods fit the data quite well. However, the simulation guided best estimators fit
the data best than the rest.
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