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Abstract: The mixed effect models has been discussed and implemented from 

Bayesian viewpoint. In this paper we have made Bayesian analysis of mixed effect 

models and illustrated its application in agriculture. We focus on linear mixed 

models with a random intercept and fixed slope. The basic idea behind this 

approach is to model the phenomenon under study in stages and analyze that 

model in Bayesian framework. Advancement in the computational power of high 

speed computers has aided the application part. Suitable illustrations have been 

proposed on real data set generated on potato crop in year 2005-2006 at five 

different locations with twelve genotypes including both Yield and Growth 

attributing characters (tuber weight and Average tuber No.).  The models used in 

this paper have been fitted by lme (fixed, data, random) of nlme library by [12] 

and it was observed on BIC(Bayesian information criteria) that we should treat 

locations as random and not as fixed.  

 

Keywords: Bayesian analysis, Bayesian statistics, mixed effect models, linear 

models, hierarchical models. 
 

 

1. Introduction 
 

Bayesian statistics is an approach to statistics, which formally seeks use of prior information and 

Baye's theorem provides the basis for making use of this information in a formal manner. 

Bayesian statistics is an excellent alternative to be more reasonable for moderate and especially 

for small sample sizes when non Bayesian procedures do not work see, for example, [1].  When 

data are collected from many similar units such as animals, cities, and experimental locations, 
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the problem in such situations is how to combine the data generated at different units to draw 

inference about phenomenon under study. For example, in a plant breeding trial several 

genotypes are planted at different location so that locational or environmental effects could be 

evaluated in respect of the genotypes. This helps in selecting the best location and genotype in 

respect of certain quantitative and qualitative traits. Also [8] and [11] are the pioneering papers 

dealing with such problems in linear model framework. The basic idea behind this approach is to 

model the phenomenon under study in stages and analyze that model in Bayesian framework, 

such a model is known as hierarchical model see, for example, [3] and [4]. 
Henderson’s mixed model or best linear unbiased prediction (BLUP) theory (see, for example 

[6], [7] ) is a non-Bayesian example of analyzing such situations Deficiencies of Henderson’s 

approach in the form of negative estimates of variance components and conceptual difference 

between fixed and random effects are removed by [5] using complete Bayesian framework in the 

context of animal breeding theory. However [10] develop a methodology in which they have 

used t-distribution for fixed and random effects. 

In this paper a description of mixed effects models in Bayesian framework in reference to 

multilocational trial of potato breeding has been given. The computations have been done using 

lme() function which is a part of nlme library of SPLUS and R- software packages of [12]. 

 

 

2. Description of the Model 
 

In the spirit of [8] we consider the following Bayesian model: 

 

Stage1: For ith location, conditional on ,, ii ZX   T

p ),...,,( 21    and T

qi bbbb ),...,,( 21  

let ),(~  iii bZXNy  , where iy  is a )1( n vector of responses and ,, ii ZX  are known 

design matrices relating effects  T

p ),...,,( 21    and T

qi bbbb ),...,,( 21  to iy , and   is a 

positive definite matrix. 

 

Stage2: The effects   and ib  are independent and have multivariate normal distribution 

i.e., ),(~ 00  N  and ),0(~ DNbi . If 
1

0


 approaches to null matrix then the distribution of  

  can be treated as approximately uniform distribution.  

A non-Bayesian formulation of the proposed model is: 

 

iiiii ebZXy   ,  ki ,...,1        (1) 

 

where ie  and ib and mutually independent with ),0(~ 2INei  and ),0(~ DNbi . It may be 

noted that   which follows normal distribution with 1

0

  approaching to null matrix, is termed 

as fixed effect, whereas ib  which follows normal distribution is termed as random effect. Since 

both these effects are present in the model (1) hence it is termed as mixed effect model. 
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3. Bayesian analysis of mixed effect models 
 

Consider model (1), the first stage that is likelihood can be defined as: 

 

),,|()|,,( 22  ypyL          (2) 

 

In the second stage: 

 

),|(),|(),|,( 222  ii bppbp         (3) 

 

Thus joint posterior density of  , 2 ,   can be written as: 

 

),,|()|,,(
1

22





k

i

iypyp     = ii

k

i

ii dbbpbyp ),|(),,|( 2

1

2 


  (4) 

 

The expression (3) can be used directly in an optimization routine to calculate the posterior mode 

for ,   and 2  . However, the optimization is much simpler if we first concentrate or 

approximate the posterior density so that it is a function of   only. That is, we calculate the 

conditional posterior mode )(ˆ   and )(ˆ 2   as the value that maximizes )|,,( 2 yp   for a 

given  . 

It is possible to describe this density as a normal distribution with mean zero and patterned 

variance covariance matrix i a representation that is often used to derive the posterior density 

for the parameters in a linear mixed effect model. That is: 
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yp i




    (5) 

 

For the purpose of studying posterior mode of the approximate posterior density (4) the method 

of QR decomposition is used by [12], thus defining the augmented matrix in QR decomposition 

form: 

 









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







 )(0)(00

)(1)(10)(11

)( 000 ii

iii

i

iii

CR

CRR
Q

yXZ
       (6) 

 

which results posterior mode of )(ˆ  and )(ˆ 2   for given   as: 

 

N

C
andCR

2
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0

1

00

||||
)(ˆ)(ˆ 
         (7) 
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where 0C  and 1C  are the matrices obtained after applying another QR decomposition on the 

rectangular matrix  of (5). 

Approximate posterior density of   for given )(ˆ   and )(ˆ 2   can be defined as: 
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or log-posterior : 

 

)|(log)|( ypyl    

   










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This approximate log-posterior density (8) is maximized with respect to , to get the posterior 

mode̂ . The posterior mode of )(ˆ   and )(ˆ 2   are obtained by substituting  =̂  .  This 

estimate is termed as ML estimate by [12]. 

There are two methods of optimization to get posterior mode ̂ . The most common is Newton-

Raphson iteration scheme and second EM algorithm. It may note that EM algorithm consists of 

two main steps expectation, E and maximization, M. It may be noted that Newton-Raphson is 

fast converging algorithm whereas EM is quite slow. However, in first few iterations of EM 

estimate is very close to the optimum but near optimum it takes many iterations to reach the 

optimum value. Also [12] have implemented a hybrid of these two in their lme() function of 

nlme library in which first 25 iterations are EM followed by Newton-Raphson. 

Posterior density of  ,  and 2  can be approximated by multivariate normal densities as: 
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where )ˆ,ˆ,...,ˆ( 1

1  kI   is the negative Hessian matrix computed at posterior mode. These 

posterior densities will be used for construction of credible regions and hypothesis testing. 

Bayesian parallel of likelihood ratio test can also be used for hypothesis testing and for 

construction of credible region. Moreover, for model selection this technique is very useful 

provided models are hierarchical in nature, i.e., one model is particular case of the other model. 

[12] have implemented this strategy in their function anova(). 
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4. Bayesian analysis for fixed and random effects 
 

To perform Bayesian analysis of fixed effect   an approximate posterior density will be 

constructed for   assuming that̂  is known, i.e., posterior density of j , the jth component 

of   is approximately: 

 

),)(ˆ),ˆ(ˆ()ˆ|( 00

1

00

2

1 jjj

T

Rjj dfRRtp


        (11) 

 

where )ˆ(ˆ  j  is the posterior mode of   for given ̂ . 

This results into an approximate )%1(   credible region of j  as: 

 

jj

T

Rdfj RRt
j

][ˆ)2/1(ˆ
00

1

00


          (12) 

 

Bayesian inference about  can be obtained from its posterior density defined as: 

 

)][),ˆ(ˆ(log)ˆ|(log ˆˆ

1

  INp         (13) 

 

This results into )%1(   credible region for   as: 

 

 )][)2/1(exp(ˆ),][)2/1(exp(ˆ
ˆˆ

1

ˆˆ

1

    IzIz      (14) 

 

where )2/1( z  denotes the quantile of the standard normal distribution.  

 

 

5. Numerical Illustration 
 

The methodologies discussed in the earlier sections have been implemented by [12] in the nlme 

library which is a recommended software package in R an S-PLUS. Details of this library can be 

obtained from internet http://nlme.stat.wisc.edu or  http://cm.belllabs.com/stat/NLME. This 

library contains important function lme()meant for analysis of linear mixed effects models. The 

details of lme() function follows: 

 
lme(fixed, data, random) 

 

where fixed stands for fixed effect part of the model i.e., the part of the model which is common 

in all the locations. Bayesian term it that part of the model which contains non-informative prior 

for  . The argument data stands for the data frame which contains the data for which model is to 

be fitted. The argument random stands for the random effect part ib  of the model which is 

commonly termed by Bayesians a part of the model with informative prior.  

http://nlme.stat.wisc.edu/
http://cm.belllabs.com/stat/NLME
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This function returns estimate of regression coefficient  , ib and variance components for ib  and 

ie . Details of output includes model selection criteria like Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC) and loglikelihood computed at the posterior mode along 

with the number of iterations required during the optimization. It may be noted that: 

 

)log(log2

2log2

NnLikBIC

nLikAIC

par

par




 

 

where logLik stands for logposterior compute at its mode. The parn  stands for number of 

parameters involved in the model and N stands for the number of rows in the data matrix see, for 

example, [2] and [14].  

The multilocational data on potato recorded at five different research station of SKUAST-k (j & 

k) in the year 2005-2006 is used. This analysis is helpful for plant breeders as several genotypes 

planted at different locations are evaluated for Locational and environmental effects in respect of 

genotypes. This helps in selecting the best Location in respect of certain qualitative and 

quantitative traits. 

 
Table 1. Linear Mixed Effects Model Fit by REML for the Potato data. 

       AIC     BIC    logLik 

  1621.529 1637.41 -805.7646 

Random effects: 

 Formula: ~1 | Location 

        (Intercept) Residual 

StdDev: 0.001098937 21.57763 

Fixed effects: Yield ~ TbrWeight + AvTuberNo.  

                 Value Std.Error  DF   t-value p-value 

(Intercept) -253.39373 11.394762 173 -22.23774       0 

TbrWeight      4.38574  0.077889 173  56.30790       0 

AvTuberNo.    48.35250  1.471885 173  32.85073       0 

 Correlation:  

           (Intr) TbrWgh 

TbrWeight  -0.635        

AvTuberNo. -0.878  0.214 

Standardized Within-Group Residuals: 

       Min         Q1        Med         Q3        Max  

-5.1149084 -0.1928404  0.0459367  0.3990114  3.6062606  

Number of Observations: 180 

Number of Groups: 5 

 

BIC when model is fitted as simple linear model (lm fit) where locations are treated as fixed and 

not as random: 

 
BIC(fit.lm) 

[1] 1653.772 
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Since the BIC value is the model selection criterion, lesser the value of the BIC better is the 

model fit. Thus as can be seen for the values of BIC obtained by fitting the model by two 

different methods the best fit is the lme as the BIC value is less in that fit. Thus the mixed effect 

model is better fit as compared to the lm fit. In the above fit model we have treated both tuber 

weight and average tuber number as fixed effects and the locations as random whereas as in the 

lm fit the locations are treated as fixed resulting in the higher values of BIC thus it can be 

concluded from the above results that the location should be treated as random and not as fixed. 

 
Table 2. Random effects when the model is fitted as mixed effect model 

Locations (Intercept) 

Gulmarg 

Gurez 

Larnoo 

Shalimar 

Tangmarg 

6.418289e-07 

-5.872515e-07 

-2.294771e-07 

-9.148833e-08 

2.663879e-07 

 

The above table represents the random effects. As can be seen from the values, Gulmarg is the 

better location for the cultivations of potato followed by Tangmarg. This result is different from 

the one obtained in the linear model fit because their only the yield was taken into consideration 

however here in addition to the yield the variance and environmental effects are also taken into 

consideration. Thus this is a better result.  

 

 

6. Conclusion 
 

It is worth to mention that mixed model methodology lacks theoretical and philosophical 

grounds and Bayesian approach is the only remedy as has been discussed by [11], [5] and [13]. 

From the above output it can be concluded that among locations Gulmarg is the best location 

followed by Tangmarg and Shalimar is not the good location for the cultivation of potato among 

the given locations. This is in contrary to non-Bayesian approach where Gurez the best Location. 

This is because there the ranking is based on the averages only. However, in Bayesian approach 

the combined effects of location averages, overall average, variation between the locations and 

within the location are taken in to consideration see, for example, [9]. 
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