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Abstract: Linear Discriminant Analysis leads to unstable models and poor predictions in the 
presence of quasi collinearity among variables or in situations where the number of variables is 
large with respect to the samples. Partial Least Squares Discriminant Analysis (PLS-DA) was than 
proposed to overcome the multicollinearity problem and defined as a straightforward extension of 
the PLS regression. Generalized PLS-DA (GPLS-DA) and “Between” PLS-DA (B-PLS-DA) are two 
suitable extension of PLS-DA. A simple regularization procedure is proposed to cope with the 
problems of quasi collinearity or multicollinearity. It is shown that the GPLS-DA and Between PLS-
DA are the two end points of a continuum approach. 
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1. Introduction 
 

In the chemometrics, pattern recognition, ecology and in other fields, we very often have to 
deal with the study of groups and with the research of their separation aiming to fix a decision role. 
The most known statistical methods of discrimination are Linear Discriminant Analysis (LDA) 
developed by Fisher (1936) and Quadratic Discriminant Analysis, closely related to LDA, which 
allows the intraclass covariance matrices to differ between classes. Both these methods are likely to 
lead to unstable models and poor predictions in the presence of quasi collinearity among variables 
or in situations where the number of variables is large with respect to the samples (Naes and Indhal, 
1998). A number of theoretical approaches have been suggested to deal with these problems. Early 
proposals on this topic are the contributions of Smidt and McDonald (1976), Wold (1976) and 
Friedman (1989). 

PLS is a routinely used methodology for both classification and discrimination problems with 
multicollinear data, even if it was not born with these purposes. The usual PLS Discriminant 
Analysis (PLS-DA) (Sjöström et al., 1986) was proposed to overcome the multicollinearity problem 
of LDA and it can be defined as a straightforward extension of the PLS regression. Unfortunately, 
in some situations, a misuse of PLS-DA can lead to a biased solution which does not answer the 
given problem of discrimination. As pointed out by Barker and Rayens (2003) and Sabatier et al. 
(2003), it is absolutely impossible to interpret PLS-DA with respect to the between groups sum of 
squares and cross product variance matrix like LDA because PLS-DA corresponds to extracting the 
unit eigenvector associated to the dominant eigenvalue of an alterated version of this matrix. Barker 
and Raynes (2003), Nocairi et al. (2005) and Sabatier et al. (2003) highlighted that a more suitable 
version of PLS-DA should be based on the ordinary “between” groups sum of squares and cross 
product variance (B-PLS-DA) according to the maximation of a covariance criterium. Sabatier et al. 
(2003) provided a simple extension of PLS-DA called Generalized PLS-DA which is close to the 
generalization of PLS proposed by Cazes (1997), but for the context of discrimination; moreover it 
is based on the eigenanalysis of a matrix equivalent to that of LDA. This approach provides equal 
results to LDA if the variance and covariance matrix of the predictor variables is not ill-conditioned.  

As B-PLS-DA corresponds to a shrinkage of inverse of the the variance and covariance matrix 
of the predictor variables towards the identity matrix, GPLS-DA (LDA) and B-PLS-DA can be then 
considered two end points of a continuum approach by incoporating a ridge type of regularization 
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into GPLS-DA. This new regularized formulation of GPLS-DA (LDA) and B-PLS-DA is 
conceptually easy to understand and implement by handling the multicollinearity problem. We refer 
to it as “Regularized-Generalized PLS-DA”. With this continuum approach, we will have LDA and 
B-PLS-DA as two end points, if the variance and covariance matrix of the predictor variables is not 
ill-conditioned, while, in presence of multicollinearity, the two end points will be GPLS-DA and B-
PLS-DA. In the latter case, GPLS-DA can be viewed as ridge version of Discriminant Analysis 
(Smidt and McDonal, 1976; Rencher, 1998).  

 
2. Notation 
 

The main goal of collecting the values taken by  statistical units on n p  variables in a 
matrix  of order n  is, generally, the comparison either of the statistical units or 
the variables. For the former comparison, if we choose to compute a distance between the statistical 
units, then we have to define a 

1= { , , }T
nX x x… p×

p p×  symmetric positive definite matrix  defining the scale of 
the several variables. If we perform the comparison between the variables by a linear correlation 
coefficient, then we have to define a positive diagonal matrix  collecting the weights of the 
statistical units. Then we can consider the notation of the statistical study (triplet)  
(Escoufier, 1987) to describe the data and their use. The triplet allows to present the factorial 
methods in a single theoretical framework by using suitable choices for the metrics  and  
where  specifies the weights metric in the vectorial space  of variables with 

 (for instance ) and  defines the metric measuring the distance between the 

data vectors ,  of two statistical units j, k in 

XQ

D
( , , )XX Q D

XQ D

1= ( ,..., )ndiag d dD nℜ

=1
= 1n

ii
d∑ = 1/id n XQ

jx kx pℜ  given by ( ) . We assume 

that  is mean centred with respect to D ( =  with  unitary column vector). We highlight 
that the ordinary Principal Component Analysis on covariance matrix is the analysis of the 

statistical study 

(T
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X T
n1 DX 0 n1

1( , , )c p nn
X I I  where  is the centred data matrix. cX

Let  be the statistical study associated with the matrix Y  of order , collecting 
an additional set of  criterion variables observed on the same  statistical units.  is the 

( )YY,Q ,D (n q× )
q n YQ ( )q q×  

metric of the statistical units in . If  is a qualitative variable with  categories then  is the 
-uncentered binary indicator matrix related to the complete disjunctive coding of this variable. In 

this case,  is the  diagonal matrix of the each category relative frequencies, 
 is the  matrix collecting the explanatory variables averages for each 

categories and  is the between groups variance matrix. 
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D

= T
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)
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3. A brief summary of Generalized PLS-DA 
 

Generalized PLS Discriminant Analysis is defined (Sabatier et al., 2003) as the PLS analysis of 
the triplets ( , , (1/ ) )nn ×YU Q I  and ( , , (1/ ) )nn ×XX Q I  with 1−=YQ DY  and . The first 
GPLS-DA axis  is given by the diagonalization of the matrix 

1( )T −=XQ X X

1w 1( )T −B X X  and it is equivalent to 
LDA if  is not singular. The first PLS-DA axis is instead given by the eigenanalysis of the 
matrix  obtained by the PLS analysis of the triplets  and 

. It is evident that the matrix diagonalized by PLS-DA is an alterated version of 
matrix  and so we do not have an optimality condition for PLS-DA when discrimination is the 
goal. According the Barker and Raynes (2003) and Nocairi et al. (2005) suggestions, B-PLS-DA 

TX X
T TX DUU DX ( , , (1/ ) )q nn ×U I I

( , , (1/ ) )p n ×X I In

B
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(Sabatier et al., 2003) is instead given by the PLS analysis of the triplets  and 
 where the first axis is obtained by the diagonalization of the the ordinary between 

groups sum of squares and cross product variance . We highlight that B-PLS-
DA is also equivalent to a Between Principal Component Analysis (B-PCA) that is the PCA of the 
cloud of centers of gravity (Cailliez and Pages, 1976). 

1( , , (1/ ) )nn− ×YU D I
( , , (1/ ) )p n ×X I In

1

1= T T−
YB X DUD U DX

The GPLS-DA components  and  associated with the first axes 
are the eigenvectors of  and , respectively, where  and  are the -orthogonal 
projection operators onto the vectorial subspaces  and .  The other GPLS-DA 
components are based on the residual matrices 
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with ( 1) 1= ( )s T

s s
− −t X X X w , , (0) =X X (0) =Y Y  and 1−= YY YD� . The GPLS-DA solutions of order  

are then given by the eigenvector 
s

1/2= ( )T
s sw X X w�  where sw�  is linked to the higher eigenvalue λ  

of the eigen-system 1/2 ( 1) 1 ( 1) 1/2( ) ( ) =T s T T s T
s sλ− − − − −

YX X X DYD Y DX X X w w� � . If  is not ill-
conditioned then the GPLS-DA and the LDA solutions of order  are equal. Finally, we note that 
the maximum number of GPLS-DA axes is less or equal to mi

TX X
s

n( , 1)p q −  analogously to LDA.  
 

4. Regularized - Generalized PLS-DA 
 

It is evident that the B-PLS-DA matrix can be obtained from that of GPLS-DA by shrinkage of 
matrix  towards the identity matrix. We can consider then a bridge between B-PLS-DA and 
GPLS-DA adopting a gradual shrinkage of the inverse of the the variance and covariance matrix of 
the predictor variables towards the identity matrix. GPLS-DA (LDA) and B-PLS-DA can be then 
considered two end points of a continuum approach by incoporating a ridge type of regularization 
into GPLS-DA and considering a convex combination of the two matrices.  

1( )T −X X

Regularized-Generalized PLS Discriminant Analysis (R-GPLS-DA) is then defined as the PLS 
analysis of the triplets  and  with 1{ , , (1/ ) }nn− ×YU D I

1
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with 
1( )= (1 )s T

s pα α
−

⎡ − +⎣t X X X I w s⎤⎦ , and where sw  is given by the diagonalization of the matrix 

. The R-GPLS-DA solution of order  is then given by the eigenvector 
1

(1 ) T
pα α

−
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It is worthy noting that the above criteria are also equivalent to the criterion 
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which leads to a regressor proportional to ridge regression (Frank and Friedman, 1993; Bougeard et 
al., 2008) in the univariate case [ ]=Y y  and with 2 1s =w . It is then possible to express R-GPLS-

DA as the PLS analysis of the triplets  and  with 
. It is evident that with both formulation of R-GPLS-DA, we obtain GPLS-DA (LDA) and 

B-PLS-DA as two end points of a continuum approach according to 

1{ , , (1/ ) }nn− ×YU D I
1

{ , , (1/ ) }T
p nk n

−
⎡ ⎤+ ×⎣ ⎦X X X I I

[0, [k∈ ∞
[0,1[α ∈  or . In 

presence of multicollinearity, R-GPLS-DA allows then to user to choose among a whole range of 
methods from which a suitable model can be selected by using a validation procedure. 

[0, [k∈ ∞
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